
process is highly effective, most recruits would not reach the
intended food sources without the use of odour and visual cues in
the final stages of their flight. We hope that together with earlier
studies, particularly those of Gould10, Srinivasan et al.13 and Esch
et al.14, our results will also be accepted as a vindication of the von
Frisch hypothesis. A

Methods
Harmonic radar
Most of our knowledge of insect flight behaviour at high altitudes has been derived from
the use of radar modified for entomological observations29. More recently, it has become
possible to apply this technique to low-flying insects by tagging them with tiny harmonic
transponders, weighing only a few milligrams (6–20 mg, depending on the degree of
mechanical robustness required). The transponders return signals to the radar at twice the
original transmitted frequency, and because these signals can be distinguished from
returns from ground features and other unwanted targets, the position of tagged insects
can be determined while they are in flight15–17. In our experiments we caught bees as they
exited their hive, attached transponders, and released them from the hive (or from remote
release points), and recorded their subsequent flight trajectories. Nineteen of the 23
recruits (83%) released from the hive flew off satisfactorily, and produced good radar
tracks, all to the east. Of the remaining four, three also went east, but were not detected by
the radar enough times to produce a satisfactory track, probably because they were flying
very low. Only one failed to leave the vicinity of the hive. Similar results were achieved for
the remote releases, except during a period when the tubes in which the recruits were being
transported became accidentally contaminated with sucrose solution, with the result that
these bees did not fly away from the release point.

Experimental arena
The flight observations were made over a carefully selected30, large area of mown
pastureland, approximately 1 £ 1.5 km, where the terrain was unusually flat and free from
obstacles that would have obscured the radar’s field of view28. The radar was positioned on
the southern edge of the arena, so that it overlooked an observation hive and a feeding
station 200 m to the east of the hive. Three release points were set 200–250 m in the sector
to the southwest of the hive. There were very few natural sources of pollen and nectar
present during our study period (late July/early August 2000).

Description of the wind field
Wind speed and direction were recorded at 10-s intervals at a height of 2.7 m by
anemometers and wind vanes placed at the corners of a 500 m £ 600 m rectangle centred
on the hive. We also set up a mast near to the centre of the rectangle, holding anemometers
at heights of 0.65, 1.3, 2.7 and 8.2 m, and a wind vane at 2.7 m. The clocks of the recording
data loggers were synchronized each morning with a master clock at the radar to ensure
that wind data were recoverable for the duration of each individual recorded flight. Using
interpolation methods described elsewhere16,27 the data collected by these instruments
were then combined to describe the mean wind field within which each of the flights
recorded by the radar took place.

The observation hive
We used a two-frame colony, equipped with a transparent side panel that faced directly
into a small, low tent attached to the hive. From within this darkened enclosure we could
observe the dance behaviour of the bees, and their entry into and exit from the hive. Most
of the bees in the small colony were marked with numbered tags. The entrance to the hive
was in the form of clear plastic tube, so that observers stationed outside the tent could also
observe entry and exit, and capture selected bees for tagging with transponders.

The flight experiments
We began our study by establishing in our experimental bees (European species Apis
mellifera carnica) a route memory of the position of a feeding station relative to the hive.
The feeder was placed directly to the east of the hive, and supplied with 0.2–1 M sucrose
solution, and training to a distance of 200 m was accomplished over two days. No artificial
odour cues were used in the procedure. From the start, observers at the feeder recorded the
identification number of every marked bee that arrived there, and the hive was never opened
unless an observer was at the feeder. Once foraging flights between hive and feeder were well
established, observers in the tent watched the waggle dances. Whenever a numbered bee was
seen to follow a dance and then move directly towards the exit, an observer outside the tent
was alerted to catch the bee as it attempted to leave. If its identification number indicated
that it had never previously visited the feeder, the bee was confirmed as a recruit, and a
transponder attached. The bee was then either released directly from the hive exit, or taken in
an opaque tube to one of three release points 200–250 m from the hive, and allowed to fly
from there. Bees fitted with transponders could be detected while in flight within a 1908 arc
of radius 900 m, centred on the radar; their positions were shown once every 3 s on the
screen of a desktop personal computer, and their coordinates recorded17.
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G. Bundrock, J. Stindt, S. Berger, S. Hülse, S. Brunke and T. Plümpe, and we are also grateful to
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The dynamics of many social, technological and economic
phenomena are driven by individual human actions, turning
the quantitative understanding of human behaviour into a
central question of modern science. Current models of human
dynamics, used from risk assessment to communications, assume
that human actions are randomly distributed in time and thus
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well approximated by Poisson processes1–3. In contrast, there
is increasing evidence that the timing of many human
activities, ranging from communication to entertainment and
work patterns, follow non-Poisson statistics, characterized by
bursts of rapidly occurring events separated by long periods of
inactivity4–8. Here I show that the bursty nature of human
behaviour is a consequence of a decision-based queuing
process9,10: when individuals execute tasks based on some per-
ceived priority, the timing of the tasks will be heavy tailed, with
most tasks being rapidly executed, whereas a few experience very
long waiting times. In contrast, random or priority blind
execution is well approximated by uniform inter-event statistics.
These finding have important implications, ranging from
resource management to service allocation, in both communi-
cations and retail.

Humans participate on a daily basis in a large number of distinct
activities, ranging from electronic communication (such as sending
e-mails or making telephone calls) to browsing the Internet,
initiating financial transactions, or engaging in entertainment and
sports. Given the number of factors that determine the timing of
each action, ranging from work and sleep patterns to resource
availability, it seems impossible to seek regularities in human
dynamics, apart from the obvious daily and seasonal periodicities.
Therefore, in contrast with the accurate predictive tools common in

physical sciences, forecasting human and social patterns remains a
difficult and often elusive goal.

Current models of human activity are based on Poisson pro-
cesses, and assume that in a dt time interval an individual (agent)
engages in a specific action with probability qdt, where q is the
overall frequency of the monitored activity. This model predicts that
the time interval between two consecutive actions by the same
individual, called the waiting or inter-event time, follows an
exponential distribution (Fig. 1a–c)1. Poisson processes are widely
used to quantify the consequences of human actions, such as
modelling traffic flow patterns or accident frequencies1, and are
commercially used in call centre staffing2, inventory control3, or to
estimate the number of congestion-caused blocked calls in calls in
mobile communication4. Yet, an increasing number of recent
measurements indicate that the timing of many human actions
systematically deviates from the Poisson prediction, the waiting or
inter-event times being better approximated by a heavy tailed or
Pareto distribution (Fig. 1d–f). The differences between Poisson
and heavy-tailed behaviour are striking: a Poisson distribution
decreases exponentially, forcing the consecutive events to follow
each other at relatively regular time intervals and forbidding very
long waiting times. In contrast, the slowly decaying, heavy-tailed
processes allow for very long periods of inactivity that separate
bursts of intensive activity (Fig. 1).

Figure 1 The difference between the activity patterns predicted by a Poisson process and

the heavy-tailed distributions observed in human dynamics. a, Succession of events

predicted by a Poisson process, which assumes that in any moment an event takes place

with probability q. The horizontal axis denotes time, each vertical line corresponding to an

individual event. Note that the inter-event times are comparable to each other, long

delays being virtually absent. b, The absence of long delays is visible on the plot showing

the delay times t for 1,000 consecutive events, the size of each vertical line

corresponding to the gaps seen in a. c, The probability of finding exactly n events within a

fixed time interval is P(n; q) ¼ e 2qt(qt )n/n!, which predicts that for a Poisson process the

inter-event time distribution follows P(t) ¼ qe 2qt, shown on a log-linear plot in c for the

events displayed in a, b. d, The succession of events for a heavy-tailed distribution.

e, The waiting time t of 1,000 consecutive events, where the mean event time was

chosen to coincide with the mean event time of the Poisson process shown in a–c. Note

the large spikes in the plot, corresponding to very long delay times. b and e have the same

vertical scale, allowing the comparison of the regularity of a Poisson process with the

intermittent nature of the heavy-tailed process. f, Delay time distribution P(t) . t 22 for

the heavy-tailed process shown in d, e, appearing as a straight line with slope22 on a

log–log plot. The signal shown in d–f was generated using g ¼ 1 in the stochastic

priority list model discussed in the Supplementary Information.
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To provide direct evidence for non-Poisson activity patterns in
individual human behaviour, I study the communication between
several thousand e-mail users based on a data set capturing the
sender, recipient, time and size of each e-mail11–12. As Fig. 2a shows,
the distribution of the time differences between consecutive e-mails
sent by a selected user is best approximated with P(t) < t2a, where
a . 1, indicating that an individual’s e-mail pattern has a bursty
non-Poisson character: during a single session a user sends several
e-mails in quick succession, followed by long periods of no e-mail
activity. This behaviour is not limited to e-mail communications.
Measurements capturing the distribution of the time differences
between consecutive instant messages sent by individuals during
online discussions5 show a similar pattern. Professional tasks,
such as the timing of job submissions on a supercomputer6,
directory listing and file transfers (FTP request) initiated by
individual users7, or the timing of printing jobs submitted by
users13 were also reported to display non-Poisson features. Similar
patterns emerge in economic transactions, describing the time
interval distributions between individual trades in currency
futures8. Finally, heavy-tailed distributions characterize entertain-
ment-related events, such as the time intervals between consecu-

tive online games played by the same user14.
The fact that a wide range of human activity patterns follow non-

Poisson statistics suggests that the observed bursty character reflects
some fundamental and potentially generic feature of human
dynamics. Yet, the mechanism responsible for these marked non-
random features remains unknown. Here, I show that the bursty
nature of human dynamics is a consequence of a queuing process
driven by human decision making: whenever an individual is
presented with multiple tasks and chooses among them based on
some perceived priority parameter, the waiting time of the various
tasks will follow a Pareto distribution. In contrast, first-come-first-
serve and random task execution, common in most service-oriented
or computer-driven environments, lead to uniform Poisson-like
dynamics.

Most human-initiated events require an individual to assess and
prioritize different activities. Indeed, at the end of each activity an
individual needs to decide what to do next—for example send an e-
mail, do some shopping, or make a telephone call—allocating time
and resources for the chosen activity. Consider an agent operating
with a priority list of L tasks. After a task is executed, it is removed
from the list, offering the opportunity to add another task. The
agent assigns to each task a priority parameter x, which allows it to
compare the urgency of the different tasks on the list. The question
is, how long will a given task have to wait before it is executed. The
answer depends on the method the agent uses to choose the task to
be executed next. In this respect three selection protocols10 are
particularly relevant for human dynamics.

(i) The simplest selection rule is the first-in-first-out protocol,
executing the tasks in the order that they were added to the list. This
is common in service-oriented process, such as the first-come-first-
serve execution of orders in a restaurant or getting help from
directory assistance and consumer support. The time period an
item stays on the list before execution is determined by the
cumulative time required to perform all tasks added to the list
before it. If the time necessary to perform the individual tasks are
chosen from a bounded distribution (that is, the second moment of
the distribution is finite), then the waiting time distribution will
develop an exponential tail, indicating that most tasks experience
approximately the same waiting time.

(ii) The second possibility is to execute the tasks in a random
order, irrespective of their priority or time spent on the list. This is
common, for example, in educational settings, when students are
called on randomly, and in some packet routing protocols in
Internet communications. The waiting time distribution of the
individual tasks (that is, the time between two calls on the same
student) in this case is also exponential.

(iii) In most human-initiated activities task selection is not
random, but the individual executes the highest-priority item on
its list. The resulting execution dynamics is quite different from the
first (i) and second (ii) selection protocols: high-priority tasks will
be executed soon after their addition to the list, whereas low-
priority items will have to wait until all higher-priority tasks are
cleared, forcing them to stay on the list for considerable time
intervals. Below, I show that this selection mechanism, practiced
by humans on a daily basis, is the probable source of the fat tails
observed in human-initiated processes.

I assume that an individual has a priority list with L tasks, each
task being assigned a priority parameter x i, where i ¼ 1, …, L,
chosen from a r(x) distribution. At each time step the agent selects
the highest-priority task from the list and executes it, removing it
from the list. At that moment a new task is added to the list, its
priority x i being again chosen from r(x). This simple model ignores
the possibility that the agent occasionally selects a low-priority item
for execution before all higher-priority items are done—common,
for example, for tasks with deadlines. This can be incorporated by
assuming that the agent executes the highest-priority item with
probability p, and with probability 1 2 p executes a randomly

Figure 2 Heavy-tailed activity patterns in e-mail communications. a, The distribution of

the time intervals between consecutive e-mails sent by a single user over a three-month

time interval, indicating that P(t) < t 21 (the solid line in the log–log plot has slope21).

Although the exponent differs slightly from user to user, it is typically centred around

a ¼ 1. b, The distribution of the time taken by the user to reply to a received message. To

determine t w we recorded the time the user received an e-mail from a specific user, and

the time it sent a response to that user, the difference between the two providing t w. For

consistency the figure shows the data for the user whose inter-event time distribution is

shown in a. The solid line in the log–log plot has slope21. c, A scatter plot showing the

waiting time t w and the size for each e-mail responded to by the user discussed in a, b,

indicating that the file size and response time do not correlate. d, Scatter plot showing the

number of e-mails received and sent by 3,188 users during a three-month interval. Each

point corresponds to a different user, indicating that there are significant differences

between the number of received and responded e-mails. The dashed line corresponds to

n in ¼ n out, capturing the case when the classical queuing models also predict a power

law waiting time distribution (see Supplementary Information), albeit with exponent

a ¼ 3/2.
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selected task, independent of its priority. Thus the p ! 1 limit
of the model describes the deterministic protocol (iii), when
always the highest-priority task is chosen for execution whereas
p ! 0 corresponds to the random choice protocol (ii) discussed
above.

To establish that this priority list model can account for the
observed fat-tailed inter-event time distribution, we first studied its
dynamics numerically with priorities chosen from a uniform
distribution x i [ [0, 1]. Computer simulations show that in the
p ! 1 limit the probability that a task spends t time on the list has a
power law tail with exponent a ¼ 1 (Fig. 3a) in agreement with the
exponent obtained for e-mail communications (Fig. 2a). In the
p ! 0 limit P(t) follows an exponential distribution (Fig. 3b), as
expected for the case (ii). As the typical length of the priority list
differs from individual to individual, it is particularly important for
the tail of P(t) to be independent of L. Numerical simulations
indicate that this is indeed the case: changes in L do not affect the
scaling of P(t). The fact that the scaling holds for L ¼ 2 indicates
that it is not necessary to have a long priority list: as long as
individuals balance at least two tasks, a bursty, heavy-tailed inter-
event dynamics will emerge.

To determine the tail of P(t) analytically I consider a stochastic
version of the model in which the probability to choose a task with
priority x for execution in a unit of time is P(x) < xg, where g is a
parameter that allows us to interpolate between the random choice
limit (ii, g ¼ 0, p ¼ 0) and the deterministic case, when always the
highest-priority item is chosen for execution (iii, g ¼ 1, p ¼ 1).
Note that this parameterization captures the scaling of the model
only in the p ! 0 and p ! 1 limits, but not for intermediate p
values, thus it is chosen only for mathematical convenience. The
probability that a task with priority x is executed at time t is
f(x, t) ¼ (1 2 P(x))t21P(x). The average waiting time of a task
with priority x is obtained by averaging over t weighted with f(x,t)
providing

tðxÞ ¼
X1
t¼1

tf ðx; tÞ ¼
1

PðxÞ
<

1

xg
ð1Þ

that is, the higher an item’s priority, the shorter the average time it
waits before execution. To calculate P(t) I use the fact that the
priorities are chosen from the r(x) distribution; that is, rðxÞdx ¼
PðtÞdt; which gives

PðtÞ<
rðt21=gÞ

t1þ1=g
ð2Þ

In the g ! 1 limit, which converges to the strictly priority-based
deterministic choice (p ¼ 1) in the model, equation (2) predicts
P(t) < t21, in agreement with the numerical results (Fig. 3a), as
well as the empirical data on the e-mail inter-arrival times (Fig. 2a).
In the g ¼ 0 (p ¼ 0) limit, t(x) is independent of x thus P(t)
converges to an exponential distribution, as shown in Fig. 3b (see
Supplementary Information).

The apparent dependence of P(t) on the r(x) distribution from
which the agent chooses the priorities may appear to represent a
potential problem, as assigning priorities is a subjective process,
each individual being characterized by its own r(x) distribution.
According to equation (2), however, in the g ! 1 limit, P(t) is
independent of r(x). Indeed, in the deterministic limit the uniform
r(x) can be transformed into an arbitrary r

0
(x) with a parameter

change, without altering the order in which the tasks are executed11.
This insensitivity of the tail to r(x) explains why, despite the
diversity of human actions encompassing both professional and
personal priorities, most decision-driven processes develop a heavy
tail.

To obtain empirical evidence for the validity of the proposed
queuing mechanism I consider the e-mail activity pattern of an
individual11,12. Once in front of a computer, an individual will reply
immediately to a high-priority message, while placing the less
urgent or the more difficult ones on its priority list to compete
with other non-e-mail activities. I propose, therefore, that the
observed inter-event time distribution is in fact rooted in the
uneven waiting times experienced by different tasks. To test this
hypothesis the waiting time for each task needs to be determined
directly. In the e-mail data set we have the time, sender and recipient
of each e-mail transmitted over several months by each user, thus we
can determine the time it takes for a user to reply to a received
message11. As Fig. 2b shows, the waiting time distribution P(tw) for
the user whose P(t) is shown in Fig. 2a is best approximated by
PðtwÞ< t2aw

w with exponent aw ¼ 1, supporting the hypothesis
that the heavy-tailed waiting time distribution drives the observed
bursty e-mail activity patterns.

As in the p ! 1 limit of the model the priority list is dominated
by low-priority tasks, new tasks will often be executed immediately.
This results in a peak at P(t ¼ 1) (see Supplementary Fig. 3), which,
although in some cases may represent a model artefact, in the e-mail
context is not unrealistic: most e-mails are either deleted right away
(which is one kind of task execution) or immediately replied to.
Only the more difficult or time consuming tasks will queue on the
priority list. The e-mail data set does not allow us to resolve this
peak, however, because a message which the user deletes or replies to
right away will appear to have some waiting time, given the delay
between the arrival of the message and the time the user has a chance
to check her e-mail.

Although I have illustrated the queuing process for e-mails, in
general the model is better suited to capture the competition
between different kinds of activities an individual is engaged in;
that is, the switching between various work, entertainment and
communication events. Indeed, most data sets displaying heavy-
tailed inter-event times in a specific activity reflect the outcome of
the competition between tasks of different nature. For example, the
starting of an online gaming session often implies that all higher-
priority work-, family-, and entertainment-related activities have
been already executed.

Detailed models of human activity require us to consider the
impact of a number of additional mechanisms on the queuing

Figure 3 The waiting time distribution predicted by the investigated queuing model. The

priorities were chosen from a uniform distribution x i [ [0,1], and I monitored a priority

list of length L ¼ 100 over T ¼ 106 time steps. a, Log–log plot of the tail of probability

P(t) that a task spends t time on the list obtained for p ¼ 0.99999, corresponding to the

deterministic limit of the model. The continuous line of the log–log plot corresponds to the

scaling predicted by equation (2), having slope 21, in agreement with the numerical

results and the analytical predictions. The data were log-binned, to reduce the uneven

statistical fluctuations common in heavy-tailed distributions, a procedure that does not

alter the slope of the tail. For the full curve, including the t ¼ 1 peak, see Supplementary

Fig. 3. b, Linear-log plot of the P(t) distribution for p ¼ 0.00001, corresponding to the

random choice limit of the model. The fact that the curve follows a straight line on a linear-

log plot indicates that P(t) decays exponentially.
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process. First, in the priority list model I have assumed that the time
necessary to execute a task (service time) is the same for all tasks.
The size distribution of e-mails is heavy tailed15,16, however, thus
the waiting time distribution could be driven entirely by the time it
takes to read an e-mail (that is, the message size). Yet, as Fig. 2c
shows, there is no correlation between the size of the e-mail
received by a user and the time the user takes to reply to it.
Although detailed analysis should also consider the role of attach-
ments, Fig. 2c suggests that the priority of a response is more
important than the message size. Furthermore, the priorities
assigned to tasks are often driven by optimization processes, as
agents aim to maximize profits or minimize the overall time spent
on some activity.

A natural extension of the model is to assume that tasks arrive at a
rate l and are executed at a rate m, allowing the length of the priority
list L to change in time. In this case the model maps into Cobham’s
priority queue model9, which has a power-law-distributed
waiting time with a ¼ 3/2 when l ¼ m (see Supplementary Infor-
mation). Thus, to account for the power law waiting times the
model requires an additional mechanism that guarantees l ¼ m
(which, as Fig. 3d indicates, is not satisfied for most e-mail users). In
contrast, in the proposed priority list model I have assumed that for
humans the length of the priority list remains relatively unchanged
(L is constant). To understand the orgin of this assumption we must
realize that for l ¼ m the length of the priority list fluctuates widely
and can occasionally grow very long. Although keeping track of a
long priority list is not a problem for a computer, it is well
established that the immediate memory of humans has finite
capacity17. In other words, the number of priorities that we can
easily remember, and therefore the length of the priority list, is
bounded, motivating the choice of a finite L.

Although other generalizations are possible and often required,
the main finding is that the observed fat-tailed activity distributions
can be explained by a simple hypothesis: humans execute their tasks
based on some perceived priority, setting up queues that generate
very uneven waiting time distributions for different tasks. In this
respect the proposed priority list model represents only a minimal
framework that allows us to demonstrate the potential origin of the
heavy-tailed activity patterns, and offers room for further exten-
sions to capture more complex human behaviour. As the exponent
of the tail could depend on the details of the prioritizing process,
future work may allow the empirical data to discriminate between
different queuing hypotheses. A mapping into punctuated equilib-
rium models (see Supplementary Information and refs 18, 19) with
the mathematical framework of queuing theory could help the
systematic classification of the various temporal patterns generated
by human behaviour.

There is overwhelming evidence that Internet traffic is charac-
terized by heavy-tailed statistics20, rooted in the Pareto size distri-
bution of the transmitted files15,16. As I have shown (Fig. 2c), a user’s
e-mail activity does not correlate with e-mail size. Similarly, the
timing of online games14 or sending an instant message5 cannot be
driven by file size either. This suggests that Internet traffic is in fact
driven by two separate processes: the heavy-tailed size distribution
of the files sent by the users, and the human decision-driven timing
of various Internet-mediated activities individuals engage in. In
some environments this second mechanism, the origin of which is
addressed in this paper, can be just as important as the much
investigated first one. Given the differences in routing performance
under Poisson and Pareto arrival time distributions20–22, a queuing–
based model of human-driven arrival times could also contribute to
a better understanding of Internet traffic.

Uncovering the mechanisms governing the timing of various
human activities has significant scientific and commercial potential.
First, models of human behaviour are indispensable for large-scale
models of social organization, ranging from detailed urban
models23,24 to modelling the spread of epidemics and viruses, the

development of panic25 or capturing financial market behaviour26.
Understanding the origin of the non-Poisson nature of human
dynamics could fundamentally alter the dynamical conclusions
these models offer. Second, models of human behaviour are crucial
for better resource allocation and pricing plans for telephone
companies, to improve inventory and service allocation in both
online and “high street” retail, and potentially to understand the
bursts of ideas and memes emerging in communication and
publication patterns27. Finally, heavy tails have been observed in
the foraging patterns of birds as well28, raising the intriguing
possibility that animals also use some evolutionarily encoded
priority-based queuing mechanisms to decide between competing
tasks, such as caring for offspring, gathering food, or fighting off
predators. A
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