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Impact of physicality on network structure

Márton Pósfai    1,6, Balázs Szegedy2,6, Iva Bačić    1,3, Luka Blagojević    1, 
Miklós Abért2, János Kertész    1, László Lovász2 & Albert-László Barabási    1,4,5 

The emergence of detailed maps of physical networks, such as the brain 
connectome, vascular networks or composite networks in metamaterials, 
whose nodes and links are physical entities, has demonstrated the limits of 
the current network science toolset. Link physicality imposes a non-crossing 
condition that affects both the evolution and the structure of a network, in 
a way that the adjacency matrix alone—the starting point of all graph-based 
approaches—cannot capture. Here, we introduce a meta-graph that helps 
us to discover an exact mapping between linear physical networks and 
independent sets, which is a central concept in graph theory. The mapping 
allows us to analytically derive both the onset of physical effects and the 
emergence of a jamming transition, and to show that physicality affects 
the network structure even when the total volume of the links is negligible. 
Finally, we construct the meta-graphs of several real physical networks, 
which allows us to predict functional features, such as synapse formation in 
the brain connectome, that agree with empirical data. Overall, our results 
show that, to understand the evolution and behaviour of real complex 
networks, the role of physicality must be fully quantified.

Physical networks, describing molecular and composite networks 
in metamaterials1, the hard-wiring of transistors in a computer chip, 
the brain connectome2 or the vascular system3,4, are networks whose 
nodes and links are physical entities with defined shape and volume 
that cannot cross each other5,6. Although network science offers a suite 
of tools to quantify abstract networks, whose structure is fully defined 
by their adjacency matrix7–11, these tools are insufficient if we wish to 
account for the impact of physicality. Indeed, physical networks differ 
from abstract networks in two key aspects. First, the nodes and links 
are embedded in a three-dimensional (3D) Euclidean space, and hence, 
similarly to spatial networks12,13, we must specify node positions and 
link routing. The second and the most defining feature of physicality is 
volume exclusion, that is, the fact that the nodes and the links are not 
allowed to overlap14,15. Although recent experimental advances have 
provided increasingly accurate maps of physical networks, we lack a 
formalism to expand the toolset of network science to these systems 
and to understand how physicality affects the structure and the evolu-
tion of physical networks.

Here we unveil the impact of physicality through the discovery of an 
exact mapping of a physical network into the independent sets of a deter-
ministic meta-graph16, which allows us to analytically predict the onset of 
physicality and the emergence of a jamming transition. The formalism 
allows us to construct the meta-graph for real physical networks and to 
predict their functional features, such as synapse formation in the brain.

Linear physical network model
To understand the impact of physicality on network structure, we aim to 
construct the simplest possible model that captures the role of volume 
exclusion. For this reason, we eliminated all complexities that would 
affect our ability to explore the role of volume exclusion, such as the curv-
ing of the links or the impact of the node volume, which prompted us to 
focus on linear physical networks (LPNs), whose nodes are zero-volume 
points in the 3D space and links are straight cylinders with diameter λ.

To generate a random λ-physical network 𝒢𝒢𝒢λ, 𝒫𝒫𝒫, we started from 
a random finite point set 𝒫𝒫 placed in ℝ3. The points in 𝒫𝒫, which served 
as nodes, were placed uniformly randomly within the unit cube with the 
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we proceed: (1) with fixed λ, we cannot take the large network limit 
(N → ∞) because the total volume of the links, whose lower bound scales 
as Nλ3 for networks with non-vanishing average degree, exceeds the 
available volume for large N, which results in a disconnected network. 
Therefore, we must decrease λ as we increase N to ensure that λ ≲ N−1/3; 
and (2) if λ decreases too fast with N, the average meta-degree 
⟨kmeta⟩ ≈ λN2 (Supplementary Information Section 1.4) converges to 
zero and physicality will stop playing a role, which implies that λ ≳ N−2. 
To satisfy (1) and (2), we set

λ = C
Nα , (1)

constraint that any two nodes had to be at least at λ distance from each 
other. To construct the network, we first chose two unconnected nodes 
in 𝒫𝒫 at random and connected them by a capped cylinder of thickness 
λ. If the cylinder did not cross any preexisting link (except those con-
nected to the two end nodes), we added it to the network; if, however, 
the proposed link overlapped with a previously added link, we deleted 
the proposed link and selected another random node pair to connect.

For λ = 0, we lacked physical constraints and any point pair could 
be connected by a link. Consequently 𝒢𝒢𝒢0, 𝒫𝒫𝒫 mapped exactly into the  
Erdős–Rényi model and led to a fully connected network at 
M = N(N − 1)/2, where M is the number of links and N is the number of 
nodes in the network. For any λ > 0, however, physicality induces a 
jammed state, which implies that once we reached a maximal number 
of links Mmax𝒢λ𝒫, no further links could be added without violating 
volume exclusion. To characterize the jamming process, we measured 
⟨l⟩, the average length of the successfully added links, for different λ 
values (Fig. 1e). For λ = 0, all links are accepted, and hence the average 
length of the observed links is lrs ≈ 0.662, which is the expected length 
of a randomly selected segment from the unit cube (dashed line in  
Fig. 1e). For λ > 0, the measured link length ⟨l⟩ deviated from lrs for large 
M, which indicates that long links often violate physicality, and the 
larger the value of λ, the earlier physicality manifests itself.

As Fig. 1e indicates, both the onset of physicality (Mphys, which 
captures the moment at which volume exclusion starts to play a role) 
and the jammed state (Mmax) decrease with increasing link diameter λ. 
Although Mmax and Mphys are driven by random processes, we find that 
their values obtained for multiple independent networks generated 
with the same 𝒢λ, 𝒫𝒫𝒫 parameters are narrowly distributed (Fig. 1f,g), 
which indicates that Mphys and Mmax are self-averaging (Supplementary 
Information Section 3.2). Our goal, therefore, is to unveil the processes 
that govern these variables, which will help us to understand the impact 
of physicality on the network structure.

Meta-graph and independent sets
To uncover the dependence of the onset of physicality (Mphys) and the 
jamming transition (Mmax) on the link thickness λ and the number of 
nodes N = |𝒫𝒫|, we introduced the meta-graph ℳ𝒢𝒫𝒫, λ𝒫, which is designed 
to capture the physical constraints among the link candidates. The 
meta-graph has N(N − 1)/2 vertices, each corresponding to a possible link 
(pi, pj) between the N nodes. Two links (p1, p2) and (p3, p4), corresponding 
to two vertices of the meta-graph, are connected if they violate physical-
ity, that is, if the distance between the line segments (p1, p2) and (p3, p4) is 
below λ (Fig. 1a–d). Note that, for a given point set 𝒫𝒫 and link thickness 
λ, the construction of the meta-graph ℳ𝒢𝒫𝒫, λ𝒫 is fully deterministic.

The value of the meta-graph stems from the discovery that any 
LPN 𝒢𝒢𝒢𝒫𝒫, λ𝒫 corresponds to an independent set of vertices in ℳ𝒢𝒫𝒫, λ𝒫 
and vice versa. A set of vertices is called independent if there are no 
edges between the elements of the set (Fig. 2a,b). For example, each 
vertex of the meta-graph of Fig. 1b,d corresponds to a potential link of 
the physical networks of Fig. 1a,c. The meta-vertices shown in red in 
Fig. 1b,d form independent sets, as there are no direct edges between 
them. Therefore, each link in the physical network that corresponds 
to a red meta-vertex can coexist with any other link corresponding to 
another red meta-vertex, as they do not violate physicality.

Independent sets are extensively studied in combinatorics16, com-
puter science17, probability theory and statistical physics18,19. The exact 
mapping between a λ-physical network 𝒢𝒢𝒢𝒫𝒫, λ𝒫 and the independent 
vertex sets of the ℳ𝒢𝒫𝒫, λ𝒫 is our key result that, as we show next, allows 
us to develop an analytically solvable formalism to explore the struc-
ture and the evolution of physical networks.

Predicting the evolution of physical networks
We rely on the mapping between λ-physical networks and the  
independent sets of meta-graphs to derive Mphys and Mmax  and to  
understand the role of physicality. We must account for two limits as 
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Fig. 1 | LPNs. a,c, An LPN with eight nodes, showing its structure for two different 
λ values. Although for the small λ (a) most links are allowed, for λ = 0.2 (c) many 
links are forbidden, as they would overlap with other links. b,d, The 28 vertices of 
the meta-graph represent the candidate links of the physical network for λ=0.01 
(b) and for λ=0.2 (d), each labelled by the node numbers they attempt to connect. 
Two vertices are connected if the corresponding links overlap, and hence they 
cannot coexist in a physical network. Each independent vertex set of these 
meta-graphs corresponds to a valid physical network: the independent set 
formed by the red nodes represents the physical network shown in a and c.  
e–g, To model the evolution of a LPN, we generated a point set 𝒫𝒫 with N = 300 
nodes, randomly adding links if they did not violate λ-physicality, and repeated 
the process 1,000 times for the same 𝒫𝒫. e, The observed length of the links after 
the addition of M links. The data points are logarithmically spaced and the dashed 
line corresponds to lrs ≈ 0.662, which is the expected length of a random segment 
chosen from the unit cube (expected for λ = 0). The higher the value of λ, the more 
conflicts links have, and hence the more the observed l deviated from lrs. Error 
bars representing the standard error of the mean (SEM) are smaller than the 
marker size. f,g, Histogram of Mphys (f) and Mmax (g) for different realizations, 
showing that Mphys and Mmax are concentrated on a narrow range, being largely 
independent of the order in which the links are added. Owing to the logarithmic 
scale, the histograms for low Mphys and Mmax appear to be wider. In simulations, we 
measured Mphys as the number of links above which at least one-sixth of the link 
candidates were rejected. (Supplementary Information Section 1.5.5).
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where C is an arbitrary constant and the control parameter α interpo-
lates between the crowded state (1, α = 1/3) and the loss of physicality 
(2, α = 2).

We began by observing that the construction of a random LPN is 
equivalent to building a greedy independent set ℐ of ℳ𝒢𝒫𝒫, λ𝒫 by sequen-
tially selecting the meta-vertices in random order and adding the tth 
meta-vertex to ℐ  if none of its neighbours are in ℐ. To analytically char-
acterize this process, we introduced a randomized reference 
meta-graph ℳrr𝒢𝒫𝒫, λ𝒫 in which two link candidates with length l1 and l2 
were connected independently with probability (π/2)λl1l2, to represent 
the approximate probability that the distance between two randomly 
selected segments of lengths l1 and l2 was at most λ. This construction 
provided a first-order approximation of ℳ𝒢𝒫𝒫, λ𝒫  in λ: the expected 
degree of a vertex with length l was ~λl in both ℳ𝒢𝒫𝒫, λ𝒫 and ℳrr𝒢𝒫𝒫, λ𝒫 in 
leading order, whereas higher-order structures, such as the number 
of triangles in which a vertex participates, are not captured by ℳrr𝒢𝒫𝒫, λ𝒫. 
We then leveraged ℳrr𝒢𝒫𝒫, λ𝒫 to derive a differential equation that gov-
erned the temporal evolution of the total length Ltotal(t) of links in ℐ   
(ref. 20) (Supplementary Information Section 3)

̇Ltotal𝒢τ𝒫 =
N2

2 ∫
√3

0
l exp [−π

2 λLtotal𝒢τ𝒫l]pLC𝒢l 𝒫dl, (2)

where τ = 2t/N(N − 1) is the rescaled time and pLC(l) is the length distri-
bution of the link candidates. The expression exp [− π

2
λLtotal𝒢τ𝒫l] is the 

probability that a meta-vertex with length l has no connections leading 
to the independent set ℐ  at τ. This means that the acceptance of link 
candidates decays exponentially with l, which suggests that p(l), the 
distribution of the length of the accepted links, also decays exponen-
tially; this agrees with results on brain architecture that have found an 
exponential law21,22. The total link length Ltotal(τ), however, increases 
over time, which means that longer links are added earlier during the 
evolution of the network rather than in later stages. In fact, we predict 
that this source of heterogeneity leads to a power law link length dis-
tribution p(l) ≈ l−3 with an upper cut-off dictated by the finite size of 
the system (Supplementary Information Section 4).

The onset of physicality happens when link candidates get rejected 
with positive probability, that is, λLtotal𝒢τ𝒫 → constant for N → ∞, which 
predicts that

Mphys ≈ Nα, (3)

unveiling that the control parameter α directly governs the onset of 
physicality Mphys. Equation (2) also predicts that the jamming point 
scales as

Mmax ≈ N
3α+4

5 , (4)

and the total link length in the jammed state scales as

Ltotal ≈ N
4α+2

5 . (5)

Equation (2) allows us to study the fluctuations of these quantities, 

which yields that their variances scale as σ2𝒢Mphys𝒫 ≈ Nα,σ22 𝒢Mmax𝒫 ≈ N
3α+4

5  
and σ2 𝒢Ltotal𝒫 ≈ Nα lnN . Consequently, in the large network limit, the 
typical fluctuations converge to zero compared with their expectation, 
which indicates that equations (3)–(5) correctly capture the typical 
behaviour of LPNs.

Our analytical predictions are directly testable by simulations. We 
began by numerically solving equation (2) to determine the dependence 
of Mmax on λ (Fig. 2c), and we found excellent agreement, particularly 
for small λ. Next, we tested the predicted scaling behaviour given in 
equations (3)–(5) by constructing LPNs of increasing sizes, and we  
found that they offer an accurate description of the onset of physicality 
(Fig. 2c–e). The predictive accuracy of equation (2) indicates that the 

likelihood of adding a physical link to the network is driven primarily by 
the length of the link, and hence higher-order effects, such as the forma-
tion of triangles, which are ignored by ℳrr𝒢𝒫𝒫, λ𝒫, play a negligible role.

Figure 2g summarizes the behaviour of physical networks as pre-
dicted by equations (2)–(5), and it documents the vanishing role of 
physicality with increasing α.

For α < 1/3, the link widths are larger than the typical distance 
between adjacent nodes, and hence the network remains disconnected. 
The first realizable network emerges for α = 1/3, in which case equation 
(3) predicts that Mphys ≈ N1/3, which means that physicality plays a role 
even when the network is ultra sparse (⟨k⟩ = 2Mphys/N ≈ N−2/3 → 0). 
For α = 1/3, we have Mmax ≈ N, which indicates that the jammed network 
is also sparse (⟨k⟩ = O𝒢1𝒫). The link length in the jammed network 
l∗ ≈ Ltotal/Mmax is of the order of the distance between physically adja-
cent nodes ~N−1/3.

Between 1/3 ≤ α ≤ 2, we are in the physical regime, with two subre-
gimes: in the sublinear regime (1/3 < α ≤ 1), physicality plays a role even 
in sparse networks (⟨k⟩ = O𝒢1𝒫). In contrast, in the superlinear regime 
(1 < α ≤ 2), sparse LPNs are not affected by physicality, and hence we 
need a superlinear number of links before physicality affects network 
formation.

Finally, for α = 2, the onset of physicality scales as Mphys ≈ N2 and 
Mmax ≈ N2, which means that physical interactions are only important 
in dense networks. The average physical link length ⟨l⟩ in this regime 
is of the order of the system size, indicating that the links can span the 
entire system, which is a consequence of the vanishing role of physical 
effects.

The adjacency matrix in the jammed state is 
predictive of node positions
A key prediction of our formalism is that physicality affects the struc-
ture of networks even with vanishing volume. Indeed, according  
to equation (5), the network volume scales as V ≈ λ2Ltotal ≈ N− 6α−2

5 , and 
hence, in the N → ∞ limit for any α > 1/3, the jammed network occupies 
a zero fraction of the available space.

As the number of links increases, so does the number of physical 
constraints that each new link must satisfy. Hence, our ability to place 
a new link becomes increasingly dependent on the existing links, which, 
in turn, leads to correlations between the adjacency matrix and the 
physical layout of the network. Indeed, before physicality turns on 
(M < Mphys), the distribution of eigenvalues follows Wigner’s semicircle 
law (Fig. 3a)23. When, however, the number of links M approaches the 
jammed state Mmax, three additional eigenvalues μ2, μ3 and μ4 separate 
from the bulk (Fig. 3b). In non-physical networks, such eigenvalues 
often indicate the presence of a large-scale organization in the network: 
for example, leading eigenvectors may correspond to a macroscopic 
community structure24. In contrast, in physical networks the leading 
eigenvectors are induced by physicality, which signals a strong spatial 
dependence: the typical link length l∗ ≈ Ltotal/Mmax ≈ N− 2−α

5  decreases 
with increasing N and nodes are densely connected in their l* neighbour-
hood, whereas the majority of long-range links are suppressed. The 
resulting large-scale 3D spatial organization is captured by the eigen-
values μ2, μ3 and μ4 and the corresponding eigenvectors v(2), v(3) and v(4): 
the eigenvectors at node i become strongly correlated with the spatial 
coordinates of i. In other words, as we approach the jammed state, the 
adjacency matrix becomes predictive of the position of individual 
nodes. To quantify the predictive power of the leading eigenvectors, 
we rotated v(2), v(3) and v(4) to best align with the node coordinates and 
we calculated the coefficient of determination: that is, we measured 
how well 𝒢v(2)i , v(3)i , v(4)i 𝒫, the eigenvectors at node i, predicted its coor-
dinates (xi, yi, zi) (Supplementary Information Section 5.3). We found 
that the coefficient of determination increased rapidly as we 
approached the jammed state, which indicated that the node positions 
predicted by the adjacency matrix converged towards their true values 
(Fig. 3c,d). In other words, although a complete description of physical 
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Fig. 2 | Meta-graph and independent sets. a, The purple and green vertices of 
the meta-graph have no direct edges between; hence they form an 
independent set, which indicates that the corresponding physical links (p1, p2) 
and (p3, p4) are non-overlapping (conflict free). b, The purple and yellow 
vertices do not form an independent set, because they are connected by a 
direct edge, which indicates that the physical links corresponding to them 
overlap, and hence they cannot be added simultaneously. c–g, To test the 
analytical predictions provided by the meta-graph, we simulated LPNs and 
numerically measured the number of links at the onset of physicality (Mphys), 
the maximal number of links (Mmax) and their length (Ltot) in the jammed state. 
c, We compare the prediction of equation (2) with the numerical estimate of 
Mmax from simulations of LPNs with N = 200. Markers represent the average of 
50 independent networks, and the error bars representing the SEM are smaller 
than the marker size. d–f, We show Mphys (d), Mmax (e) and Ltot (f) for LPNs 
with increasing N and link thickness scaling as λ = C/Nα. The symbols indicate 

the numerical results and the slope of the continuous lines correspond to the 
scaling exponents predicted by equations (3)–(5). The data points represent 
an average of ten independent runs and the error bars representing the SEM 
are typically smaller than the marker size. g, The behaviour of physical 
networks as a function of α. For α < 1/3, the links are wider than the typical 
distance between physically adjacent nodes, which leads to disconnected 
physical networks with zero average degree in the N → ∞ limit. In contrast, for 
α > 2, the role of physicality vanishes. Between these two limits, physicality 
affects the formation of networks with more than Mphys ≈ Nα links. For 1/3 ≤ α ≤ 1, 
physicality turns on after the addition of a sublinear number of links and 
therefore even sparse networks (M ≈ N) are affected by physicality. In contrast, 
for 1 ≤ α ≤ 2, volume exclusion has an effect only after the addition of a 
superlinear number of links, and hence only dense networks are affected by 
physicality. Overall, the role of physicality weakens for increasing α.
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networks requires simultaneous information on the adjacency matrix, 
link routing and node layout, we found, unexpectedly, that in the 
jammed state, where physicality is the strongest, these features become 
so intertwined that the adjacency matrix alone offers a complete 
description of the system. Note that having reduced space around 
nodes does not on its own imply predictability: for example, the adja-
cency matrix of a densely packed tree does not carry any information 
about the physical location of the nodes, as such networks can be folded 
into a volume in many different ways, which changes the layout but 
preserves the abstract network.

The meta-graph of real networks
While the LPN model conceptualizes physical networks as nodes con-
nected by straight links, in real physical networks, such as the brain con-
nectome or the vascular network, the links curve. As we show next, the 
meta-graph offers a quantitative framework to characterize the impact 
of physicality for networks with arbitrary link shapes and structure.

In their native state, neurons in the brain or the vessels of a vascular 
network obey volume exclusion. If, however, we increase the thickness 
λ of all links by a Δλ, conflicts can emerge. Therefore, we defined a 
generalized meta-graph ℳg𝒢Δλ𝒫, in which we connected two vertices 
of the meta-graph if the corresponding physical objects (links or nodes) 
overlapped for a given Δλ, concisely capturing the spatial organization 
of a physical network (Supplementary Information Section 7).

We constructed ℳg𝒢Δλ𝒫  for multiple real physical networks, 
including the fruit fly’s brain2, the vascular network of a mouse4 and a 
mitochondrial network25. We illustrate the process in Fig. 4a, which 
shows the meta-graph of the fruit fly connectome, which consists of 
N = 2,970 neurons and M = 35,707 synapses serving as links.

According to Peter’s rule, neurons can only form synapses if their 
axons and dendrites are in close physical proximity26,27. Hence, we 
expected and found a strong correlation between the meta-degree 
and the number of synapses (Supplementary Fig. 21). To abstract from 
these obvious correlations between the generalized meta-graph and 
synapse formation, we focused only on conflicts between neurons 
that are not connected by synapses and therefore are the result of 
the packing of the neurons in the brain. We achieved this by building 
a restricted meta-graph, where we removed the synaptically con-
nected links from the meta-graph. Figure 4a highlights the vertex 
with the highest restricted meta-graph degree kA = 13, correspond-
ing to the most physically confined neuron, bordered by 13 other 
neurons that it does not synapse with (Fig. 4b,c). This prompts the 
following question. Is the most confined neuron also the most central 
in the synaptic network? To find an answer, we performed a linear 
regression between the restricted meta-degree and the logarithm of 
synapses, which revealed a positive association between the physi-
cal confinement and the functional role of neurons (Fig. 4d, slope 
a = 0.356 ± 0.022 and R2 = 0.26). Our result indicates that synaptically 
central neurons in the connectome are tightly confined in the brain 
by non-synaptic partners. This is not obvious, as we can construct 
physical networks that have negative correlations between the num-
ber of synapses and the restricted meta-degree: consider a physical 
network with N nodes where each neuron is physically adjacent to 
all N − 1 other neurons (Supplementary Fig. 23). If a neuron i has k 
synaptic partners, then it has N − 1 − k meta-degree, which results in 
a perfect anticorrelation between the number of synapses and the 
meta-degree. Overall, the observed correlations confirm that the 
meta-graph captures important properties of the physical layout and 
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three additional eigenvalues μ2, μ3 and μ4 become separated from the bulk as a 

consequence of physical interactions. c, Comparing the predicted and the true x 
coordinate of each node shows that, although for small link density the adjacency 
matrix has no predictive power (blue symbols), the adjacency matrix can reliably 
predict the position of nodes in the jammed state (green symbols). d, The 
coefficient of determination R2 increased as we added links to the LPNs, which 
indicates that, as we approached the jammed state, the predictive power of the 
adjacency matrix increased. The circles highlight the R2 values corresponding to 
the λ shown in a and b. Subplots a–c show results for a single LPN and d shows the 
average of 1,000 independent networks.
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can be used to systematically study the connection between physical 
and abstract network structure.

As connectome mapping aspires to scale up to the 109 neurons 
of the human brain, new mathematical and computational formal-
isms, such as the one offered by the meta-graph, are needed to unveil 
the predictive power of these exceptionally large physical network 
maps. Full description of the layout of a physical network requires 

copious amounts of data that is difficult to handle computationally 
and also limits analytical advances. For example, the Hemibrain dataset 
describes the 3D trajectory of approximately 25,000 neurons of a fruit 
fly using 117 million linear segments2. Naïve identification of physical 
conflicts, therefore, requires 1016 distance computations, which is a 
prohibitive computational burden for most researchers. In contrast, 
the 25,000 × 25,000 adjacency matrix of the generalized meta-graph 
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Fig. 4 | Meta-graph of real networks. a, Each vertex of the restricted meta-graph 
represents a neuron in the fruit fly connectome2. A link between two vertices of 
the restricted meta-graph implies that the corresponding neurons overlap if we 
increase their thickness by Δλ ≈ 0.028 but they are not connected by synapses. 
The neuron with the highest restricted meta-degree, A, has 13 connections, 
whereas 1,469 isolated vertices (not shown) correspond to neurons that are 
conflict free for Δλ ≈ 0.028. b, Neuron A (red) has the most excess confinement. 
We show it together with the 13 neurons that are within distance Δλ of A, and 
hence are connected to A in the restricted meta-graph and are highlighted in a. 
The neuron colours match the colours of the meta-vertices in a. c, Neuron A is 
an extended, physical object, whose physical conflicts with other neurons are 
localized in specific neighbourhoods of the physical network, as highlighted in 
the figure. d, The degree distribution of the restricted meta-graph for Δλ ≈ 0.028. 

Vertices with degree zero correspond to conflict-free neurons, that is, lack 
proximity within Δλ with other neurons that are not connected to them by means 
of synapses. Physically confined neurons have high restricted meta-degree, 
which is indicative of a large number of physical conflicts. e, The dependence of 
the restricted meta-degree on the number of synapses of each neuron indicates 
that the restricted meta-degree is predictive of synapse formation. The dashed 
line corresponds to linear regression between the restricted meta-degree and the 
logarithm of the number of synapses for each neuron. Small markers represent 
individual neurons; large markers are binned averages. For illustration purposes, 
we chose Δλ such that the meta-graph is sparse. In Supplementary Information 
Section 7, we repeat the above analysis for various Δλ values and find that the 
positive association between the restricted meta-graph and the synaptic network 
is robust.
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can be represented using a few hundred megabytes of data, and hence 
publishing it together with the adjacency of the connectome would 
allow the computationally efficient study of the relationship between 
physical and abstract network structure.

Discussion
Recent experimental advances, driven by connectomics and 
high-resolution magnetic resonance imaging, have offered detailed and 
accurate maps of a wide range of physical networks, from the structure 
of individual neurons in a brain to 3D maps of large vascular systems. 
These advances unveiled an important gap in network science: the lack 
of understanding of how physicality affects the network structure. 
The need for a quantitative and conceptual framework goes beyond 
biology: complex metamaterials, combining random and repetitive 
local structures1,28,29, offer other manifestations of physical networks 
and so do computer chips that pack billions of transistors. Here we 
introduce a formalism designed to systematically explore the structure 
of physical networks. We show that the impact of physicality is not 
limited to dense networks—on the contrary, in their jammed state, 
physical networks are sparse, with the relative volume of their links 
converging to zero for large systems. In other words, physicality is 
not a simple manifestation of crowding, but has subtle and non-trivial 
consequences on the network structure. The advances presented here 
raise multiple open questions, many of which can be addressed using 
meta-graphs. For example, many real networks are characterized by 
non-uniform node density, heterogeneous link diameters and bent 
links, and are potentially affected by the order in which the nodes and 
the links are added to the network. The impact of these features can 
be studied by extending the random LPN model or using the general-
ized meta-graphs. These variants of LPNs may serve as null models 
for understanding the features of the physical layout and network 
structure of real systems (Supplementary Information Section 7.6). 
Other issues are less straightforward extensions of our work, but may 
benefit from the meta-graph framework: for example, understanding 
the effect of the physical architectures on network robustness30,31 or 
on dynamics on networks32–36.

A quantitative understanding of physicality can have a direct 
impact on multiple areas of science. For example, at this point, it is 
unclear to what degree the observed brain connectomes are driven by 
the genetic processes that govern their developmental biology37 or by 
physical constraints that the neurons and their interactions must obey, 
which limit a neuron’s ability to synapse with desired target neurons in 
a very dense environment. Answers require a modelling and analytical 
platform that helps us to systematically explore the competing role of 
genetics and physicality.
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