
T H E  S E V E N T H  L I N K

Rich Get Richer

ONCE A PROMINENT MERCHANT PORT of the Portuguese empire, Porto to-
day gives the impression of a forgotten city. Built where the slow-moving
Duoro River wends its way to the Atlantic through the steep hills guard-
ing the seashore, it carries the signature of a busy medieval town strategi-
cally located on an easily defensible narrow key. With its magnificent cas-
tles overlooking the river and a rich history of wine making, one might
expect it to be one of the most visited cities in the world. But hidden as it
is in the northwest corner of the Iberian Peninsula, few tourists make the
detour. There are apparently too few fans of the distinctive full-bodied
Porto vintage to awaken this great medieval city from its dreamlike state.

I visited Porto in the summer of 1999, shortly after my students and
I finished our manuscript on the role of power laws on the Web. I was
attending a workshop on nonequilibrium and dynamical systems organ-
ized by two professors of physics at the University of Porto, José Mendes
and Maria Santos. During the summer of 1999 very few people were
thinking about networks, and there were no talks on the subject during
this workshop. But networks were very much on my mind. I could not
help carrying with me on the trip our unresolved questions: Why hubs?
Why power laws?

At that time the Web was the only network mathematically proven
to have hubs. Struggling to understand it, we were searching for its dis-
tinguishing features. At the same time, we wanted to learn more about
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the structure of other real networks. Therefore, just before leaving for
Porto, I had contacted Duncan Watts, who kindly provided us the data
describing the power grid of the western United States and the C. ele-
gans topology. Brett Tjaden, the former graduate student behind The
Oracle of Bacon Website, now assistant professor of computer science
at Ohio University in Athens, Ohio, sent us the Hollywood actor
database. Jay Brockman, a computer science professor at Notre Dame,
gave us data on a man-made network, the wiring diagram of a com-
puter chip manufactured by IBM. Before I left for Europe, my graduate
student Réka Albert and I agreed that she would analyze these net-
works. On June 14, a week after my departure, I received a long e-mail
from her detailing some ongoing activities. At the end of the message
there was a sentence added like an afterthought: “I looked at the de-
gree distribution too, and in almost all systems (IBM, actors, power
grid), the tail of the distribution follows a power law.”

Réka’s e-mail suddenly made it clear that the Web was by no means
special. I found myself sitting in the conference hall paying no atten-
tion to the talks, thinking about the implications of this finding. If two
networks as different as the Web and the Hollywood acting community
both display power-law degree distribution, then some universal law or
mechanism must be responsible. If such a law existed, it could poten-
tially apply to all networks.

During the first break between talks I decided to withdraw to the
quiet of the seminary where we were being housed. I did not get far,
however. During the fifteen-minute walk back to my room a potential
explanation occurred to me, one so simple and straightforward that I
doubted it could be right. I immediately returned to the university to
fax Réka, asking her to verify the idea using the computer. A few hours
later she e-mailed me the answer. To my great astonishment, the idea
worked. A simple, rich-get-richer phenomenon, potentially present in
most networks, could explain the power laws we spotted on the Web
and in Hollywood.

After Porto I returned briefly to Notre Dame before taking off for an-
other month-long trip. It was clear, however, that we could not wait an-
other month to submit our results. We had seven days to write a paper.
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The eight-hour flight from Lisbon to New York seemed an ideal opportu-
nity to prepare the first draft. As soon as the plane took off, I pulled out a
laptop newly purchased before the Porto trip and frantically started typing.
I was just about finished with the introduction when the flight attendant,
handing a Coke to the passenger next to me, suddenly poured the entire
contents of the glass onto my keyboard. Random letters flickered on the
screen of my now useless laptop. But I did finish the paper on the plane,
writing it out from beginning to end in longhand. A week later it was sub-
mitted to the prestigious journal Science only to be rejected after ten days
without having undergone the usual peer review process because the edi-
tors believed that the paper did not meet the journal’s standards of novelty
and wide interest. By then I was in Transylvania, visiting my family and
friends in the heart of the Carpathian Mountains. Disappointed but con-
vinced that the paper was important, I did something that I had never
done before: I called the editor who rejected the paper in a desperate at-
tempt to change his mind. To my great surprise, I succeeded.

1.
The random model of Erdős and Rényi rests on two simple and often
disregarded assumptions. First, we start with an inventory of nodes. Hav-
ing all the nodes available from the beginning, we assume that the num-
ber of nodes is fixed and remains unchanged throughout the network’s
life. Second, all nodes are equivalent. Unable to distinguish between the
nodes, we link them randomly to each other. These assumptions were
unquestioned in over forty years of network research. But the discovery
of hubs—and the power laws that describe them—forced us to abandon
both assumptions. The manuscript submitted to Science was the first step
along this path.

2.
There is one thing about the Web that everybody agrees on: It is grow-
ing. Each day new documents are added by individuals detailing their
latest hobby or interest; by corporations expanding their online products
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and services; by governments increasingly reliant on the Web to dis-
seminate information to citizens; by college professors publishing their
lecture notes; by nonprofit organizations trying to reach those who
could benefit from their services; and by thousands of dot.com compa-
nies designing flashy pages to compete for your wallet. It is estimated
that within ten years the Web will host about an exabyte (1018) of in-
formation spread across the planet in numerous formats, most of which
are presently unknown. While the rate of this explosion will likely ta-
per as the majority of information collected by humanity lands online,
so far there are no signs of a slowdown.

With over a billion documents available today, it is hard to believe
the Web emerged one node at a time. But it did. Barely a decade ago it
had only one node, Tim Berners-Lee’s famous first Webpage. As physi-
cists and computer scientists started creating pages of their own, the
original site gradually gained links pointing to it. This modest Web of a
dozen primitive documents was the precursor to the planet-sized self-as-
semblage the Web is today. Despite its overwhelming dimensions and
complexity, it continues to grow incrementally, node by node. This ex-
pansion is in stark contrast to the assumption of the network models
described so far in this book, which assume the number of nodes in a
network is constant over time.

The Hollywood network also started with a tiny core, the actors
of the first silent movies back in the 1890s. According to the
IMDb.com database, Hollywood had only 53 actors in 1900. With
increasing demand for motion pictures, this core slowly expanded,
adding a few new faces with each movie. Hollywood experienced its
first boom between 1908 and 1914, when the number of actors join-
ing the trade went from under 50 to close to 2,000 a year. A second
spectacular boom starting in the 1980s turned moviemaking into the
entertainment megaindustry we know today. From a tiny cluster of
silent actors grew a gigantic network of over a half-million nodes,
and it continues to grow at an incredible rate. In the period of only
one year, 1998, as many as 13,209 names of actors appearing for the
first time on the wide canvas of the movie screen were added to the
IMDb.com database.
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Despite their diversity most real networks share an essential feature:
growth. Pick any network you can think of and the following will likely
be true: Starting with a few nodes, it grew incrementally through the ad-
dition of new nodes, gradually reaching its current size. Obviously,
growth forces us to rethink our modeling assumptions. Both the Erdős-
Rényi and Watts-Strogatz models assumed that we have a fixed number
of nodes that are wired together in some clever way. The networks gener-
ated by these models are therefore static, meaning that the number of
nodes remains unchanged during the network’s life. In contrast, our ex-
amples suggested that for real networks the static hypothesis is not appro-
priate. Instead, we should incorporate growth into our network models.
This was the initial insight we gained while trying to explain the hubs. In
so doing, we ended up dethroning the first fundamental assumption of
the random universe—its static character.

3.
It is relatively easy to model a growing network. We start from a tiny
core and keep adding nodes, one after the other. Let us assume that
each new node has two links. Thus, if we start with two nodes, our third
node will link to both of them. The fourth node has three nodes from
which to choose. How do we pick which two we should link to? For the
sake of simplicity, let’s follow the lead of Erdős and Rényi and randomly
select two of the three nodes and link the new node to them. We can
continue this process indefinitely, so that each time we add a new node,
we connect it to two randomly selected nodes. The network generated
by this simple algorithm, called Model A, differs from the random net-
work model of Erdős and Rényi only in its growing nature. This differ-
ence, however, is significant. Despite the fact that we choose the
links randomly and democratically, the nodes in Model A are not
equivalent to each other. We have easily identifiable winners and los-
ers. At each moment all nodes have an equal chance to be linked to,
resulting in a clear advantage for the senior nodes. Indeed, apart from
some rare statistical fluctuations, the first nodes in Model A will be the
richest, since these nodes have had the longest time to collect links.
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The poorest node will be the last one to join the system, with two links
only, because nobody has had time to link to it yet. Model A was
among our first attempts to explain the power laws we observed on the
Web and in Hollywood. The computer simulations quickly convinced
us that we had not yet found the answer. The degree distribution, the
function that distinguishes scale-free networks from random models,
decayed too fast, following an exponential. While the early nodes were
clear winners, the exponential form predicted that they are too small
and there are too few of them. Therefore, Model A failed to account for
the hubs and the connectors. It demonstrated, however, that growth
alone cannot explain the emergence of power laws.

4.
During the 1999 Super Bowl numerous neverheardof.com companies
such as OurBeginning.com, WebEx.com, and Epidemic Marketing
blew $2 million per advertising spot to bring their name to millions of
Americans following the duel between Denver and St. Louis. In one
year alone E*Trade spent $300 million promoting itself. AltaVista, one
of the most popular search engines, had an advertising budget close to
$100 million. America Online, the Goliath of the online world, effec-
tively matched that with $75 million. In 1999 over $3.2 billion was
spent on online marketing, about half the amount spent during the
same period on cable television advertising, a medium whose history
spans over two decades.

What did these companies want to achieve? The answer is simple,
if unconventional. Startups and established companies alike had been
burning venture capital and hard-earned cash, millions a day, to defeat
the random universe of Erdős and Rényi. They knew that we do not
link randomly on the Web. They wanted to take advantage of this non-
randomness by begging us to link to them.

How do we in fact decide which Websites to link to on the World
Wide Web? According to the random network models, we would ran-
domly link to any of the nodes. A bit of reflection as to how we make our
choices, however, indicates otherwise. For example, choices of Webpages
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with links to news outlets abound. A quick search for “news” on Google
returns about 109,000,000 hits. Yahoo’s manually ordered directory offers
a choice of over 8,000 online newspapers. How do we pick one? The ran-
dom network models tell us that we select randomly from the list. Frankly,
I do not think that anybody ever does that. Rather, most of us are familiar
with a few major news outlets. Without giving the matter much thought
we link to one of them. As a longtime reader of the New York Times, it is
a no-brainer for me to choose nytimes.com. Others might prefer
CNN.com or MSNBC.com. Significantly, however, the Webpages to
which we prefer to link are not ordinary nodes. They are hubs. The better
known they are, the more links point to them. The more links they at-
tract, the easier it is to find them on the Web and so the more familiar we
are with them. In the end we all follow an unconscious bias, linking with
a higher probability to the nodes we know, which are inevitably the more
connected nodes of the Web. We prefer hubs.

The bottom line is that when deciding where to link on the Web,
we follow preferential attachment: When choosing between two pages,
one with twice as many links as the other, about twice as many people
link to the more connected page. While our individual choices are
highly unpredictable, as a group we follow strict patterns.

Preferential attachment rules in Hollywood as well. The producer
whose job it is to make a movie profitable knows that stars sell movies.
Thus casting is determined by two competing factors: the match between
the actor and the role, and the actor’s popularity. Both introduce the same
bias into the selection process. Actors with more links have a higher
chance of getting new roles. Indeed, the more movies an actor has made,
the more likely it is that he or she will appear again on the casting direc-
tor’s radar screen. This is where aspiring actors have a huge disadvantage,
a Catch-22 everybody knows both in and out of Hollywood. You need to
be known to get good roles, but you need good roles in order to be known.

The World Wide Web and Hollywood force us to abandon the sec-
ond important assumption inherent in random networks—their demo-
cratic character. In the Erdős-Rényi and Watts-Strogatz models there
is no difference between the nodes of a network; thus all nodes are
equally likely to get links. The examples just discussed suggest other-
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wise. In real networks linking is never random. Instead, popularity is at-
tractive. Webpages with more links are more likely to be linked to again,
highly connected actors are more often considered for new roles, highly
cited papers are more likely to be cited again, connectors make more new
friends. Network evolution is governed by the subtle yet unforgiving law
of preferential attachment. Guided by it, we unconsciously add links at a
higher rate to those nodes that are already heavily linked.

5.
Putting the pieces of the puzzle together, we find that real networks are
governed by two laws: growth and preferential attachment. Each network
starts from a small nucleus and expands with the addition of new nodes.
Then these new nodes, when deciding where to link, prefer the nodes
that have more links. These laws represent a significant departure from
earlier models, which assumed a fixed number of nodes that are ran-
domly connected to each other. But are they sufficient to explain the
hubs and power laws encountered in real networks?

To answer this, in the 1999 Science paper we proposed a network
model that incorporates both laws. The model is very simple, as growth
and preferential attachment naturally lead to an algorithm defined by
two straightforward rules (Figure 7.1):

A. Growth: For each given period of time we add a new node to the
network. This step underscores the fact that networks are assem-
bled one node at a time.

B. Preferential attachment: We assume that each new node connects
to the existing nodes with two links. The probability that it will
choose a given node is proportional to the number of links the
chosen node has. That is, given the choice between two nodes,
one with twice as many links as the other, it is twice as likely that
the new node will connect to the more connected node.

Each time we repeat (a) and (b), we add a new node to the net-
work. Therefore, node by node we generate a continuously expanding
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web (Figure 7.1). This model, combining growth and preferential at-
tachment, was our first successful attempt to explain the hubs. Réka’s
computer simulations soon indicated that it generated the elusive
power laws. As the first model to explain the scale-free power laws seen
in real networks, it quickly became known as the scale-free model.

6.
Why do hubs and power laws emerge in the scale-free model? First,
growth plays an important role. The expansion of the network means
that the early nodes have more time than the latecomers to acquire
links: If a node is the last to arrive, no other node has the opportunity
to link to it; if a node is the first in the network, all subsequent nodes
have a chance to link to it. Thus growth offers a clear advantage to the
senior nodes, making them the richest in links. Seniority, however, is
not sufficient to explain the power laws. Hubs require the help of the
second law, preferential attachment. Because new nodes prefer to link
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Figure 7.1 The Birth of a Scale-Free Network. The scale-free topology is a

natural consequence of the ever-expanding nature of real networks. Starting from

two connected nodes (top left), in each panel a new node (shown as an empty circle)

is added to the network. When deciding where to link, new nodes prefer to attach to

the more connected nodes. Thanks to growth and preferential attachment, a few

highly connected hubs emerge.
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to the more connected nodes, early nodes with more links will be se-
lected more often and will grow faster than their younger and less con-
nected peers. As more and more nodes arrive and keep picking the
more connected nodes to link to, the first nodes will inevitably break
away from the pack, acquiring a very large number of links. They will
turn into hubs. Thus preferential attachment induces a rich-get-richer
phenomenon that helps the more connected nodes grab a dispropor-
tionately large number of links at the expense of the latecomers.

This rich-get-richer phenomenon naturally leads to the power laws
observed in real networks. Indeed, the computer simulations we per-
formed indicated that the number of nodes with exactly k links follows
a power law for any value of k. The precise value of the degree expo-
nent, the parameter that characterizes the power law distribution, was
no longer a mystery either. We were able to calculate it analytically, us-
ing a mathematical tool, called a continuum theory, that we developed
for this purpose. Indeed, thanks to preferential attachment, each node
attracts new links at a rate proportional to the number of its current
links. Using this simple observation, we were able to propose a simple
equation predicting how nodes acquire links as the network expands.
The solution allowed us to calculate analytically the degree distribu-
tion, confirming that indeed it follows a power law.1

Could either growth or preferential attachment alone explain the
power laws? Computer simulations and calculations convinced us that
both are necessary to generate a scale-free network. A growing network
without preferential attachment has an exponential degree distribution,
which is similar to a bell curve in that it forbids the hubs. In the absence of
growth we are back to the static models, unable to generate the power laws.

7.
Our purpose with the scale-free model was rather modest: to demon-
strate that two simple laws of growth and preferential attachment could
solve the puzzle of hubs and power laws. Therefore, the model’s great
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1. The degree exponent for the scale free model is γ = 3, i.e. the degree distribution
follows P(k) ~ k-3.
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influence on subsequent research was a pleasant surprise for us, particu-
larly since it was clear from the beginning that the topology of real net-
works was shaped by many effects that we had ignored for the purpose
of simplicity and transparency. One of the most obvious of these is the
fact that, whereas all links present in the scale-free model are added
when new nodes join the network, in most networks new links can
emerge spontaneously. For example, when I add to my Webpage a link
pointing to nytimes.com, I create an internal link connecting two old
nodes. In Hollywood, 94 percent of links are internal, formed when two
established actors work together for the first time. Another feature ab-
sent from the scale-free model is that in many networks nodes and links
can disappear. Indeed, many Webpages go out of business, taking with
them thousands of links. Links can also be rewired, as when we decide
to replace our link to CNN.com with a new one pointing to
nytimes.com. These and other phenomena frequent in some networks
but absent from the scale-free model illustrate that the evolution of real
networks is far more complex than the scale-free model predicts. To un-
derstand networks in the complex world around us, we would have to
incorporate these mechanisms into a consistent network theory and ex-
plain their impact on the network structure.

After submitting our paper on the scale-free model, Réka Albert
and I started to investigate the effects of processes like internal links
and rewiring on the structure of scale-free networks. We were no longer
alone, however. A month after our paper’s publication in Science, I
learned of similar work going on in several research laboratories world-
wide. Luis Amaral, my longtime collaborator, currently a research pro-
fessor at Boston University, was in the process of generalizing the scale-
free model to include aging, incorporating the possibility that actors
stop acquiring links after retirement. Amaral, working together with
Gene Stanley and two students, Antonio Scala and Mark Barthélémy,
demonstrated that if nodes fail to acquire links after a certain age the
size of the hubs will be limited, making large hubs less frequent than
predicted by a power law. At the same time, José Mendes and Sergey
Dorogovtsev were working independently on a similar problem in
Porto; they soon published the first in a string of very influential papers
on scale-free networks. Assuming that nodes slowly lose their ability to
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attract links as they age, Mendes and Dorogovtsev showed that gradual
aging does not destroy the power laws, but merely alters the number of
hubs by changing the degree exponent. Paul Krapivsky and Sid Redner,
also from Boston University, working with Francois Leyvraz from Mex-
ico, generalized preferential attachment to account for the possibility
that linking to a node would not be simply proportional to the number
of links the node has but would follow some more complicated func-
tion. They found that such effects can destroy the power law character-
izing the network.

These were the first of numerous subsequent results obtained by
physicists, mathematicians, computer scientists, sociologists, and biolo-
gists who scrutinized the scale-free model and its various extensions.
Thanks to their efforts, we currently have a rich and consistent theory
of network growth and evolution, something that would have been un-
thinkable just a few years ago. We understand that internal links,
rewiring, removal of nodes and links, aging, nonlinear effects, and
many other processes affecting network topology can be seamlessly in-
corporated into an amazing theoretical construct of evolving networks,
which contain as a particular case the scale-free model. These processes
alter the way networks grow and evolve, inevitably changing the num-
ber and the size of the hubs. But in most cases when growth and prefer-
ential attachment are simultaneously present, hubs and power laws
emerge as well. In complex networks a scale-free structure is not the ex-
ception but the norm, which explains its ubiquity in most real systems.

8.
The theory of evolving networks, developed in the past three years,
represents a one-way sign in network modeling. By viewing networks as
dynamical systems that change continuously over time, the scale-free
model embodies a new modeling philosophy. The classic static models
starting with Erdős-Rényi sought simply to arrange a fixed number of
nodes and links such that the final web conforms to the network being
modeled. This process is similar to drawing. Seated in front of a Ferrari,
our task is to draw a picture that will allow anyone to recognize the car.
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Having a faithful drawing, however, doesn’t bring us any closer to un-
derstanding the processes that created the car in the first place. For that
we need to know how to build one just like the original. This is exactly
what the various evolving network models aim to accomplish. They
capture how networks are assembled by reproducing the steps followed
by nature when it created its various complex systems. If we correctly
model the network assembly, our final network should closely match
the reality. Thus our goals have shifted from describing the topology to
understanding the mechanisms that shape network evolution.

This shift in focus resulted in a dramatic change in the language of
networks, as well. The static nature of the classical models had gone
unnoticed until we were forced to incorporate growth. Similarly, ran-
domness had not been a problem until the power laws required us to in-
troduce preferential attachment. Understanding that structure and net-
work evolution couldn’t be divorced from one another made it difficult
to revert to the static models that dominated our thinking for decades.
These shifts in thinking created a set of opposites: static versus growing,
random versus scale-free, structure versus evolution.

At the end of the previous chapter we came to an important ques-
tion: Does the presence of power laws imply that real networks are the re-
sult of a phase transition from disorder to order? The answer we’ve ar-
rived at is simple: Networks are not en route from a random to an ordered
state. Neither are they at the edge of randomness and chaos. Rather, the
scale-free topology is evidence of organizing principles acting at each
stage of the network formation process. There is little mystery here, since
growth and preferential attachment can explain the basic features of the
networks seen in nature. No matter how large and complex a network
becomes, as long as preferential attachment and growth are present it will
maintain its hub-dominated scale-free topology.

The scale-free model would have remained an interesting aca-
demic exercise if there hadn’t been several subsequent discoveries.
The most important was the realization that most complex networks
of scientific and practical importance are scale-free. The Web data was
large and detailed enough to convince us that power laws can describe
real networks. This realization started an avalanche of discoveries that
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continues to this day. As Hollywood, the metabolic network within
the cell, citation networks, economic webs, and the network behind
language2 joined the list, suddenly the origins of scale-free topology
became important for many scientific fields. The two laws governing
network evolution built into the scale-free model offered a good start-
ing point for exploring these diverse systems.

First, power laws gave legitimacy to the hubs. Then the scale-free
model elevated the power laws seen in real networks to a mathemati-
cally backed conceptual advance. Supported by a sophisticated theory
of evolving networks that allows us to precisely predict the scaling ex-
ponents and network dynamics, we have reached a new level of com-
prehension about our complex interconnected world, bringing us closer
than ever to understanding the architecture of complexity.

But the scale-free model raised new questions. One in particular
kept resurfacing: How do latecomers make it in a world in which only
the rich get richer? The quest for the answer took us to a very unlikely
place: the birth of quantum mechanics at the beginning of the twenti-
eth century.
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2. The scale-free nature of language has been shown by various research groups. In this
network the nodes are words, and links represent significant cooccurences in texts, or
semantic relationships (synonyms, antonyms).
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