












The symmetric c(t) predicted by the logistic model
cannot capture the asymmetric citation curves.
Although the Gompertz and the Bass models pre-
dict asymmetric citation patterns, they also pre-
dict an exponential (Bass) or double-exponential
(Gompertz) decay of citations (table S2) that is
much faster than observed in real data. To quan-
tify how these deviations affect the predictive
power of each of these models, we used a 5- and a
10-year training period to fit the parameters of each
model and computed the predicted most likely
citations at year 30 (Fig. 4, E andF). Independent of
the training period, the predictions of the logistic,
Bass, and Gompertz models always lay outside the
25 to 75% prediction quartiles (red bars), system-
atically underestimating future citations. In contrast,
the prediction of Eq. 3 for both training periods was
within the 25 to 75% quantiles, its accuracy visibly
improving for the 10-year training period (Fig. 4F).
In supplementary materials S3.3, we offer addition-
al quantitative assessment of these predictions (fig.
S19), demonstrating our model’s predictive power
pertaining to both the fraction of papers whose
citations it correctly predicts and the magnitude of
deviations between predicted and the real citations.
The predictive limitations of the current models
were also captured by their P(z30) distribution, in-
dicating that for the logistic, Bass, and Gompertz
models more than half of the papers underestimate
with more than two standard deviations the true
citations (z>2) at year 30 (Fig. 4C), in contrast with
6.5% for the proposed model (Eq. 3).

Ignoring preferential attachment in Eq. 2 leads
to the lognormal model, containing a lognormal
temporal decay modulated by a single fitness pa-
rameter. Aswe analytically show in supplementary
materials S3.4, for small fitness Eq. 3 converged
to the lognormal model, which correctly captured
the citation history of small impact papers. The
lognormal model failed, however, to predict the
citation patterns ofmedium- to high-impact papers
(fig. S20). The proposed model therefore allows
us to analytically predict the citation threshold
when preferential attachment becomes relevant.
The calculations indicate that the lognormalmodel
is indistinguishable from the predictions of Eq. 3
for papers that satisfy the equation
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Solving this equation predicts l < 0.25, equivalent
with the citation threshold c∞ < 8.5, representing

the theoretical bound for preferential attachment to
turn on. This analytical prediction is in close agree-
ment with the empirical finding that preferential
attachment is masked by initial attractiveness for
papers with fewer than seven citations (29). Note
that the lognormal function has been proposed
before to capture the citation distribution of a body
of papers (15). However, the lognormals appearing
in (15) and in the lognormalmodel discussed above
have different origins and implications (supplemen-
tary materials S2.5.2).

The proposed model has obvious limitations:
It cannot account for exogenous “second acts,”
like the citation bump observed for superconduc-
tivity papers after the discovery of high-temperature
superconductivity in the 1980s, or delayed impact,
like the explosion of citations to Erdős and Rényi’s
work 4 decades after their publication, following
the emergence of network science (3, 20, 21, 23).

Our findings have policy implications, because
current measures of citation-based impact, from
IF to Hirsch index (4, 17), are frequently integrated
in reward procedures, the assignment of research
grants, awards, and even salaries and bonuses
(30), despite their well-known lack of predictive
power. In contrast with the IF and short-term ci-
tations that lack predictive power, we find that c∞

offers a journal-independent assessment of a pa-
per’s long term impact, with a meaningful inter-
pretation: It captures the total number of citations
a paper will ever acquire or the discovery’s ulti-
mate impact. Although additional variables com-
bined with data mining could further enhance the
demonstrated predictive power, an ultimate under-
standing of long-term impact will benefit from
a mechanistic understanding of the factors that
govern the research community’s response to a
discovery.
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