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Abstract

Summary: Network medicine leverages the quanti�cation of information �ow within sub-cellular networks

to elucidate disease etiology and comorbidity, as well as to predict drug e�cacy and identify potential therapeu-

tic targets. However, current Network Medicine toolsets often lack computationally e�cient data processing

pipelines that support diverse scoring functions, network distance metrics, and null models. These limitations

hamper their application in large-scale molecular screening, hypothesis testing, and ensemble modeling. To

address these challenges, we introduce NetMedPy, a highly e�cient and versatile computational package de-

signed for comprehensive Network Medicine analyses.

Availability: NetMedPy is an open-source Python package under an MIT license. Source code, documentation,

and installation instructions can be downloaded from https://github.com/menicgiulia/NetMedPy and

https://pypi.org/project/NetMedPy. The package can run on any standard desktop computer or computing

cluster.
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� Introduction

Networkmedicine is a post-genomic discipline that harnesses network science principles to analyze the complex

interactions within biological systems, viewing diseases as localized disruptions in networks of genes, proteins,

and other molecular entities (Barabási et al., ����). By integrating comprehensive biological networks, such as

the interactome or protein-protein interaction network (PPI), with databases of disease-associated genes (GDA)

and ligand-protein interactions, Network Medicine has: �) successfully identi�ed functional pathways linked

to speci�c phenotypes and diseases (Sharma et al., ����); �) pinpointed potential drug targets, highlighting

opportunities for both drug repurposing (Cheng et al., ����, Patten et al., ����) and e�ective drug combinations

(Cheng et al., ����). Additionally, this framework has been extended beyond pharmaceuticals to identify food-

derived small molecules that impact speci�c therapeutic areas(do Valle et al., ����, Nasirian and Menichetti,

����).

The structure of the biological network plays an essential role in the system’s ability to e�ciently propagate

signals and withstand random failures. Consequently, most analyses in Network Medicine focus on quantifying

the e�ciency of the communication between di�erent regions of the interactome. For example, proteins in-

volved in similar therapeutic areas or disease modules are expected to create a cohesive functional subgraph

of proteins e�ectively communicating and in�uencing each other. In turn, diseases with high pathobiological

similarity typically reside in overlapping neighborhoods of the interactome asmeasured by the separation score

(Menche et al., ����, Supplementary Information SI). Similarly, areas of the interactome perturbed by a drug

should be close to its protein targets as quanti�ed by the proximity score (Guney et al., ����, Supplementary

Information SI).

The speed and reliability of signaling are most commonly quanti�ed through shortest-path metrics with ex-

pectations set by uniform or degree-preserving null models, highlighting biological properties not solely deter-

mined by link density or degree distribution (Supplementary Information SII). However, biological information

does not always travel along geodesic paths, in part because of di�erences in the �ow of information across

links. Therefore, a comprehensive assessment of proximity and separation must consider additional metrics of

di�usion and communicability. Given the complexity of these combinatorial settings, e�cient algorithms are

crucial for exhaustive screenings of disease atlases and molecular libraries.

Despite the importance of network measures, most Network Medicine packages focus on the curation of

the interactome (Helmy et al., ����, de Carvalho, ����) or the curation of GDAs (de Weerd et al., ����, Ben

Guebila et al., ����). Existing packages that calculate proximity and separation have not advanced beyond their
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initial introduction (Wang et al., ����, Maier et al., ����). As a result, these tools remain highly ine�cient

for large-scale screening and rely exclusively on shortest-path metrics and limited sample size for hypothesis

testing. Here, we introduce NetMedPy, an intuitive Python package for Network Medicine designed to quantify

network localization, calculate proximity and separation between biological entities, and conduct screenings

involving a large number of diseases and drugs e�ciently. NetMedPy provides users with four default metrics

and null models with automated statistical analyses. Optimized for high performance in large-scale studies,

NetMedPy enhances the robustness and scalability of Network Medicine research, facilitating the discovery of

mechanisms of action and prioritizing hypotheses for experimental validation.

� NetMedPy

The work�ow of NetMedPy, as illustrated in Figure �A, involves: �) loading the interactome, �) computing and

storing the distance matrix induced by a selected metric, �) loading the desired GDAs and drug targets, and �)

calculating the selected scoring functions (proximity, separation) with the null models of choice. The pipeline

output can be further used in downstream analyses. NetMedPy supports weighted and unweighted networks

through a Graph object in NetworkX, a widely used library for network analysis. GDAs are entered using a dictio-

nary format, where keys represent disease names and values are lists of associated genes. A similar approach is

used for drug targets. The results are then returned in dictionaries, detailing the statistical analysis performed

for proximity and separation. For large-scale screening studies, the output is stored in tabular form using Pandas

DataFrames.

NetMedPy o�ers a comprehensive suite of metrics, including shortest paths (Menche et al., ����), random

walks (Masuda et al., ����), biased random walks (Erten et al., ����), communicability (Estrada and Hatano,

����), and user-de�nedoptions (Supplementary Information SIII). Thiswide range ofmetrics allows researchers

to tailor their analysis to the speci�c requirements of various biological questions. The ability to de�ne custom

metrics further empowers researchers to develop specialized approaches for their unique research needs. By

applying ensemble learning techniques, researchers can also combine the strengths of diverse metrics, enhanc-

ing the reliability and depth of their conclusions. This integrated approach can help prioritize experimental tests,

improving cost-e�ciency and reducing the time and e�ort required for validation.

NetMedPy provides primary functions for the analysis of disease modules, proximity, separation, and large-

scale screening studies, including:

• Modules: Given an interactome and a set of nodes,A, NetMedPy extracts the largest connected compo-
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nent (LCC) or subgraph formed by setA and calculates the statistical signi�cance of the LCC size (Supple-

mentary Information SI.I).

• Proximity: The original proximity measure P (A,B) between node sets A and B is asymmetric, mean-

ing that P (A,B) 6= P (B,A). NetMedPy addresses this property by o�ering both an asymmetric and

symmetric proximity Ps(A,B) Z-score (Supplementary Information SI.II).

• Separation: NetMedPy calculates separation (Supplementary Information SI.II) and its statistical signi�-

cance, expressed by Z-Score and P-value.

• Screening: NetMedPy incorporates a screening function to calculate network measures between sets of

diseases and drugs. The function runs in parallel, enhancing the computational e�ciency of multi-core

processing capabilities.

Network Medicine leverages null models that generate random samples as benchmarks. By comparing ob-

servednetworkmeasures against these null hypotheses, researchers can con�dently assert the non-randomness

of their �ndings, thereby substantiating the biological relevance of the observed relationships. NetMedPy en-

hances the robustness of this statistical analysis by incorporating various null models: Perfect Degree Match,

Logarithmic Binning, Strength Binning, Uniform Distribution, and user-provided models (Supplementary Infor-

mation SII). Each null model selects random node sets di�erently, allowing researchers to account for diverse

network properties and biases that might in�uence the analysis.

� Case Study with Vitamin D

To showcase NetMedPy, we evaluated the role of Vitamin D for an array of �� disease phenotypes and endophe-

notypes, selected based on the strength of experimental evidence supporting Vitamin D as a treatment. These

categories include strong support (In�ammation, Asthma, Coronary Artery Disease (CAD), Vitamin D De�ciency,

Chronic Obstructive Pulmonary Disease (COPD), Rickets), medium support (Brain Neoplasms, Rett Syndrome),

and low support (Prader-Willi Syndrome, Factor VII De�ciency, Beta Thalassemia, Fragile X Syndrome, Factor

IX De�ciency). We curated Vitamin D’s drug-target data (Piras et al., ����) and the GDAs of each therapeutic

area with and without experimental evidence of Vitamin D modulation (Supplementary Information SIV). Vita-

min D is known to �) reduce the activity of pro-in�ammatory cells, �) regulate blood pressure, and �) reduce

proliferation and boost apoptosis of cancer cells by regulating gene expression via Vitamin D receptors. Lever-

aging an interactome that integrates the protein-protein interactions reported in (Luck et al., ����), (Huttlin

et al. [����]), and (Maron et al., ����) we calculate the proximity between Vitamin D’s targets and each GDA set
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(Figure �B).

Our �ndings reveal that the observed average minimum shortest path length (AMSPL) between Vitamin

D and in�ammation is signi�cantly smaller than expected when considering node sets of the same size and

comparable degree (Z-Score = -�.��), con�rming that Vitamin D in�uences in�ammatory processes. Conversely,

Factor IX De�ciency, a Mendelian disorder, is more distant from Vitamin D’s targets than expected by chance

(Z-Score = �.��), providing a reasonable negative result (Figure �B-C). When evaluating the proximity values

between Vitamin D and all selected phenotypes, we �nd that in�ammation and related diseases such as asthma

show the closest proximity to Vitamin D. This result stands in contrast to diseases with no known association to

Vitamin D (e.g., Prader-Willi Syndrome, Factor VII de�ciency, Beta Thalassemia, Fragile X Syndrome, Factor IX

De�ciency), aligning with existing literature (Figure �B). Finally, the AMSPL-equivalents for four di�erent metrics

display a robust ranking of the results under di�erent notions of distance (Figure �D and Supplementary Figure

S�).

� NetMedPy Performance Evaluation and Comparison

Quantifying the statistical signi�cance of network measures such as proximity and separation in large networks

is computationally intensive, as it necessitates comparing selected node sets with randomly generated ones

to obtain Z-scores and empirical p-values (Supplementary Information SI-SII). NetMedPy leverages parallelism

and pre-calculated distances between all pairs of nodes to enhance performance. This optimization allows

distances to be computed once and reused multiple times, signi�cantly improving e�ciency and facilitating

large-scale screening studies. Figure �E illustrates the execution time of NetMedPy for calculating proximity

between random node sets of increasing size. Our �ndings show that NetMedPy completes this task faster

than the regular proximity implementation, found in di�erent Network Medicine packages(Wang et al., ����,

Maier et al., ����, Patten et al., ����), even accounting for the time required to pre-calculate the distances.

Consequently, as the number of disease genes and drug-disease pairs increases, NetMedPy demonstrates a

substantial performance improvement.

� Discussion

We developed NetMedPy, a user-friendly Python package designed to optimize tools for Network Medicine

applications. Tailored for high-performance computing, NetMedPy e�ciently handles large-scale data, making
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it ideal for studies involving drug screening, drug repurposing, and comorbidity identi�cation. The package

o�ers functionalities for extracting the LCC and calculating proximity and separation between node sets, with

options for both symmetric and asymmetric measures. Additionally, it supports various null models to validate

the statistical signi�cance of network metrics, ensuring robust analytical outcomes. NetMedPy is compatible

with both weighted and unweighted networks, and results are conveniently generated in dictionaries or Pandas

DataFrames for detailed analyses.

The versatility of NetMedPy, with its support for multiple distance metrics and null models, extends its

value to numerous scienti�c �elds that utilize networks. For example, it can enhance social network analysis by

investigating social interactions and information dissemination. In epidemiology, NetMedPy can analyze disease

spread and the e�ectiveness of health interventions within interconnected populations.

In conclusion, NetMedPy is a valuable tool for researchers, enabling them to uncover new insights and

address complex problems with e�cient network analysis techniques.
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Figure �: Overview and application of NetMedPy. A) Diagram of the NetMedPy pipeline. Users �rst load an inter-
action network, drug targets, and GDAs. NetMedPy calculates the distance matrix induced by the chosen metric
for all nodes in the network. Then users set options for subgraph statistics, study type (e.g., proximity, separation),
null model, and execution parameters. Visualization and interpretation are performed outside of NetMedPy. B)
Proximity between Vitamin D’s targets and various diseases. A large negative Z-score indicates a statistically sig-
ni�cant closeness between Vitamin D and the disease, while Z-scores close to zero are no di�erent from random.
C) AMSPL distribution and proximity Z-scores for Vitamin D to In�ammation and Factor IX De�ciency, compar-
ing Vitamin D’s targets to disease genes (vertical lines) and degree-preserving log-binned null models (density
plots). In�ammation shows a signi�cantly smaller AMSPL. D) Normalized AMSPL using di�erent distance met-
rics: Shortest Path (blue), RandomWalks (green), Biased RandomWalks (orange), and Communicability (pink). E)
NetMedPy execution time (red) versus Proximity implementations found in other packages (black; PMC��������,
PMC�������, PMC�������) for increasing gene set sizes. Dots represent time measurements, and straight lines
indicate quadratic functions �tted to the data. In each experiment, the proximity Z-Score was calculated using one
hundred random samples for illustration purposes. All calculations were performed with a ��-core Intel i�-�����H
processor and �� GB of RAM.
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