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THERE HAS BEEN A LONGSTANDING DESIRE to develop an
index that concisely describes the breath-to-breath
irregularity of breathing. Such an index might be
useful for distinguishing potentially pathological respi-
ratory arrhythmias from “normal” variability in the
breathing pattern or for describing the maturational
development of respiratory control mechanisms in neo-
nates. Early approaches (see Refs. 4, 5) were based on
simple statistics of breath-by-breath values of respira-
tory pattern variables, e.g., SD of tidal volume. More
recent studies have used power spectral analysis, comb
filtering, and autoregressive modeling to characterize
breathing pattern variability (6, 8, 9, 10, 12). However,
although one can detect components of respiratory
variations that meet the criteria of these analyses,
often the detected components either appear to change
unexpectedly with time or account for only a small
percentage of total respiratory variability.

Contemporary methods of variability analysis de-
rived from the fields of stochastic systems and nonlin-
ear dynamics (2, 11, 15) often utilize a global index that
is capable (theoretically) of characterizing the variabil-
ity in a signal over broad frequency and/or time ranges,
The paper by Frey et al. (7) applies the concept of power
law distributions to the analysis of breathing patterns
of preterm and term infants and concludes that a
simple index a, the slope of a log-log plot of a type of
histogram of respiratory intervals, can characterize
variability in breathing pattern in a global sense.
Furthermore, this index increases with postconcep-
tional age (PCA) in both preterm and term infants and,
therefore, may be an indicator of maturation of the
respiratory rhythm generator. As the authors note,
because of large interindividual variability a is not
useful as an indicator of maturation in individual
infants, but its ability to represent the relative likeli-
hood of occurrence of long hypopneas in an infant may
be clinically noteworthy.

The analysis method developed by Frey et al. (7)
identifies the intervals between breaths, the tidal vol-
umes for which exceed a threshold specified as the
mean tidal volume + 1 SD. [The descriptor “interbreath
intervals (IBIs)" is somewhat misleading, since most
intervals encompass more than one breath.] These IBIs
are expressed as a normalized histogram, and a linear
fit is made to the “tail” of a log-log plot of the histogram.
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The slope of this line is «. The paper is convincing in
that the authors' data are well fit by a straight line
(average squared correlation coefficient of the fitted
data points was 0.973 * 0.025), and the paper notes
that normally distributed IBIs would yield a large
negative value for . One might ask, however, how the
observed values for a compare with these expected for a
null hypothesis based on a breathing pattern that is
regular, except for some default uncorrelated noise. For
example, one null hypothesis might be a breathing
pattern in which respiratory rate is constant and tidal
volume exhibits uncorrelated random variations. It is
easy to demonstrate from simulations that this latter
pattern yields logarithmic histograms having tails that
are approximately linear with slopes near the same
range as seen in the data of the paper discussed. There
are important differences, however; e.g., the IBI range
of the apparently linear relation seems to be signifi-
cantly smaller in the simulated data, and a may be
independent of the SD of the simulated data (implying
that it might be difficult to explain changes in a). These
results derived from a simplistic model do not dispute
the findings of the paper but do substantiate the need to
define the statistical limits of the method of Frey et al. A
related question is whether the computation of o
exhibits a bias that depends on the number of data
points available. This point may be important if the
length of data records differs between studies.

To substantiate their experimental findings, the au-
thors (7) also analyzed the output of a mathematical
model of respiratory rhythm generation (3) subjected to
noise disturbances. Arguably, other, more recent mod-
els of this type (1, 14) better represent the present
thinking of the field, although the model used may
provide helpful insights. It should be noted, however,
that Botros and Bruce (3) did not test and validate their
model for the low values of tonic neural input to first
neuronal group (TNI,) that are invoked by Frey et al.
(7) to explain the generation of power law IBI data by
the model. One also must consider whether the distur-
bance effect of noisy physiological afferent inputs that
are distributed asynchronously across a population of
physiological ramp-inspiratory neurons (I neurons)
would be comparable to adding a large noise stimulus
in a model having only one TNI, input and one I
neuron.
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Botré ##'rd Bruce (3), vagal
stretch-receptor afferent input 4} ectly influenced two
neuronal pools, the early-inspiratory and the postinspi-
ratory neurons. The hypothesis of Frey et al. (7) that
vagal afferents might be the source of the noisy distur-
bances to the I neurons contradicts the original struc-
ture of the model and needs to be evaluated further on
the basis of physiological results. Generally, pulmonary
stretch afferents have not been thought to directly
affect I neurons.

There is an interesting parallel between the hypoth-
esis that small values of tonic input to I neurons may
combine with noisy disturbances to produce irregular
breathing (7) and another recent hypothesis regarding
the genesis of apneas in neonates; Paydafar and Buerkel
(13) have suggested that at low levels of respiratory
drive the expiratory trajectory of the respiratory oscilla-
tor passes near a singularity in its behavior. Thus a
small noisy disturbance potentially can drive the oscil-
lator close to the singularity and produce a prolonged
arrhythmic period or, during this arrhythmic period,
drive the oscillator back toward its natural rhythm.
Consequently, both hypotheses suggest that at low
respiratory drives the influence of noisy disturbances
on respiratory rhythm is magnified by the dynamic
properties of the respiratory oscillator. In the model of
Paydafar and Buerkel, contraction of the phase plot
toward the singularity is assumed to be due to decrease
of chemoreceptor drive, and the possible role of chemo-
receptor afferents as a source of disturbances to TNI,
should be examined.

To address the specific mechanisms underlying these
new findings (7), it is probably necessary to develop an
animal model that exhibits similar behavior. Then a
simple experiment would be to assess the distribution
of IBIs before and after vagotomy at various PCA.
Similarly, one could determine the influence of chang-
ing chemoreceptor drive on IBls. In addition, it may be
possible to determine the role of specific afferent inputs,
or of the specific configuration of the respiratory rhythm
generator, by modifying neurotransmission at various
loci in the brain stem.

The authors have been appropriately cautious about
inferring mechanisms on the basis of observing a power
law distribution of IBlIs. Although one would like to
draw inferences about the temporal structure of the
breathing pattern, such speculations are premature.
For example, the occurrence of long IBIs could result
from occasional grouping of breaths having tidal vol-
umes that are too low relative to metabolic demand or
from the presence of occasional very large breaths that
cause the tidal volume threshold to be artificially high
relative to metabolic demand. The types of mechanisms

INVITED EDITORIAL

that might generate these two - nes { ’* data may be
very different. In fact, it may be (ifficult’th attribute the
power law behavior to a single mechanism. Because of
the existence of multiple feedback loops that control
breathing, variability generated at one site may rever-
berate throughout the respiratory control system, creat-
ing multiple interactions encompassing multiple time
scales (4). Furthermore, the temporal relationships of
breath-to-breath variations of respiratory pattern vari-
ables seem to be at least as important as the magnitude
of their fluctuations. Clearly, this interesting paper will
motivate a variety of future studies.
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