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An attempt is presented to study from a unified poinl of view crises and super-
tracks. The concepl of n-th order erisis is introduced and used to eslablish a gene-
ral frame for describing the erises of one-dimensional maps.

The concepts of supertracks [1] and crises [2 —3] are probably the
most interesting in the realm of the chaotiec world. The former refers to
orbits starting from the maximum point of a one-dimensional (l1d) map ;
the latter considers situations arising during the collision of an unstable
fixed point or a periodic orbit with an attractor, amounting to a sudden
change of the respective attractor (which in tact explains the name of the
phenomenon).

The usefulness of the supertracks (ST) and of the associated super-
track functions (STF) is related both to the possibility to extend their
definition for a large class of one-dimensional maps[4] and to use them
for explaining in a unified way interior as well as boundary erises [2,3).

Our aim in this paper is to show that a general formulation in this

erises,

Similar to the use we made of STFs to calculate the position of
periodic windows of the type RL*~2? and RL""® R by means of scaling
relations resulting from a renormalization scheme, we shall consider im
the following maps of the interval of the same kind as those in Metropolis,
Stein and Stein [5], Feigenbaum [6], i.e. with :

a) #uyy = P(3, 2,) = M(e,) (1)

J(@) single-valued, piecewise (! on [0,1], strietly positive on (0, 1), with
S(0) = f(1) = 1; b) f’(«*) existing and being zero whenever f(a*) = f_, ;
€) ak existing such that for 2, < A < A, = 1/fou F(2, ®) has only
two fixed points, both repellent, ot which one is the origin.

The n-th order STF, S,(2) is then defined as

Su(n) = FY(2, a*) (2)
a definition which for quadratic maps turns into the Oblow expres on,
Sar(B) = A8y (z)(1 — 8,y(@)) (3}
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In general,
Sp(x) = z*
bi()\) S )\:f({ﬂ*. o }\/)\'uu (4)

_ So(2) = M(M Apax)
One tinds out that :

1. The intersection ot S,(1) and S,()) gives the position (x,) of the n-th
order supercycle :

Hn()\n) = Su(}‘») (5)
2. Sura(A) = F(x, 84(N)) (cf.(2)) (6)
3. Forany nz 2, S,(A.) =10 (7

A relation of the type (5) is important for, when it takes place, the
n stable points of the 2 tixed points created by a tangent bifurcation,
which generates an n-order periodic window, become superstable. Increas-
ing further the system parameter, the stable orbit loses its stability and,
after a cascade of period doublings, becomes chaotic., At this point, we
observe as a typical teature the presence of n chaotic bands, evideny
on the computer plot of the bifurcation diagram and which are SUCCEesSi-
vely visited by the system. This stripped region is bounded by 8,_x(})
and 8,,_(2), k = 0,1, ..., —1. A blow-up of any ot these bands shows
a bifurcation diagram similar to the original one. The stripped domain tier-
minates when it is no longer bounded by the STFs §,_; and Sy This
vakes place when '
; . J,l'.’.)r(}\m .'J?*') - ' ‘8)
where @+ is the unstable fixed point of F*(i, ), generated by the
tangent bifurcation, 8o that
e, oty = ot ['J}
» . Bquation (9) gives in principle the position of #* (the nearest unsta
ble root of (9) to a*). From what has heen said right above, we can geo
#hat we do in fact deseribe a crisis situation, and the corresponding valuo
A, i8 given by eqn. (8). .
Now, equation (6) leads immediately to
S = ot k> 2 (10)
Therefore, a crisis point is tound at the intersection of (kn)-th order
STE(E > 2) at 2. We also notice that for k> 2

Qo 3o o g (11)
dn da
so that the slopes of the (kn)-th order ST have the same sign. Otherwise,
the intersection of STFs defines a star point, an unstable singularity in
the chaotic domain [1]. More precisely, a star is formed for A = 2, where

Su(A4) =18y a( il iy ot (12a)
dSy(h)  dSpah) (12b)
d A ‘l}.

We shall say that at the point where a supertrack of order 2Zn crosses a
supertrack of order 3z, and no other crossing with a supertrack of order
less than 3» exists at the same point, and $*"(1) # z* then we have:
—an n-th order crisis when the slopes have the same sign ;
—an n-th order star, otherwise.
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Star points are rather trequent due to complicated shapes of STFs.
In this same region, particularly sensitive to the changesin the value of the
parameter are the unstable n-cyeles, which do not show bands of stability.

Returning now to crisis conditions (10) and (11), it is to be noted
that in the case ot 1d unimodal maps for » = 1 and » > 2 we have ecither
a boundary or an interior crisis (the collision with the attractor takey place
at the boundary or inside the basin ot attraction, respectively). We see
thus that STFs offer a general frame to deseribe both types of crisis ocenr-
ring in 1d, unimodal maps. _

In the remaining of the paper, we shall use STFs for 1d maps with
two extrema (Figure 1), in particular for :

Py, ) = —a* 4 (h + 1)z (13)

Fris)

Ky

Fig. 1. — The map F(a, ¥} of eqn. (13),

The two extrema are here
+o* =J(x + 1)/3 (14)
Starting from an , > 0 we easily find that the bifurcation diagram
looks very strange (Figure 2a), showing a crisis at A — X = 3)/3/2 —
= 1.GY80 ..., where % is the solution of
(K A 12 = fla¥) (15)

The crisis originates in the collision of the # = 0 unstable fixed
pomnts with the basin of attraction — it would thus seem to be a boundary
orisis; it does however not destroy the attractor, a fact which as we shail
shortly see is confirmed by the STF analysis. On the other hand, a new
erigls, destroying now the attractor, is exhibited for A = 2, but in this
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case it is very hard to loeate the unstable orbit colliding with the attrac-
tor. Destruetion of the attractor makes us suspect that in thiy case we
have also to do with a boundary crisis.
For two extrema maps, two families of STFs can be detined starting
from each ot the extrema :
ol 7 O T L T | (16a)

S;(A) = (2, —a2*) (16h)

Relation (6) holds in this case too, but other results are to be reformulated:
We shall only discuss Sj(2), the case of 8,(2) being completely symmetrie
(with respect to the axiy « = 0).

We thus notice that for » < & the c¢haotic domain is bounded by
ST and 83. For A = * all the STF*sn > 2 intersect at z — 0, their slo-
pes having equal sign. We have here therefore a boundary Crisis or, in
the terminology of STFs, a erigis or order 1. For 2> % the chaotic domain

is bounded by the SH(a) and S;(a) (Wigures 20 and 2b). At % = 2, the

2 b
X
1
/]
-1
2! ks |
13 14 15 16 17 18 19 :

B ke
Fig. 2a. — The biturcation diagram of eqn. (138). x> 0; b. — The lirst four STTF
for eqn. (13).
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attractor is suddenly destroyed. At this point, all STFs of even/odd order
cross at 87 (2) = —2 and 2, respectively. Condition (11) is satisfied for
n = 2, 8o that we have a 2nd order crisis (a boundary one, in the termi-
nology of Grebogi-Ott-Yorke), caused by the collision with an unstable
2 cycle. This indeed exists as an oscillation between positive and negative
semiaxes of the attractor, i.e.

F(2,2) = —2and P2, —2) = 2 (17)

In conclusion :

— we found that STFs allow a useful and more natural definition
of erisis phenomena in 1d maps ;

— thisnew frame makes possible to explain a larger family of sudden
changes in maps, in particular criges which look hard to identify in a chain
of collisions with the attractor considered ;

— this method also helps to locate the erisis point, the period and
the origin of the orbit causing the crigsis.
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