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1. Flux balance analysis (FBA) 

 

We implemented the FBA described in Ref. (1) starting from a stoichiometric matrix that 

captures the reconstruction of the K12 derivative MG1655 (2) strain of E. coli, containing 

537 metabolites and 739 reactions. In a steady state the concentrations of all the 

metabolites are time independent 

 0  ][ ==∑
j

jiji SA
dt
d ν , (2) 

where Sij is the stoichiometric coefficient of metabolite Ai in reaction j and νj is the flux 

of reaction j. We use the convention that if metabolite Ai is a substrate (product) in 

reaction j, Sij < 0 (Sij > 0), and we constrain all fluxes to be positive by dividing each 

reversible reaction into two “forward” reactions with positive fluxes. Any vector of 

positive fluxes {νj} which satisfies (2) corresponds to a state of the metabolic network, 

and hence, a potential state of operation of the cell. We restrict our study to the subspace 

of solutions for which all components of νννν satisfy the constraint νj > 0 (1). We denote the 

mass carried by reaction j producing (consuming) metabolite i by ν̂ ij = |Sij| νj, where Sij is 

the stoichiometric coefficient of reaction j. An important step in the establishment of the 

stoichiometric matrix S is to ensure mass conservation, i.e., that all the internal 

metabolites (metabolites which are not transported through the cell membrane) appear at 

least once as both a substrate and a product in the reaction system (1).   

 

 

2. Optimal states  

 

2.1 Linear optimization: Using linear programming and adapting constraints for each 

reaction flux νi of the form maxmin
iii βνβ ≤≤ , we calculate the flux states optimizing cell 

growth on various substrates. These constraints can also be used to control the 

reversibility of the reactions, an irreversible reaction having βi
min = 0. We used the linear 

programming code lp_solve (ftp://ftp.ics.ele.tue.nl/pub/lp_solve/) to find an optimized 

ftp://ftp.ics.ele.tue.nl/pub/lp_solve/
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flux vector for a given set of constraints. The stoichiometric matrix, components of the 

biomass vector and the choices for the bounds βi
min and βi

max were taken from Segre et al. 

(3). During optimization, we set the minimal uptake basis to have unlimited access to 

carbon dioxide, potassium, sulfate and phosphate, and limited access to ammonia 

(maximal uptake rate of 100 mmol/g DW/h) and oxygen (maximal uptake rate of 20 

mmol/g DW/h).  When we simulate the utilization of additional carbon sources, like 

glutamate, succinate or glucose, we limit their maximal uptake rate to 20 mmol/g DW/h. 

In Fig. S1 (a), we compare the flux distributions thus calculated for succinate (black), 

glutamate (red) and glucose (green) rich conditions, and to Luria-Bertani  medium (LB) 

(blue). The solid line is the best fit from Fig. 1a. 

 

 
Figure S1. (a) Flux distribution for optimization of biomass on succinate (black), 

glutamate (red), glucose rich media (green) and Luria-Bertani medium (LB) (blue). The 

solid line is the best fit in Fig. 1a. (b) Glutamate (black) substrate with an additional 10% 

(red), 50% (green) and 80% (blue) randomly chosen input channels. The best fit power 

law αννν −+ )(~)( 0P  with ν0 = 0.0004 and α = 1.5 is consistent with that of Fig. 1b. 

 

In the power-law fittings of Figs. 1a, 1b and Fig. S1 we omitted the reactions with fluxes 

smaller than 10-5 for the sake of clarity. To check the validity of our findings for the full 

system (including the reactions omitted in Fig. S1), we plot the cumulative of the flux 

distribution obtained by optimization on succinate (black) and glutamate (red) rich 

substrates in Fig. S2. This figure clearly shows that this plotting procedure is sound, since 
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fluxes of magnitude less than 10-5 are outside the scaling region of the cumulative 

distribution and are fully in line with the fit used to determine the scaling exponents. 

 

 
Figure S2. Cumulative distribution of the metabolic fluxes in E. coli on a succinate 

(black) and a glutamate (red) rich environment. The best fit to αννν −+ )(~)( 0P  yields 

ν0=0.0003 and α=0.53 for succinate (green), and ν0=0.0006 and α=0.59 for glutamate 

(blue). The fitting does not include the 3 largest flux values for both glutamate and 

succinate.  

 

2.2 Random uptake conditions: To investigate the effect of the environment on the flux 

distribution we choose randomly X%, (where X=10, 50 or 80) of the 89 potential input 

substrates E. coli consumes in addition to the minimal uptake basis of 6 (together with 

either glutamate or succinate, giving a total of 96 input channels). For each of the chosen 

transport reactions, we set the uptake rate to 20 mmol/g DW/h before computing the 

optimal flux distribution. As there is a very large number of possible combinations of the 

selected input substrates, we repeat this process 5000 times and average over each 

realization.  In Fig. S1 (b), we show the resulting flux distribution for varying degrees of 

random environments superimposed on a glutamate rich substrate. The best fit power law 

is identical to that of Fig. 1 (b), for a succinate rich base, showing that the functional form 
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of the flux distribution is very robust and independent of the growth conditions (uptake 

metabolites). 

 

2.3 Flux variations under changes in the growth conditions: For Fig. 4 we recorded 

the flux vector of each independent realization, allowing us to create a flux histogram for 

each reaction. As this figure shows, the distribution of the individual flux values can vary 

from Gaussian to multimodal and wide-scale distributions. In Figs. 2d and S3, we 

compare the calculated absolute value of the fluxes for each reaction on different 

substrates. The overall deviation from the y=x line (red) is caused by the substrate’s 

differing ability to produce biomass. A glucose rich medium gives higher biomass 

production than a glutamate rich one. Reactions with zero flux in one of the conditions 

are shown close to the coordinate axes. The inset shows the absolute relative difference.  

 

 
Figure S3. The change in the flux of individual reactions when departing from glutamate 

to glucose rich conditions. Some reactions are turned on in only one of the conditions 

(shown close to the coordinate axes). Reactions which are members of the flux backbone 

for either of the substrates are black squares, the remaining reactions are marked by blue 

dots and reactions reversing direction are colored green. 
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Additionally, to systematically quantify the flux fluctuations, we calculated the average 

flux value and standard deviation for each reaction, not considering the instances where a 

reaction was rendered inactive. Figure S4 displays our results for a minimal basis with 

glutamate and (a) 10%, (b) 50% and (c) 80% randomly chosen uptake substrates. For the 

small fluxes (< 10-3) the fluctuation σ is typically linear in the average flux ν. For all 

these reactions, the distribution of flux values is very well fit by a Gaussian distribution 

(ν,σ). The reaction fluxes with a non-linear σ-ν behavior have either multimodal or very 

broad scale flux distributions. 

 

 
Figure S4. Absolute value of glutamate flux νi for reaction i averaged over (a) 10%, (b) 

50% and (c) 80% randomly chosen inputs, plotted against the standard deviation of that 

same reaction. The red line is y=a x for reference purpose, with (a) a=0.15, (b) a=0.075 

and (c) a=0.045. The inset displays the relative flux fluctuation σi / νi per reaction. 

 

 

3. Non-optimal states 

 

3.1 The “hit-and-run” method: To characterize all the possible flux states of the system 

using only the constraints imposed by mass conservation and stoichiometry, we sample 

the solution space by implementing a “hit-and-run” algorithm (4, 5). For our database of 

MG1655 E. coli metabolic reactions (6) twenty metabolites were given transport 

reactions either supplying or removing the metabolites in question, in order to ensure 

mass conservation (see Table S1). We select a set of basis vectors spanning the solution 

space using singular-value decomposition (7). Since the reaction fluxes must be positive, 
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Figure S5.  Schematic view of the “hit-

and-run” sampling method. 

the “bouncer” is constrained to the part of 

the solution space intersecting the positive 

orthant. A schematic illustration of a 2-

dimensional solution space embedded in a 

3-dimensional flux space is shown in Fig. 

S5. Reactions which, for different reasons, 

cannot run are removed from the basis set 

(section 3.2 and Table S3). In order to 

render the volume of the solution space 

finite, we constrain the bouncer within a 

hypersphere of radius Rmax. Also, to avoid 

numerical inaccuracies close to the origin, 

we constrain the “bouncer” to be outside 

of a hypersphere of radius Rmin < Rmax, and we find that the sampling results are 

independent of the choices of Rmin and Rmax. Starting from a random initial point (red) 

inside the positive flux cone (and between the constraining hyperspheres) in a randomly 

chosen direction (Fig. S5), the bouncer travels deterministically a distance d between 

sample points. Each sample point (green), corresponding to a solution vector where the 

components are the individual fluxes, is normalized by projection onto the unit sphere. 

After every bth bounce off the internal walls of the flux cone, the direction of the bouncer 

is randomized.  
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Metabolite Name Added Transport Reaction

4-Hydroxy-benzyl-alcohol HBA  =>  HBAxt 
Spermidine SPMD  =>  SPMDxt 
Histidine HIS  =>  HISxt 
Heme O HEMEO  =>  HEMEOxt 
Menaquinone MK  =>  MKxt 
Leucine LEU  =>  LEUxt 
N-Acetyl-D-mannosamine NAMAN  =>  NAMANxt 
Peptide PEPT  =>  PEPTxt 
Dipeptide DIPEP  =>  DIPEPxt 
Oligopeptide OPEP  =>  OPEPxt 
Peptidoglycan PEPTIDO  =>  PEPTIDOxt 
Maltose 6-phosphate MLT6P  =>  MLT6Pxt 
Enterochelin ENTER  =>  ENTERxt 
Cadaverine CADV  =>  CADVxt 
Valine VAL  =>  VALxt 
Siroheme SHEME  =>  SHEMExt 
Undecaprenyl pyrophosphate UDPP  =>  UDPPxt 
Lippolysaccharide LPS  =>  LPSxt 
N-Acetylglucosamine NAGxt  =>  NAG 
1-D-Deoxyxylulose-5-phosphate DX5Pxt  =>  DX5P  

 

Table S1. The list of metabolites either only consumed or produced in the MG1655 in 

silico model (8). To ensure mass conservation in the “hit-and-run” sampling, we had to 

add these transport reactions. Suffix “xt” indicates a metabolite external to the cell, as 

defined in Refs. 1 and 3. 
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Figure S6. Flux distribution from “hit-and-run” sampling of the E. coli solution space. 

Solid line is the best fit to αννν −+ )(~)( 0P  with ν0=0.003 and α=2. The best fit to the 

exponential form ξνν /~)( −eP yields ξ=0.002 (blue), indicating that such a fit is not 

appropriate to describe the observed distribution. While the obtained average flux 

distribution is consistent in shape and flux ranges with those obtained by the optimal 

FBA, the flux exponent is somewhat larger, and the quality of the scaling is slightly 

weaker. Interestingly, many individual non-optimal states (Fig. 1c, inset) are consistent 

with an exponent α=1, in accord with the experimental results (Fig. 1d), supporting the 

prediction3,9 that these organisms may not have achieved optimality. In some states a 

power law with an exponential cutoff offered a better fit. These findings imply that the 

exponent may depend on the organism’s position in the solution space, a finding that 

suggests that further analytical and numerical studies are needed to fully capture the 

development of the scaling in the optimal and non-optimal states. 

 

 

3.2 Determination of initial points inside the flux cone: We implemented two different 

methods for locating possible starting points for the “hit-and-run” method. First, using 

linear optimization we calculate the flux vector ui resulting from maximizing the flux 
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through reaction i with all fluxes constrained aj ≤ν , repeated for all fluxes. Fluxes which 

can only be zero are removed from the stoichiometric matrix before calculating the vector 

basis spanning the solution space (see Table S3). The superposition of all the obtained 

different ui’s is a viable starting point for the “hit-and-run” method. Alternatively, we can 

determine a possible starting point from selecting a random point, p, inside the solution 

space. We first define the vector orthonormal to a face of the positive orthant, ni, (e.g., 

the xy-plane) to have only zero or positive components. For all the orthant walls i for 

which the scalar product ni • p = di < 0, we move the orthant wall a distance ε+id  along 

-ni until that the scalar product changes sign. The point p is now “inside” of the redefined 

flux cone. For every cth bounce off a flux cone wall, we move the cone walls which are 

not intersecting the origin as close to the origin as possible while still keeping the 

bouncer inside the cone. When all cone walls are intersecting the origin again, the 

bouncer is inside of the original flux cone. It is necessary to remove from the 

stoichiometric matrix all reactions i corresponding to the null-vector (ni=0) in the 

orthonormal basis spanning the solution space, and all reactions i and j for which ni = -nj. 

These reactions correspond to the zero flux reactions determined by the optimization 

approach (see Table S3). 

 

 

4. Fine structure of fluxes, Y(k) 
 

To calculate Y(k), for each metabolite i we determine the mass transport ν̂ ij (ν̂ ij = |Sij| 

ν i) for all incoming (outgoing) reactions j before calculating 
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for each metabolite. We average over all metabolites which have k incoming (outgoing) 

topological links, resulting in Y(k). If a reaction producing (consuming) metabolite i has a 

flux magnitude a (where 0<a<1, without loss of generality) much larger than the flux of 

the other reactions, which have comparable magnitudes b=(1-a)/(k-1), then 
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22 ])/(1[),( aaba 2 ≈+=ikY . When all reactions have comparable flux values, a, we 

have Y(k,i) = [k a2/(k a)2] = 1/k.  Figure S7 shows a schematic of these two extremes.  In 

Figure S8, we show the calculated Y(k) for (a) a glucose rich substrate and (b) on LB 

medium. Both cases display a high degree of local heterogeneity in the fluxes. 

 

 

 
Figure S7. Schematic illustration of the hypothetical scenario in which (a) all fluxes have 

comparable activity, in which case we expect 1~)(kkY  and  (b) the majority of the flux 

is carried by a single incoming or outgoing reaction, for which we should have 

kkkY ~)( .  

  

 

 
Figure S8. Fragmentation Y(k) for the FBA optimization of E. coli on (a) glucose and (b) 

on LB for incoming (black) and outgoing (red) fluxes. The best fit (green) to the 

functional form γk . 
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We also investigated the local flux structure when a glutamate uptake basis with 

additional randomly selected uptake channels were activated (Fig. S9).  The trend of 

strong local heterogeneity is present also for these cases, the power law exponent taking 

the values (a) 0% 75.0=γ , (b) 10% 67.0=γ , (c) 50% 71.0=γ and (d) 80% 71.0=γ . 

 

 
Figure S9. Fragmentation Y(k) for the FBA optimization of E. coli on (a) glutamate 

( 75.0=γ ), (b) glutamate and 10% ( 67.0=γ ), (c) glutamate and 50% ( 71.0=γ ) and (d) 

glutamate and 80% ( 71.0=γ ) randomly chosen input channels for incoming (black) and 

outgoing (red) fluxes. The best fit (blue) to the functional form γk . 

 

 

We have calculated Y(k) also for the flux distribution calculated by uniformly sampling 

the interior of the flux cone (“hit-and-run” method). In Fig. S10 (a), we detect that the 

local heterogeneity is not only limited to the optimized fluxes on E. coli.  
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Figure S10. Fragmentation Y(k) for the hit-and-run sampling method of the state space of 

E. coli and for incoming (black) and outgoing (red) fluxes. The best fit (green) to the 

functional form γk  with 4.0=γ .  

 

5. High flux backbone 

 

The high-flux backbone (HFB) is constructed as follows: For each metabolite we only 

keep the reactions with the largest flux producing (incoming) and consuming the 

metabolite (outgoing), discounting reactions with zero flux. Subsequently, a directed link 

is introduced between two metabolites A and B if (i) A is a substrate of the most active 

reaction producing B, and (ii) B is a product of the maximal reaction consuming A. We 

display only metabolites which are connected to at least one other metabolite after steps 

(i) and (ii). For clarity we removed Pi, PPi and ADP from Figure 3. 

While the metabolites of the HFB participate in numerous other reactions, the 

magnitude of mass transfer along the side reactions is less than the one along the detected 
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HFB. This is illustrated in Fig. S11, where we show the distribution of the ratio of the 

maximal to the next largest flux for each metabolite produced (consumed). The plot 

indicates that for the vast majority of metabolites there is either a single producing 

(consuming) reaction (consistent with the network’s scale-free nature), or the most active 

reaction has a significantly larger mass flux (ν̂ max) than the next largest contribution 

(ν̂ 2nd-max). Indeed, 273 of the 297 HFB reactions (Fig. S1(a)) have a ν̂ max / ν̂ 2nd-max ratio 

larger than two in a glutamate rich medium, similar high ratios being observed for other 

growth conditions as well.  

In Fig. S11 we show the results for (a) glutamate (1st and 3rd columns) and succinate 

(2nd and 4th columns) and for (b) glucose (1st and 3rd columns) and LB (2nd and 4th 

columns) conditions. Metabolites with only a single producing (consuming) reaction are 

labeled “no 2nd”. 

 

 

 
 

Figure S11. The histogram for the distribution of ratios ν̂ max / ν̂ 2nd-max between the 

largest and the second largest producing (consuming) mass flux for each metabolite on 

(a) glutamate (1st and 3rd columns) and succinate (2nd and 4th columns) and (b) glucose 

(1st and 3rd columns) and LB (2nd and 4th columns) conditions. Metabolites with only a 

single producing (consuming) reaction are labeled “no 2nd”. 

 

We also give a graphical representation of the HFB for two uptake conditions in Fig. S12. 

Only a few pathways, like Riboflavin and Folate biosynthesis appear disconnected, 
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indicating that while these pathways are part of the HFB, their end product serves only as 

the second most important source for some other HFB metabolite. The links of the 

reaction sequences are directed towards the biomass, which collects the set of metabolites 

produced by the cell to maintain optimal cell growth. The individual reaction groups 

largely overlap with the traditional, biochemistry-based partitioning of cellular 

metabolism: all metabolites of the citric-acid cycle of E. coli are recovered, and so are a 

considerable fraction of other known pathways, such as those being involved in histidine-

, murein- and purine biosynthesis, to mention a few. Yet, the HFB represents a significant 

reduction of the complex network structure, emphasizing the subset of reactions which 

dominate the activity of the metabolism. As such, it offers a complementary approach to 

elementary flux mode analyses10,11, which successfully captures the available modes of 

operation for smaller networks, but whose application to optimal E. coli has not yet been 

possible. 
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6 Uptake Metabolites. 

We give a list of the 96 possible substrates the in silico E.coli cell can assimilate, and 

from which we randomly select X% out of the 90 that are not in the minimal uptake 

basis. We have highlighted (yellow) the glutamate minimal uptake basis. 
Abbrev. Metabolite Name Abbrev. Metabolite Name
AC          Acetate HIS         Histidine
ACAL        Acetaldehyde HYXN        Hypoxanthine
AD          Adenine ILE         Isoleucine
ADN         Adenosine INS         Inosine
AKG         a-Ketoglutarate K           Potassium
ALA         Alanine LAC         D-Lactate
AMP         Adenosine monophosphate LEU         Leucine
ARAB        Arabinose LYS         L-Lysine
ARG         Arginine MAL         Malate
ASN         Asparagine MAN         Mannose
ASP         Aspartate MDAP        Meso-diaminopimelate
BCAA        Branched chain amino acid MELI        Melibiose
C140        Myristic acid MET         Methionine
C160        Palmitic acid MLT         Maltose
C180        Stearic acid MNT         Mannitol
CO2         Carbon dioxide NA          Sodium
CYS         Cysteine NAD         Nicotinamide adenine dinucleotide
CYTD        Cytidine NH3         Ammonia
CYTS        Cytosine NMN         Nicotinamide mononucleotide
DA          Deoxyadenosine O2          Oxygen
DALA        D-Alanine OPEP        Oligopeptide
DC          Deoxycytidine ORN         Ornithine
DG          Deoxyguanosine PEPT        Peptide
DHA         Dihydroxyacetone PHE         Phenylalanine
DIN         Deoxyinosine PI          Phosphate (inorganic)
DIPEP       Dipeptide PNTO        Pantothenate
DSER        D-Serine PRO         Proline
DT          Thymidine PTRC        Putrescine
DU          Deoxyuridine PYR         Pyruvate
ETH         Ethanol RIB         Ribose
FOR         Formate RMN         Rhamnose
FRU         Fructose SER         Serine
FUC         Fucose SLA         Sialic acid
FUM         Fumarate SLF         Sulfate
GABA        4-Aminobutanoate SPMD        Spermidine
GL          Glycerol SUC         Sucrose
GL3P        Glycerol 3-phosphate SUCC        Succinate
GLAC        Galactose THR         Threonine
GLAL        D-Glyceraldehyde TRE         Trehalose
GLC         a-D-Glucose TRP         Tryptophan
GLCN        Gluconate TYR         Tyrosine
GLN         Glutamine URA         Uracil
GLT         Glucitol UREA        Urea
GLTL        Galacitol URI         Uridine
GLU         Glutamate VAL         Valine
GLY         Glycine XAN         Xanthine
GN          Guanine XTSN        Xanthosine
GSN         Guanosine XYL         D-Xylose
Table S2.Uptake metabolites. 
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7. Calculating analytically the flux exponents for model systems 

 

In the following, we show that the distribution of fluxes on a network with scale-free 

topology displays power-law decay as one goes from small to larger fluxes. There are two 

ways to demonstrate this on various constructs with scale-free edge-distributions: a) exact 

calculations on deterministic trees and b) theoretical and numerical calculations of the 

distribution on stochastic scale-free networks.  Here we discuss both approaches. 

 
Figure S13. Deterministic scale-free tree with flux flow. The circles are only guides to the 

eye and not a part of the network. 

 

a) First we construct a deterministic scale-free tree. Then, we assume that a given pattern for 

the inflow and outflow the flux distribution can be obtained exactly from a rather simple 

calculation. We define, by giving the corresponding rules of construction, the following 

family of scale-free trees: 

 

Step 0:  Start with n edges going out radially from a centre. 

Step 1:  Substitute each edge with n new edges "starting" from the center and "ending" on a 

circle (naturally, this circle is used only for visualization purposes). 
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Step 2:  From every mth node out of the the n2 nodes on the circle, draw n new edges, so that 

each new edge ends on a new concentric circle. 

Step 3: Repeat Step 1 and Step 2, so that at each time, an edge is substituted with n edges 

starting from an edge's inner end. Step 2 is carried out only for edges in the 

outermost layer. 

 

Figure S13 shows a schematic visualization of these rules. Note that circles are shown only to 

guide the eye. The width of the lines decreases as the number of iterations increases. After q 

iterations, there are 

Number of nodes Number of edges 

j0 nq+1 

j1 nq 

….. ….. 

jq n 

  

where mnj /2=  and q is the number of iterations carried out. We did not count the single 

edges leading "back" from a node since they are negligible for large graphs (if mn /2  is not 

an integer,   1/2 += mnj  can be used). In the example, the parameter choices are 4=n , 

2=m  and 8=j . Thus, using these numbers and denoting the ratio of nodes having k edges 

as )(' kP , we have 

 8/)(')4(' kPkP = , 

(there are 8 times less nodes having 4 times more edges). Assuming, that )(' kP  scales as 
δ−k , we see that this form for )(' kP  indeed satisfies the above equation with 

2/34ln/8ln ==δ . This )(' kP  is defined only for a discrete set of k values (powers of 4). 

In order to obtain the corresponding "smooth" distribution (a distribution fitted in such a way 

that its cumulative counterpart  has the same scaling behavior as that of the discrete one, but 

has values for all k’s, we have to correct for the scaling of the "binning size" (distance 

between the discrete k values occurring in the construction) and obtain:  

 )12/3(~~)(' +−− kkkP γ  



 23

such that 5.21 =+= δγ . It directly follows from the above that in general, 1ln/ln += njγ . 

 

Next, we calculate the flux distribution assuming that an amount of flux 1=ν  enters the 

network at its "outmost" edges and that the outflow takes place at the central node. Thus, the 

flow is inward, and since at every level going from outside to inside, the fluxes from the 4 

incoming nodes add up. It is easy to see, in complete analogy with the above, that for a 

construction of  q steps, there are  

Number of edges Amount of flux 

j0 n jq 

j1 n jq-1 

….. ….. 

jq n 1 

 

 In the above example, 4=n , 2=m  and 8=j . For these numbers, denoting the ratio of 

nodes having flux ν as )(' νP , we have 

 8/)(')8(' νν PP =  

(there are 8 times less edges having 8 times more flux). Assuming, that )(' νP  scales as δν − , 

we see that this form for )(' νP indeed satisfies the above equation with 1=δ . Interestingly 

enough, for the above construction, δ is equal to 1 for all possible choices of n and m as can 

be directly seen from the fact that the flux intensity and the number of corresponding edges 

scale inversely for all m. Again, we are interested in the corresponding continuous 

distribution and as above, we get,  

 αν −kP ~)( , 

such that 2=α . 

  

 Here we have to make a few relevant remarks. i) We obtained for the flux distribution an 

exponent 2=α independent of the two parameters of the construction. This result is in 

agreement with that of Goh et al obtained for a related problem (PNAS 99 (2002) p. 12583). 

ii) The assumption of unit fluxes entering the network does not affect the scaling behavior: as 

a large number of fluxes are added along the paths even if we assume fluctuating values for 
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the entry fluxes, the differences coming from their fluctuations average out and do not 

modify scaling. iii) We have also investigated the case when influx takes place at each "free" 

node of the construction. The corresponding calculation is less straightforward, but leads to 

exactly the same result 2=α . iv) We considered a tree above, while a metabolic network 

contains loops. On one hand, the role of loops has been shown in our paper to be relatively 

insignificant; on the other hand, the inclusion of loops is not expected to change the scaling 

behavior (see next section). 

 

b) As for further theoretical arguments supporting the scaling of the flux distribution in 

stochastic scale-free networks, we should make two points: i) It has recently been shown 

(PNAS 99 (2002) p. 12583) that the distribution of a quantity called "betweenness-centrality" 

(BC) obeys a universal power law decay in all of the theoretically and numerically 

investigated scale-free networks. On the other hand, BC is closely related to a quantity called 

"load" of a node which, in turn is closely related to the flux through the incoming edges (see 

the PNAS reference for further details). ii) Finally, we have numerically investigated the 

effects of perturbing a scale-free network on the flux distribution. This was carried out by 

randomly adding and removing edges to an originally scale-free graph and calculating the 

resulting modified flux distribution. Our preliminary results show that the flux distribution on 

scale-free networks is robust against such perturbations, of course, up to a point, where the 

underlying topology qualitatively changes. 
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8. Distribution of experimentally determined fluxes 

 

Using the experimentally determined fluxes for the central metabolism of E. coli (see Ref. 12 

for details), we calculated the flux distribution as follows. In Ref. 12, the authors give the 

values for a total of 189 individual flux measurements, of which 31 are given for E. coli 

strain JM101 under 3 different external conditions (providing 93 fluxes) and 32 are given for 

E. coli strain PB25 under the same 3 external conditions (96 fluxes). Since the number of 

fluxes is low for each separate combination of experimental condition and cell strain, we 

calculated the distribution of all fluxes (Fig. 1d in the Manuscript). We reason that this 

procedure is sensible, since our theoretical and numerical calculations indicate that the 

resulting power-law flux distribution is insensitive to the details of the extra-cellular 

environment (see Figs. 1a-c and S1). 

 

 
Figure S14.  Cumulative distribution of experimental fluxes. The solid line is the best fit 

logarithmic curve )/ln()( κνλν =C with 2.0−=λ and 2107.2 ⋅=κ . 

 

The best power-law fit to the flux distribution )(νP  gives an exponent of 1≅α . This 

suggests that )(νC , the cumulative flux distribution, is logarithmic, since it is related to the 
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histogram through ∫=
κ

ν

ννν ')'()( dPC , where κ is the upper flux cut-off. In Fig. S14, we show 

the cumulative flux distribution together with the best fit logarithmic curve, substantiating 

our claim. 
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