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I. DATA

A. D, Dataset This dataset was collected by a European mobile phonescéori billing and
operational purposes. It contains the date, time and coates of the phone tower routing the
communication for each phone call and text message sent@weel by 6 million costumers. The
dataset summarizes 6 months of activity. To guarantee anity)yeach user is identified with a
security key (hash code). Furthermore, we only know the dinates of the tower routing the
communication, hence a user’s location is not known withtoveer’s service area. Each tower
serves an area of approximately@?. Due to tower coverage limitations driven by geographical

constraints and national frontiers no jumps exceeding 000 km can be observed in the dataset.

The research was performed on a random sdi)0f000 selected from those making or re-
ceiving at least one phone call or SMS during the first andrfasith of the study, translating to
16, 364, 308 recorded positions. We removed all jumps that took usersideithe continental ter-
ritory. We did not impose any additional criterion regaglthe calling activity to avoid possible

selection biases in the mobility pattern.

B. D, Dataset: Some services provided by the mobile phone carrier, likéepahnd traffic
forecasts, rely on the approximate knowledge of custonhecation at all times of the day. For
customers that signed up for location dependent servibesdate, time and the closest tower
coordinates are recorded on a regular basis, independériophone usage. We were provided
such records foi, 000 users, among which we selected the group of users whoseicatasl
were recorded at every two hours during an entire week, treguh 206 users for which we have
10, 613 recorded positions. Given that these users were selecsed fom their actions (signed up
to the service), in principle the sample cannot be consitlerdiased, but we have not detected

any particular bias for this data set.

For each user ih; and D, we sorted the time resolved sequence of positions and catestr

individual trajectories.
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FIG. S1: Interevent time distributioR(AT") of calling activity. AT is the time elapsed between consecutive
communication records (phone calls and SMS, sent or reteiee the same user. Different symbols
indicate the measurements done over groups of users wighetit activity levels (# calls). The inset shows

the unscaled version of this plot. The solid line correspaadEq. (S1).

II. CHARACTERIZING INDIVIDUAL CALLING ACTIVITY

Communication patterns are known to be highly heterogesiesmme users rarely use the mo-
bile phone while others make hundreds or even thousanddi®eeah month [1]. To characterize
the dynamics of individual communication activity, we gped users based on their total number
of calls. For each user we measured the probability thaitieihterval between two consecutive
calls isAT [2-4]. The inset of Fig. S1 shows that users with less agtieéhd to have longer
waiting times between consecutive calls. By rescaling ttie &ith the average interevent time
AT, asAT,P(AT)andAT /AT, the obtained distributions collapse into a single curveg.(BiL).

Hence the measured interevent time distribution can beoappated by the expressiaf(AT)



=1/AT,F(AT/AT,), whereF(z) is independent of the average activity level of the popafati
This is a universal characteristic of the system and it agweieh earlier results on the tempo-
ral patterns of e-mail communication [5]. In addition, wedfithat the data in Fig. S1 is well
approximated by

P(AT) = (AT)* exp(AT/7.), (S1)

where the power-law exponemt= 0.9+ 0.1 is followed by an exponential cutoff of ~ 48 days.

Equation (S1) is shown by a solid line in the inset of Fig. Sd &s scaled version is presented in
the main panel of Fig. S1. Here we us&d;, = 8.2 hours, which is the average interevent time
measured for the whole population. The heterogeneity irctmemunication pattern translates
into heterogeneous sampling for the dataset. Thé), dataset, with records at every two hours,
obviously does not display this heterogeneity. Below wenstiwat this temporal heterogeneity

does not affect our results on the observed travel patterns.

[ll. OBSERVATIONS AT A FIXED INTEREVENT TIME

Given the widely varying distribution of the interevent 8mbetween two calls (an therefore
the localization data), we need to investigate if the obsgdisplacement statistics are affected
by this sampling heterogeneity. Using the dataset, we calculated the displacement distribution
P(Ar) for consecutive calls separated by a tih€, 4+ 0.05AT,, whereAT, ranged from20 min
to one day. Figure S2 shows that ¥/, < 4 h, the observed displacements are bounded by the
maximum distance that users can travel in fig, time interval. ForAT, > 8 hours we already
observeAr,,.. ~ 1,000 km, which corresponds to the largest displacement we cootgdiple
observe given the area under study (such large jumps likelyhe result of airline travel). We
observe that the resulting(Ar) distributions for differentAT, is again well approximated by
a truncated power-law with an exponeht= 1.75. This agrees with the exponent found when
we studied all consecutive calls (see Fig. 1C), suggeshiagthe use of consecutive calls is an

accurate proxy to measure human displacement at large kiscates £ 1 km).
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FIG. S2: Displacement distributiaR( Ar) for fixed inter event timeAT, based on thé; dataset. The cut-

off of the distribution is set by the maximum distance usars ttavel for shorter inter event times, whereas
for longer times the cutoff is given by the finite size of thedséd area, as discussed in the manuscript. The
black line is from (1) reported in the manuscript, with théueax = 400 km corresponding td; (solid

line).

IV. INTRINSIC REFERENCE FRAME FOR INDIVIDUAL TRAJECTORIES

A. Radius of gyration: The linear size occupied by each user’s trajectory up to tirnee

characterized by its the radius of gyration defined as

a
ne

S ) (52)

ne(t) & o

rg(t) =

a -
ng ra
i=1"1

wherer? represents the= 1, ..., n%(t) positions recorded for userandi® = 1/n%(t)>_

is the center of mass of the trajectory.



B. Moment of Inertia: To compare different users’ trajectories we need to studytin a
common reference frame. Inspired by the mechanics of rigdids [6], we assign each user to an
intrinsic reference frame calculated a posteriori fromerigdrajectory. We can think of the num-
ber times a user visited a given location as the mass assdadth that particular position. We
denote a user’s trajectory with a set of locatidiis;, 1), (z2,y2), ...(Tn,, Yn,) }» Wheren, is the
number of positions available for the user. An object’s motwd inertia is given by the average
spread of an object’s mass from a given axis. A two dimensioijact can be characterized by a

2 x 2 matrix known as théensor of inertia

I.’L'.’L' I.’L'
I= .y (S3)
Iym Iyy

We can calculate the inertia tensor for user’s trajectdressing the standard physical formulas

L=y} (S4)
i=1
Iy = Z ; (S5)
i=1
Ixy = ]yx = — szyz (86)
i=1

Since the tensdris symmetric, it is possible to find a set of coordinates inalifhiwill be diag-
onal. These coordinates are known as the tensor’s prinaxes(é,, é;). In this set of coordinates

I takes the form

I 0
Ip=| " , (S7)
0 I

wherel, and/; are the principal moments of inertia. They also corresportti¢ eigenvalues

of I and can be calculated from the original set of points as

1 1
L = 5(]:01‘ + Iyy) - 5:“ (S8)
1 1

with

W=y L + 1 — 2L Iy + 1, (S10)



The corresponding eigenvectors determine the principed éx andé,), representing the symme-

try axes of a given trajectory.

C. Rotation of user trajectories: We transform each user’s principal axés, é;) to a common

intrinsic reference framg,, ¢,) calculating the angle between the axgsindé,, as

cos(f) = 1;6;]6 (S11)
|1
wherevy, is the eigenvector associated with the eigenvéjue
Loy
7 = 12T —1/2 Ty +1/2 7 (S12)
1
resulting in
1
cos(0) = —Ipy (1/2 Ly — 1/2 1, +1/2 )" (S13)

Iz,
\/1 AT 12 Ly T2

After rotation by, we impose a conditional rotation aB0° such that the most frequent

position lays always in: > 0.

D. Example Figure S3 shows the recorded trajectories of 3 usgrs4 andus), each charac-
terized by a different radius of gyration;|,; = 2.28 km, 4|2 = 29.02 km, andr,|,; = 313.72
km. Using (S4), (S5) and (S6), we calculated the differemhgonents of the tensor of iner-
tia. Equations (S12) and (S13) allow us to determine thensitr axes for each useé,( é,),
which are displayed in Fig. S3a. Their respective angles@re = 127.67°, 0|,» = 40.20° and
f],s = 60.08°. Each set of points is rotated by, such thaté,, é,) is the new intrinsic reference
frame of each user’s trajectory, as shown in Fig. S3b. Tha meguent and the second most fre-
guent positions of each user are marked as a blue and oranbgerespectively. After rotating the
trajectory of user 2, its most frequent position laysirc 0, hence we apply an additional rotation
of 180° such that the most frequent position layscin- 0. The purpose of this is to conserve the
asymmetry of the user’s visitation pattern. In the absehteearotation the trajectories in Fig. S3a
and B (also Fig. 3 in the manuscript) will appear to be symime&iven, however, that there is a
significant difference in the most and the second most dsdeations (see Fig. 2D in the paper),

we need to perform the symmetry breaking rotation to emphéts presence. For example, we
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FIG. S3: Example of how to transform the user trajectories @mmon reference frama, Initial trajec-
tories of three users and their principal axes, éz). b, Each trajectory is rotated an angl® to aligné;
with é,. An additional rotation withl80° is required when the most frequent position (marked withuz bl
circle) lays inx < 0 after the rotation. This is the case of user 2 (green linglpositions(x, y) are scaled

as(z/o,y/o,) after which the different trajectories have a quite simslaape.

found that for finite Lévy flights the rotation induced a &lidput detectable anisotropy, capturing

the fact that each finite trajectory has some inherent aoispt

We scale the trajectories on the intrinsic axes with thedsteshdeviation of the locations for

each useu

oy = —Zx -z, (S14)

UZZ\—Z o= ye,)2 (S15)

Note that the coordinate origin for each user is placed atcdmer of mass of the trajectory,
ré = (0,0). In this exampleg,|,, = 2.24 km, 0,|,0 = 28.76 km, ando,|.s = 313.60 km

whereass,|,; = 0.43 km, o,|,2 = 3.88 km, ando,|,; = 8.49 km. After scaling, the shapes
of the three trajectories look similar (S3c), despite thataxe showing users with significantly

different mobility patterns and ranges. This is the undegdyprocedure that allows us to obtain



the universal density functiob(z /o, y/a,).

E. Spatial density function: For agent based modeling it is crucial to know the probabil-
ity that an individual can be found at a position, y) during the day. As our results show,
knowledge of the spatial density functi(efr(x/o—x,y/ay) represent the first step towards such a
modeling effort. Indeed, using the density functidiz/o,,y/0,) for an ensemble of agents
with r,’s following Eq.(3), each agent’s position can be rescalsidgi Eq.(4) and the fact that
o, = 0.94r)%7. The distribution of individuals in space can be arbitraryntore realistic if
taken from census information. The three matrixes showrign 8B can be downloaded from:

http://www.nd.edu/ mgonzal6/DensityFunction/

V. SCALING RELATION BETWEEN EXPONENTS

Next we show that there is a consistent relationship amoaglifferent exponents describing
the travel patterns of the population. The expongéoharacterizing the distances traveled by the
entire population is related ta, which characterizes distances traveled by individuats @n
that captures the distribution of the radius of gyration. Miée that (1) should be the result of a
convolution between (3) an&(Ar|r,), hence

P(Ar) :/ P(Ar|ry)P(ry)dr,, (S16)
0
using the expressions introduced in the manuscript thiatemucan be expanded as
- -« Ar 0\, ,—rg/K
P(Ar) = Ty F(=—)(rg +1y)e "/ drg. (S17)
0 Tg

Focusing on the asymptotic scaling behavior we drop thetdeogth cutoffrg and extract the

leading term by performing the substitution= Arz. Finally the scaling is given by
P(Ar) ~ AT_O‘_BTH/ x_O‘F(l)el’A’”/"dw, (S18)
0 x

indicating thats = « + (3, — 1. Note, however, that the integral in (S18) also dependaon
therefore the scaling relationship is valid only to the iegdorder and further corrections may
result from the integral. This correction cannot be evadah the absence of an analytical ap-
proximation forF'(x). For our data we fingg = 1.75+£0.15, 8, = 1.65 £ 0.15 anda = 1.2 +0.1,
indicating that the scaling relation, within error barssatisfied, and that there is a systematic

difference betweeny andg, of magnitudex — 1.
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VI. TIME DEPENDENCE OF THE RADIUS OF GYRATION
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FIG. S4: Time evolution of the radius of gyratidn,(¢)) vs. time, for various groups of users with different
asymptoticry(T") afterT = 6 months. a, In a log-log scale the black lines correspond to the powers of
time for the random walk and Lévy flight models, which aredamicast with the time dependence(of ())
measured for the mobile phone usebs.In a log-linear scale, note that thg = 4 andr, = 10 visibly
deviate from the large, curves. This is not surprising, as for these two curves therded distances are
comparable to the average tower distances (both curvesiafipeaturate undei0 km, while the average
area of reception for a tower is abotikm?). Thus, small travel distances are overestimated due to the
measurement resolution. Curves with> 10 km are less affected by the tower resolution and all these
appear to collapse in the same behavior once rescaledry\(f), and they are all approximated with a

logarithmic time dependence. The straight line is not a fit,itis shown only as a guide to the eye.

Figure 2A in the manuscript shows three groups of users chaseording to the asymptotic
rq(T) afterT” = 6 months. In Fig. S4 we show that the same time dependence ésvelisfor
a more strictly selected grouping of the users, choosingdifferent groups of users with very

similar asymptotic radius of gyratiom; (7") + 0.05r,(7"). Given the high daily and weekly-based
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fluctuations in the phone usage patterns, we averagét)) over168 different initial conditions,
i.e. we started the measurements at evetyours during one week. This averaging not only
removed the dependence on the initial conditions, but atgufeantly reduced the noise in the

curves.

The log-log scale in Fig. S4a allows to see in detail the daglyavior of the curves, indicating
that a power law does not offer a good fit to the data. As we shothe log-linear plot in
Fig. S4b, we find that the radius of gyration increases loigiauically in time, which is in strong
contrast with the power law dependence expected for Leght8i ¢, (¢)|.r/rrr ~ t*/*+?)) and
random walks £, (t)| pw ~ t*/2). This indicates that the average radius of gyration of rieobi
phone users has a manifestly slower dependence than thetpdedower laws, a behavior that
may appear similar to a saturation process. Note thatthe4, 10 curves appear to deviate from
the logarithmic behavior. We belive that this is due to thatish resolution offered by the tower
density: we cannot reliably and systematically resolveganm the vicinity of a few kms, given
that we record a motion only when a person moves between sothat are often a few kilometers
apart. Ther, > 10 km curves, given the distances involved, are not affectetthéygranularity of

the data collection process, and they all follow the logyanic behavior.

VII. STATISTICAL TESTS OF FITTING DISTRIBUTIONS

Given the fat tailed distributions observed for human trgagterns, it is important to see if
the data is statistically consistent with the best fits. Thgpse of this section is to support our
findings with rigorous statistical tests. In the past yeard¢thas been significant attention devoted
to the question of how to statistically measure the goodoé$is for a power law [7—10]. This
was prompted partly by the need to quantify the validity & tevy flight finding in animal travel
patterns. Note, however, that there is a significant diffeeebetween the data quality available in
the animal and human travel patterns. Indeed, the mammadéitnwas available for short time
periods for only a few animals, providing only a small numbg&pobserved individual displace-
ments. Given the scarcity of data, precise statisticaktaot needed to extract the proper fit. In
contrast, the data analyzed in Ref. [11] as well as in thigpapntain millions of displacements.
Thus we are in a regime where typically traditional statatiools, designed to deal with limited

information, are less crucial. Yet, appropriate stat@tiools can be used to explore the goodness
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of the fit.

In this respect, it is often believed that statistical methcan validate a particular fit. The
truth is, as emphasized in a recent publication [10], thesé¢htools can only tell if a particular fit
is consistent with the data, and rule some fits out, rather adidate a particular fit. A second
important observation is that, given the high interest tkddo power laws, recently the issue of
fitting a power law has been addressed in detail, develop@gtoper statistical tools to address
the goodness of the fit [7-10]. The same tools are not avaifabtruncated power laws, however,
thus limiting the available methods to address their gtedisrelevance. In general we find that all
the fits that we used in the paper pass the Kolmogorov-Smiesivfor the goodness of fit (Sect.
V.A) and that a power law offers a much better approximatioerall than an exponential function
(Sect. V.B). Note that given the vast amount of data and thkyrgood fit offered by the truncated

power law, this last conclusion is hardly surprising.

A. Kolmogorov-Smirnov goodness of fit test

We tested whether the empirical data could come from thelfitistributions by performing a
stringent variant of the Kolmogorov-Smirno¥ (5) goodness of fit test [10]. The KS statistics is
a simple way to compare whether two distributions are theesdmthis case, we use it to test the
hypothesis:Could the empirically observed distributions come fromdisgribution found as its
best fit For this we generated synthetic data starting from thedfitistribution and then use the
KS test to see whether the empirical data we have behavedlasswtiee synthetic data generated
from the fitted distribution.

We use two variants of the KS statistics to compare empidesh with the fitted distribution
and synthetic data with the fitted distribution. The first hoet is the standard KS statistics and is
given by:

KS =max (|F — P|) (S19)

where I is the cumulative distribution of the best fit aitlis the cumulative distribution of the
empirical or synthetic data. The regularS statistic is not very sensitive on the edges of the

cumulative distribution. Hence, we also used the weight8dstatistics defined as:
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To test whether the empirical data behaves as good as theetigrdata we calculated théS
and K Sy, statistics between the empirical data and its best fit andpeoad these values with
those obtained by calculating S and K Sy, for 1, 000 synthetic data sets generated from the best
fit. If the values obtained fokK S and K'Sy, for the empirical data behave as good or better than
those obtained for the synthetic data, then we can conchatdtie empirical data is statistically

consistent with its best fit. The results of tih&S test can be summarized usingpa— value
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by integrating the distribution ok'S values generated with the synthetic data from the value
representing the empirical distribution. When integrgtsuich distributions from left to right we
can interpret the — value as the probability that the observed data was the resuls dfeist fit.

A p — value close to 1 will indicate that the empirical distribution rola¢s its best fit as good
as synthetic data generated from the fit itself [10], wheeeesative smalp — value (typically

takenp < 0.01) would suggest that the empirical distribution can not keerésult of its best fit.

Passing thd{S test does not rule out the possibility that the empiricabdatuld be fitted as

well or even better with some other function. In such a casengthe size of our samples, we
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believe that such an exercise would be technical rathergheastical and that different functional
forms will closely resemble each other on the range were theds made once the fitting

parameters have been fixed.

1. KS statistics for Fig 1C,D;: Figure S5 compares th€ S values obtained for the empirical
data presented in Fig 1@); of the paper with those obtained for000 distributions of synthetic
data generated to comply with Eq. (1). Figure S6 shows the $anik’ Sy, . In both cases we find
that the empirical data passes th& test, in fact behaving better than the synthetic data. lthdee
p(KS) =1andp(KSy) = 1.

2. KS statistics for Fig 1D, D;: Figure S7 compares th€ S values obtained for the empirical
data presented in Fig 13, of the paper with those obtained for 2000 distributions oftkgtic
data generated to comply with Eq. (3). Figure S8 shows thedani Sy, . In both cases we find
that the empirical data passes thi& test, behaving as some of the best examples of the synthetic
data, obtaining(K S) = 0.62 andp(K Sy ) = 0.82.

B. Maximum Likelihood Estimates: Comparing power-laws andexponentials

The Maximum Likelihood Method is a powerful way of estimafitine fitting parameters best
describing a empirical distribution. The method can alsadez to compare the relative likelihood
of two fits. In this section we are interested in testing wketh broad distribution, such as a
power-law, is a better fit than an exponential for many of tisérithutions presented on the paper.
It is not our intention to claim that the distributions prete here are in fact power-laws but
to build suggestive evidence testing if the data presemtalla paper is better fitted by a broad
distribution, such as the power-law, rather than a narratribution such as an exponential. In
fact, as we discuss in the manuscript and the previous seetie believe that the best fit to our
data is given by a truncated power law rather than a simpleeptaw. We do not present here
the maximum likehood estimate of the truncated power-lavoditause being its cumulative a
Whittaker function, it is not readily to be handled with tmeethod. For those interested in the

accuracy of the best fit we suggest reading section VIl A &f shipplementary material.
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The details of the maximum likelihood method have been wigeblished. Those interested

in performing such fits could find help in [10] and [7].

FIG. S9:

Testing for broad and narrow distributions: The relative likelihood between two distribu-

tions can be calculated from its relative weights

e
i (52
whereA; = min (AIC; — AIC,.;,). HereAIC' is the Akaike information criteria associated with
the power-law{ = 1) and exponentiali(= 2) fits. The AIC can be expressed as a function of the
log-likelihood [7]

AIC; = 2logmax(L;) + 2K;

whereK; is the number of parameters used in the fit &nds the likehood of a particular value of

a fitting parameter.
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Here we test two fits, a power-ladz—? and an exponentiale#*, whereA is a normalization

constant. In Fig. S9 we present the results of the Maximunelltibod Fits for the distributions

introduced in Fig. 1C and Fig. 1D of the paper. Note, we usaltta log binned data, which

has been recommended as the most accurate plotting methibisfeind of analysis [8]. In each

case we findV,,, >> W,,, indicating that a power law is a more likely fit than an expdian

indicating that the distribution of displacements, as \asi,, are better approximated by a broad

rather than a narrow distribution.
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