The distribution $P(T)$ of the number of triangles passing by a node. The solid lines correspond to the best fit to a power law. In the case of the *S. cerevisiae* protein interaction network, the data is better fitted to two power laws, one for small and one for large T. Since the subgraph abundance is mainly determined by the large k and T properties we have estimated the exponent δ from the power law fit to the large T region.

The probability that two neighbors are not connected is $1 - C(k)$. Therefore, the probability to obtain t connected pairs and $n_p - t$ disconnected pairs is given by the binomial distribution

$$b_{nt}(k) = \binom{n_p}{t} C(k)^t [1 - C(k)]^{n_p - t}.$$ \hfill (12)

The average number of subgraphs formed by $n - 1$ neighbors and t interactions among them and centered at a node with degree k is given by

$$N_{nt}(k) = \binom{k}{n-1} b_{nt}(k).$$ \hfill (13)

We readily obtain that if k is large, then $N_{nt}(k)$ scales as

$$N_{nt}(k) \sim k^{\beta_{nt}},$$ \hfill (14)

where

$$\beta_{nt} = n - 1 - \alpha t = n - 1 - \alpha (m - n + 1).$$ \hfill (15)

Using Eqs. (4) and (14) we find that the probability for a randomly selected node to participate in T_{nt} subgraphs (n, t) scales as

$$P(T_{nt}) \sim T_{nt}^{-\delta_{nt}},$$ \hfill (16)

where