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I. DATA

A. D1 Dataset: This dataset was collected by a European mobile phone carrier for billing and

operational purposes. It contains the date, time and coordinates of the phone tower routing the

communication for each phone call and text message sent or received by 6 million costumers. The

dataset summarizes 6 months of activity. To guarantee anonymity, each user is identified with a

security key (hash code). Furthermore, we only know the coordinates of the tower routing the

communication, hence a user’s location is not known within atower’s service area. Each tower

serves an area of approximately 3km2. Due to tower coverage limitations driven by geographical

constraints and national frontiers no jumps exceeding∼ 1, 000 km can be observed in the dataset.

The research was performed on a random set of100, 000 selected from those making or re-

ceiving at least one phone call or SMS during the first and lastmonth of the study, translating to

16, 364, 308 recorded positions. We removed all jumps that took users outside the continental ter-

ritory. We did not impose any additional criterion regarding the calling activity to avoid possible

selection biases in the mobility pattern.

B. D2 Dataset: Some services provided by the mobile phone carrier, like pollen and traffic

forecasts, rely on the approximate knowledge of customer’slocation at all times of the day. For

customers that signed up for location dependent services, the date, time and the closest tower

coordinates are recorded on a regular basis, independent oftheir phone usage. We were provided

such records for1, 000 users, among which we selected the group of users whose coordinates

were recorded at every two hours during an entire week, resulting in 206 users for which we have

10, 613 recorded positions. Given that these users were selected based on their actions (signed up

to the service), in principle the sample cannot be considered unbiased, but we have not detected

any particular bias for this data set.

For each user inD1 andD2 we sorted the time resolved sequence of positions and constructed

individual trajectories.
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FIG. S1: Interevent time distributionP (∆T ) of calling activity.∆T is the time elapsed between consecutive

communication records (phone calls and SMS, sent or received) for the same user. Different symbols

indicate the measurements done over groups of users with different activity levels (# calls). The inset shows

the unscaled version of this plot. The solid line corresponds to Eq. (S1).

II. CHARACTERIZING INDIVIDUAL CALLING ACTIVITY

Communication patterns are known to be highly heterogeneous: some users rarely use the mo-

bile phone while others make hundreds or even thousands of calls each month [1]. To characterize

the dynamics of individual communication activity, we grouped users based on their total number

of calls. For each user we measured the probability that the time interval between two consecutive

calls is∆T [2–4]. The inset of Fig. S1 shows that users with less activity tend to have longer

waiting times between consecutive calls. By rescaling the axis with the average interevent time

∆Ta as∆TaP (∆T ) and∆T/∆Ta the obtained distributions collapse into a single curve (Fig. S1).

Hence the measured interevent time distribution can be approximated by the expressionP (∆T )
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= 1/∆TaF(∆T/∆Ta), whereF(x) is independent of the average activity level of the population.

This is a universal characteristic of the system and it agrees with earlier results on the tempo-

ral patterns of e-mail communication [5]. In addition, we find that the data in Fig. S1 is well

approximated by

P (∆T ) = (∆T )α exp(∆T/τc), (S1)

where the power-law exponentα = 0.9±0.1 is followed by an exponential cutoff ofτc ≈ 48 days.

Equation (S1) is shown by a solid line in the inset of Fig. S1 and its scaled version is presented in

the main panel of Fig. S1. Here we used∆Ta = 8.2 hours, which is the average interevent time

measured for the whole population. The heterogeneity in thecommunication pattern translates

into heterogeneous sampling for theD1 dataset. TheD2 dataset, with records at every two hours,

obviously does not display this heterogeneity. Below we show that this temporal heterogeneity

does not affect our results on the observed travel patterns.

III. OBSERVATIONS AT A FIXED INTEREVENT TIME

Given the widely varying distribution of the interevent times between two calls (an therefore

the localization data), we need to investigate if the observed displacement statistics are affected

by this sampling heterogeneity. Using theD1 dataset, we calculated the displacement distribution

P (∆r) for consecutive calls separated by a time∆To ± 0.05∆To, where∆To ranged from20 min

to one day. Figure S2 shows that for∆To < 4 h, the observed displacements are bounded by the

maximum distance that users can travel in the∆To time interval. For∆To ≥ 8 hours we already

observe∆rmax ∼ 1, 000 km, which corresponds to the largest displacement we could possible

observe given the area under study (such large jumps likely are the result of airline travel). We

observe that the resultingP (∆r) distributions for different∆To is again well approximated by

a truncated power-law with an exponentβ = 1.75. This agrees with the exponent found when

we studied all consecutive calls (see Fig. 1C), suggesting that the use of consecutive calls is an

accurate proxy to measure human displacement at large enough scales (> 1 km).
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FIG. S2: Displacement distributionP (∆r) for fixed inter event times∆To based on theD1 dataset. The cut-

off of the distribution is set by the maximum distance users can travel for shorter inter event times, whereas

for longer times the cutoff is given by the finite size of the studied area, as discussed in the manuscript. The

black line is from (1) reported in the manuscript, with the value κ = 400 km corresponding toD1 (solid

line).

IV. INTRINSIC REFERENCE FRAME FOR INDIVIDUAL TRAJECTORIES

A. Radius of gyration: The linear size occupied by each user’s trajectory up to timet is

characterized by its the radius of gyration defined as

ra
g (t) =

√

√

√

√

1

na
c (t)

na
c

∑

i=1

(~ra
i − ~ra

cm)2, (S2)

where~ra
i represents thei = 1, ..., na

c (t) positions recorded for usera and~ra
cm = 1/na

c(t)
∑na

c

i=1
~ra
i

is the center of mass of the trajectory.
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B. Moment of Inertia: To compare different users’ trajectories we need to study them in a

common reference frame. Inspired by the mechanics of rigid bodies [6], we assign each user to an

intrinsic reference frame calculated a posteriori from a user’s trajectory. We can think of the num-

ber times a user visited a given location as the mass associated with that particular position. We

denote a user’s trajectory with a set of locations{(x1, y1), (x2, y2), ...(xnc
, ync

)}, wherenc is the

number of positions available for the user. An object’s moment of inertia is given by the average

spread of an object’s mass from a given axis. A two dimensional object can be characterized by a

2 × 2 matrix known as thetensor of inertia

I =





Ixx Ixy

Iyx Iyy



 . (S3)

We can calculate the inertia tensor for user’s trajectoriesby using the standard physical formulas

Ixx ≡
nc

∑

i=1

y2
i (S4)

Iyy ≡
nc

∑

i=1

x2
i (S5)

Ixy = Iyx ≡ −

nc
∑

i=1

xiyi. (S6)

Since the tensorI is symmetric, it is possible to find a set of coordinates in whichI will be diag-

onal. These coordinates are known as the tensor’s principalaxes(ê1, ê2). In this set of coordinates

I takes the form

ID =





I1 0

0 I2



 , (S7)

whereI1 andI2 are the principal moments of inertia. They also correspond to the eigenvalues

of I and can be calculated from the original set of points as

I1 =
1

2
(Ixx + Iyy) −

1

2
µ (S8)

I2 =
1

2
(Ixx + Iyy) +

1

2
µ, (S9)

with

µ ≡
√

4 Ixy Iyx + Ixx
2 − 2 Ixx Iyy + Iyy

2 (S10)
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The corresponding eigenvectors determine the principal axes (̂e1 andê2), representing the symme-

try axes of a given trajectory.

C. Rotation of user trajectories: We transform each user’s principal axes(ê1, ê2) to a common

intrinsic reference frame(êx, êy) calculating the angle between the axesêx andê1, as

cos(θ) =
~v1.êx

|~v1|
(S11)

wherev1, is the eigenvector associated with the eigenvalueI1

~v1 =







− Ixy

1/2 Ixx−1/2 Iyy+1/2 µ

1






, (S12)

resulting in

cos(θ) = −Ixy (1/2 Ixx − 1/2 Iyy + 1/2 µ)−1 1
√

1 + Ixy
2

(1/2 Ixx−1/2 Iyy+1/2 µ)2

. (S13)

After rotation byθ, we impose a conditional rotation of180o such that the most frequent

position lays always inx > 0.

D. Example: Figure S3 shows the recorded trajectories of 3 users (u1, u2 andu3), each charac-

terized by a different radius of gyration:rg|u1 = 2.28 km, rg|u2 = 29.02 km, andrg|u3 = 313.72

km. Using (S4), (S5) and (S6), we calculated the different components of the tensor of iner-

tia. Equations (S12) and (S13) allow us to determine the intrinsic axes for each user (ê1, ê2),

which are displayed in Fig. S3a. Their respective angles are: θ|u1 = 127.67o, θ|u2 = 40.20o and

θ|u3 = 60.08o. Each set of points is rotated by−θ, such that(êx, êy) is the new intrinsic reference

frame of each user’s trajectory, as shown in Fig. S3b. The most frequent and the second most fre-

quent positions of each user are marked as a blue and orange circle respectively. After rotating the

trajectory of user 2, its most frequent position lays inx < 0, hence we apply an additional rotation

of 180o such that the most frequent position lays inx > 0. The purpose of this is to conserve the

asymmetry of the user’s visitation pattern. In the absence of the rotation the trajectories in Fig. S3a

and B (also Fig. 3 in the manuscript) will appear to be symmetric. Given, however, that there is a

significant difference in the most and the second most visited locations (see Fig. 2D in the paper),

we need to perform the symmetry breaking rotation to emphasize its presence. For example, we
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FIG. S3: Example of how to transform the user trajectories ina common reference frame.a, Initial trajec-

tories of three users and their principal axes(ê1, ê2). b, Each trajectory is rotated an angle−θ to align ê1

with êx. An additional rotation with180o is required when the most frequent position (marked with a blue

circle) lays inx < 0 after the rotation. This is the case of user 2 (green line).c, Positions(x, y) are scaled

as(x/σx, y/σy) after which the different trajectories have a quite similarshape.

found that for finite Lévy flights the rotation induced a slight but detectable anisotropy, capturing

the fact that each finite trajectory has some inherent anisotropy.

We scale the trajectories on the intrinsic axes with the standard deviation of the locations for

each usera

σa
x =

√

√

√

√

1

na
c

na
c

∑

i=1

(xa
i − xa

cm)2, (S14)

σa
y =

√

√

√

√

1

na
c

na
c

∑

i=1

(ya
i − ya

cm)2. (S15)

Note that the coordinate origin for each user is placed at thecenter of mass of the trajectory,

~ra
cm = (0, 0). In this example,σx|u1 = 2.24 km, σx|u2 = 28.76 km, andσx|u3 = 313.60 km

whereasσy|u1 = 0.43 km, σy|u2 = 3.88 km, andσy|u3 = 8.49 km. After scaling, the shapes

of the three trajectories look similar (S3c), despite that we are showing users with significantly

different mobility patterns and ranges. This is the underlying procedure that allows us to obtain
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the universal density functioñΦ(x/σx, y/σy).

E. Spatial density function: For agent based modeling it is crucial to know the probabil-

ity that an individual can be found at a position(x, y) during the day. As our results show,

knowledge of the spatial density functioñΦ(x/σx, y/σy) represent the first step towards such a

modeling effort. Indeed, using the density functionΦ̃(x/σx, y/σy) for an ensemble of agents

with rg’s following Eq.(3), each agent’s position can be rescaled using Eq.(4) and the fact that

σx = 0.94r0.97
g . The distribution of individuals in space can be arbitrary or more realistic if

taken from census information. The three matrixes shown in Fig. 3B can be downloaded from:

http://www.nd.edu/ mgonza16/DensityFunction/

V. SCALING RELATION BETWEEN EXPONENTS

Next we show that there is a consistent relationship among the different exponents describing

the travel patterns of the population. The exponentβ characterizing the distances traveled by the

entire population is related toα, which characterizes distances traveled by individuals and βr,

that captures the distribution of the radius of gyration. Wenote that (1) should be the result of a

convolution between (3) andP (∆r|rg), hence

P (∆r) =

∫

∞

0

P (∆r|rg)P (rg)drg, (S16)

using the expressions introduced in the manuscript this equation can be expanded as

P (∆r) =

∫

∞

0

r−α
g F (

∆r

rg
)(rg + r0

g)e
−rg/κdrg. (S17)

Focusing on the asymptotic scaling behavior we drop the short length cutoffr0
g and extract the

leading term by performing the substitutionrg = ∆rx. Finally the scaling is given by

P (∆r) ≈ ∆r−α−βr+1

∫

∞

0

x−αF (
1

x
)ex∆r/κdx, (S18)

indicating thatβ = α + βr − 1. Note, however, that the integral in (S18) also depends on∆r,

therefore the scaling relationship is valid only to the leading order and further corrections may

result from the integral. This correction cannot be evaluated in the absence of an analytical ap-

proximation forF (x). For our data we findβ = 1.75± 0.15, βr = 1.65± 0.15 andα = 1.2± 0.1,

indicating that the scaling relation, within error bars, issatisfied, and that there is a systematic

difference betweenβ andβr of magnitudeα − 1.



10

VI. TIME DEPENDENCE OF THE RADIUS OF GYRATION
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FIG. S4: Time evolution of the radius of gyration〈rg(t)〉 vs. time, for various groups of users with different

asymptoticrg(T ) after T = 6 months. a, In a log-log scale the black lines correspond to the powers of

time for the random walk and Lévy flight models, which are in contrast with the time dependence of〈rg(t)〉

measured for the mobile phone users.b, In a log-linear scale, note that therg = 4 andrg = 10 visibly

deviate from the largerg curves. This is not surprising, as for these two curves the recorded distances are

comparable to the average tower distances (both curves appear to saturate under10 km, while the average

area of reception for a tower is about3 km2). Thus, small travel distances are overestimated due to the

measurement resolution. Curves withrg > 10 km are less affected by the tower resolution and all these

appear to collapse in the same behavior once rescaled withrg(T ), and they are all approximated with a

logarithmic time dependence. The straight line is not a fit, but it is shown only as a guide to the eye.

Figure 2A in the manuscript shows three groups of users chosen according to the asymptotic

rg(T ) after T = 6 months. In Fig. S4 we show that the same time dependence is observed for

a more strictly selected grouping of the users, choosing fivedifferent groups of users with very

similar asymptotic radius of gyration:rg(T )± 0.05rg(T ). Given the high daily and weekly-based
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fluctuations in the phone usage patterns, we averaged〈rg(t)〉 over168 different initial conditions,

i.e. we started the measurements at every6 hours during one week. This averaging not only

removed the dependence on the initial conditions, but also significantly reduced the noise in the

curves.

The log-log scale in Fig. S4a allows to see in detail the earlybehavior of the curves, indicating

that a power law does not offer a good fit to the data. As we show in the log-linear plot in

Fig. S4b, we find that the radius of gyration increases logarithmically in time, which is in strong

contrast with the power law dependence expected for Lévy flights (rg(t)|LF/TLF ∼ t3/(2+β)) and

random walks (rg(t)|RW ∼ t1/2). This indicates that the average radius of gyration of mobile

phone users has a manifestly slower dependence than the predicted power laws, a behavior that

may appear similar to a saturation process. Note that therg ∼ 4, 10 curves appear to deviate from

the logarithmic behavior. We belive that this is due to the spatial resolution offered by the tower

density: we cannot reliably and systematically resolve jumps in the vicinity of a few kms, given

that we record a motion only when a person moves between towers, that are often a few kilometers

apart. Therg > 10 km curves, given the distances involved, are not affected bythe granularity of

the data collection process, and they all follow the logarithmic behavior.

VII. STATISTICAL TESTS OF FITTING DISTRIBUTIONS

Given the fat tailed distributions observed for human travel patterns, it is important to see if

the data is statistically consistent with the best fits. The purpose of this section is to support our

findings with rigorous statistical tests. In the past year there has been significant attention devoted

to the question of how to statistically measure the goodnessof fit for a power law [7–10]. This

was prompted partly by the need to quantify the validity of the Lévy flight finding in animal travel

patterns. Note, however, that there is a significant difference between the data quality available in

the animal and human travel patterns. Indeed, the mammaliandata was available for short time

periods for only a few animals, providing only a small numberof observed individual displace-

ments. Given the scarcity of data, precise statistical tools are needed to extract the proper fit. In

contrast, the data analyzed in Ref. [11] as well as in this paper contain millions of displacements.

Thus we are in a regime where typically traditional statistical tools, designed to deal with limited

information, are less crucial. Yet, appropriate statistical tools can be used to explore the goodness
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of the fit.

In this respect, it is often believed that statistical methods can validate a particular fit. The

truth is, as emphasized in a recent publication [10], that these tools can only tell if a particular fit

is consistent with the data, and rule some fits out, rather than validate a particular fit. A second

important observation is that, given the high interest devoted to power laws, recently the issue of

fitting a power law has been addressed in detail, developing the proper statistical tools to address

the goodness of the fit [7–10]. The same tools are not available for truncated power laws, however,

thus limiting the available methods to address their statistical relevance. In general we find that all

the fits that we used in the paper pass the Kolmogorov-Smirnovtest for the goodness of fit (Sect.

V.A) and that a power law offers a much better approximation overall than an exponential function

(Sect. V.B). Note that given the vast amount of data and the really good fit offered by the truncated

power law, this last conclusion is hardly surprising.

A. Kolmogorov-Smirnov goodness of fit test

We tested whether the empirical data could come from the fitted distributions by performing a

stringent variant of the Kolmogorov-Smirnov (KS) goodness of fit test [10]. The KS statistics is

a simple way to compare whether two distributions are the same. In this case, we use it to test the

hypothesis:Could the empirically observed distributions come from thedistribution found as its

best fit. For this we generated synthetic data starting from the fitted distribution and then use the

KS test to see whether the empirical data we have behaves as well as the synthetic data generated

from the fitted distribution.

We use two variants of the KS statistics to compare empiricaldata with the fitted distribution

and synthetic data with the fitted distribution. The first method is the standard KS statistics and is

given by:

KS = max (|F − P |) (S19)

whereF is the cumulative distribution of the best fit andP is the cumulative distribution of the

empirical or synthetic data. The regularKS statistic is not very sensitive on the edges of the

cumulative distribution. Hence, we also used the weighted KS statistics defined as:
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KSW = max
|F − P |

√

P (1 − P )
(S20)

To test whether the empirical data behaves as good as the synthetic data we calculated theKS

andKSW statistics between the empirical data and its best fit and compared these values with

those obtained by calculatingKS andKSW for 1, 000 synthetic data sets generated from the best

fit. If the values obtained forKS andKSW for the empirical data behave as good or better than

those obtained for the synthetic data, then we can conclude that the empirical data is statistically

consistent with its best fit. The results of theKS test can be summarized using ap − value
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by integrating the distribution ofKS values generated with the synthetic data from the value

representing the empirical distribution. When integrating such distributions from left to right we

can interpret thep − value as the probability that the observed data was the result of its best fit.

A p − value close to 1 will indicate that the empirical distribution matches its best fit as good

as synthetic data generated from the fit itself [10], whereasa relative smallp − value (typically

takenp < 0.01) would suggest that the empirical distribution can not be the result of its best fit.

Passing theKS test does not rule out the possibility that the empirical data could be fitted as

well or even better with some other function. In such a case, given the size of our samples, we
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believe that such an exercise would be technical rather thanpractical and that different functional

forms will closely resemble each other on the range were the fit was made once the fitting

parameters have been fixed.

1. KS statistics for Fig 1C,D1: Figure S5 compares theKS values obtained for the empirical

data presented in Fig 1C,D1 of the paper with those obtained for1, 000 distributions of synthetic

data generated to comply with Eq. (1). Figure S6 shows the same forKSW . In both cases we find

that the empirical data passes theKS test, in fact behaving better than the synthetic data. Indeed

p(KS) = 1 andp(KSW ) = 1.

2. KS statistics for Fig 1D,D1: Figure S7 compares theKS values obtained for the empirical

data presented in Fig 1D,D1 of the paper with those obtained for 2000 distributions of synthetic

data generated to comply with Eq. (3). Figure S8 shows the same forKSW . In both cases we find

that the empirical data passes theKS test, behaving as some of the best examples of the synthetic

data, obtainingp(KS) = 0.62 andp(KSW ) = 0.82.

B. Maximum Likelihood Estimates: Comparing power-laws andexponentials

The Maximum Likelihood Method is a powerful way of estimating the fitting parameters best

describing a empirical distribution. The method can also beused to compare the relative likelihood

of two fits. In this section we are interested in testing whether a broad distribution, such as a

power-law, is a better fit than an exponential for many of the distributions presented on the paper.

It is not our intention to claim that the distributions presented here are in fact power-laws but

to build suggestive evidence testing if the data presented in the paper is better fitted by a broad

distribution, such as the power-law, rather than a narrow distribution such as an exponential. In

fact, as we discuss in the manuscript and the previous section, we believe that the best fit to our

data is given by a truncated power law rather than a simple power law. We do not present here

the maximum likehood estimate of the truncated power-law fitbecause being its cumulative a

Whittaker function, it is not readily to be handled with thismethod. For those interested in the

accuracy of the best fit we suggest reading section VII A of this supplementary material.
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The details of the maximum likelihood method have been widely published. Those interested

in performing such fits could find help in [10] and [7].
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FIG. S9:

Testing for broad and narrow distributions: The relative likelihood between two distribu-

tions can be calculated from its relative weights

Wi =
e−∆i

e−∆1 + e−∆2

, (S21)

where∆i = min (AICi − AICmin). HereAIC is the Akaike information criteria associated with

the power-law (i = 1) and exponential (i = 2) fits. TheAIC can be expressed as a function of the

log-likelihood [7]

AICi = 2 log max(Li) + 2Ki

whereKi is the number of parameters used in the fit andLi is the likehood of a particular value of

a fitting parameter.
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Here we test two fits, a power-lawAx−β and an exponentialAe−µx, whereA is a normalization

constant. In Fig. S9 we present the results of the Maximum Likelihood Fits for the distributions

introduced in Fig. 1C and Fig. 1D of the paper. Note, we use thedata log binned data, which

has been recommended as the most accurate plotting method for this kind of analysis [8]. In each

case we findWpow >> Wexp indicating that a power law is a more likely fit than an exponential,

indicating that the distribution of displacements, as wellasrg, are better approximated by a broad

rather than a narrow distribution.
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