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Human-AI coevolution, defined as a process in which humans and AI algorithms continuously 
influence each other, increasingly characterises our society, but is understudied in artificial 
intelligence and complexity science literature. Recommender systems and assistants play a 
prominent role in human-AI coevolution, as they permeate many facets of daily life and influence 
human choices through online platforms. The interaction between users and AI results in a 
potentially endless feedback loop, wherein users’ choices generate data to train AI models, 
which, in turn, shape subsequent user preferences. This human-AI feedback loop has peculiar 
characteristics compared to traditional human-machine interaction and gives rise to complex 
and often “unintended” systemic outcomes. This paper introduces human-AI coevolution as the 
cornerstone for a new field of study at the intersection between AI and complexity science focused 
on the theoretical, empirical, and mathematical investigation of the human-AI feedback loop. In 
doing so, we: (i) outline the pros and cons of existing methodologies and highlight shortcomings 
and potential ways for capturing feedback loop mechanisms; (ii) propose a reflection at the 
intersection between complexity science, AI and society; (iii) provide real-world examples for 
different human-AI ecosystems; and (iv) illustrate challenges to the creation of such a field of 
study, conceptualising them at increasing levels of abstraction, i.e., scientific, legal and socio-
political.
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1. Introduction

It is change, continuing change, inevitable change, that is the dominant factor in society today. No sensible decision can be made 
any longer without taking into account not only the world as it is, but the world as it will be

[Isaac Asimov, Asimov on Science Fiction, 1981 [1]]

The history of humankind is a history of coevolution: between humans and other species; between humans and industrial machines; 
between humans and digital technologies; and, today, between humans and Artificial Intelligence (AI) [2,3]. Human-AI coevolution 
is a perpetual, iterative process wherein both humans and learning algorithms evolve in tandem, each influencing the evolution of 
the other over time. This generates complex effects on human-AI ecosystems and, therefore, on society [3–6].

In this context, recommendation systems and assistants (in short, recommenders) – AI-based algorithms that suggest items or 
content based on users’ preferences or specific requests [7–9] – play a prominent role. Recommenders on online platforms cater for a 
large audience of users, and therefore can be considered as “mainstream recommenders”. Mainstream recommenders1 are of collective 
importance because they feed “very large online platforms” (VLOPs, as defined by the Digital Services Act) that are widely considered 
as highly impactful for society. Mainstream recommenders instantly shape the decisions and interactions of large segments of the 
population at the same time. Personalised suggestions on social media guide our content consumption and social connections, online 
retail recommenders propose products for consumption, navigation services suggest routes to reach our destinations, and generative 
AI creates content in response to users’ wishes. Other types of AI-powered assistants, such as medical diagnosis tools, self-driving cars, 
and educational tutors, are mainly designed for one-to-one interaction with individual users and do not have yet the same widespread 
influence as those on public online platforms. However, these systems can scale up and exhibit feedback loop effects. Our definition 
of recommender is general enough to encompass these prospective ecosystems. In this paper, we focus for the sake of concreteness on 
today’s VLOPs’ recommenders because they constitute a vantage point to analyse the coevolution between humans and AI machines.

Since recommenders are based on AI, and machine learning in particular, their interactions with users always give rise to a feedback 
loop [10–13], which is the core of human-AI coevolution. One could describe the feedback loop as a process: users’ choices determine 
the datasets on which recommenders are trained; the trained recommenders then exert an influence on users’ subsequent choices, 
which in turn affect the next round of training, initiating a potentially never-ending cycle (see Fig. 1). The human-AI feedback 
loop may also lead to “unintended” social consequences [14–17]. Personalised recommendations on social media help users deal 
with information overload, but may artificially amplify echo chambers, filter bubbles, and processes of radicalisation [14,15,18–20]. 
Profiling and targeted advertising may increase inequality and monopolies, perpetuating and accruing biases, discriminations, and 
the “tragedy of the commons” [21–24]. Navigation services suggest directions that make sense from an individual perspective, but 
may create chaos if too many drivers are sent to the same roads [17,25–33]. Chatbots based on generative AI may deteriorate their 
quality as increasing synthetic data is used for retraining and fine-tuning [127–135].

While coevolution between humans and technology is not new, the human-AI feedback loop imbues it with forms that are un-
precedented. Throughout history, technology and society have constantly coevolved, e.g., as testified by the advent of the press, the 
radio and the TV [2,3]. Moreover, recommendations have always influenced human choices, whether it was the role of a librarian 
picking up a book, a friend’s advice on a music album to listen to, or the influence of TV advertisements on viewers. However, at least 
five fundamental aspects have been simultaneously magnified by AI-based recommenders: pervasiveness, persuasiveness, traceability, 
speed, and complexity.

Recommenders are pervasive in all online platforms, from social media to online retail and mapping services. This integration, 
fuelled by sophisticated algorithms, abundant data, and widespread user adoption, has established recommenders as customary 
elements of online interactions. The large availability of data portraying individual choices empowers recommenders to deliver 
highly personalised suggestions. This increases accuracy in capturing users’ preferences, making recommenders highly persuasive. 
Unlike previous technology, human-AI ecosystems leave an indelible trace of recommenders’ suggestions and related human choices 
(what is commonly called big data). As a consequence, AI-based recommenders possess a comprehensive outlook of individual choices 
and an unprecedented capacity to shape human behaviour at scale. Within this context, human-machine coevolution is faster than 
ever before, given that AI can be re-trained with little or no human oversight and provide suggestions at an unparallelled speed. 
Human-AI ecosystems also foster an extraordinary volume of interactions between the huge spaces of users and products, escalating 
system complexity.

The design of recommenders and the analysis of their impact are typically studied by two disciplines that gained prominence over 
the last two decades: artificial intelligence and complexity science. However, working in isolation, these disciplines cannot address 
the challenges of understanding human-AI coevolution.

AI has achieved human-like performance in many challenging tasks [34–39] and is becoming increasingly explainable and human-
centric [40–46]. However, it is still embedded in methodological individualism [47], where machines are studied as solitary agents 
and not from a coevolution perspective. We know little about the impact of the feedback loop on human-AI ecosystems; therefore, 
we need to disentangle whether recommenders amplify undesired collective outcomes or mitigate them.

Complexity science has shown that networks of social interactions are heterogeneous, resulting in deeply connected hubs and 
modular structures [48–54]. This structural heterogeneity interacts with social effects like inequalities and segregation, impacting on 
network processes such as the spreading of epidemics, information and opinions [14,55,56]; the success of products, ideas, and people
2

1 From now on, we use the term recommenders to signify mainstream recommenders.
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Fig. 1. Users’ choices on online platforms generate data used to train recommenders. These recommenders then offer suggestions to users, influencing their choices, 
which in turn generate more data for re-training recommenders. This iterative process creates a potentially endless feedback loop.

[57–59]; and urban dynamics [60–69]. The human-AI feedback loop affects these network processes differently than before the advent 
of AI. A coevolutionary approach may help unveil the laws governing the complex interplay between humans and recommenders [70–
72], going beyond existing approaches [73–75]. We know little about the parameters that govern the network dynamics of human-AI 
coevolution and, therefore, how to make predictions for such complex systems.

This paper introduces human-AI coevolution as the cornerstone for a new field of study at the intersection between AI and com-
plexity science, and focuses on the theoretical, empirical, and mathematical investigation of the human-AI feedback loop. Following 
in the footsteps of the literary imagination of Isaac Asimov, “no sensible decision can be made any longer without taking into account 
not only the world as it is, but the world as it will be” [1]. A detailed understanding of human-AI coevolution should be achieved 
by developing new methodologies and analytical frameworks. The study of human-AI coevolution is key for understanding how 
feedback loop mechanisms might impact societal dynamics, as the interaction between humans and recommenders might amplify or 
mitigate social phenomena. This is salient because we are immersed in a political economy that mainly privileges individual utility 
over collective goods, and where the means of production and recommendation are concentrated in a few hands.

The study of human-AI coevolution sits at the intersection of two prominent AI debates. First, it expands the debate on “ma-
chine behaviour”, i.e., the study of behaviour exhibited by intelligent machines [76], illustrating that the feedback loop is the key 
process shaping human-AI coevolution. Second, it enriches current philosophical perspectives about AI, i.e., technology-centred AI, 
human-centred AI, and collective intelligence [77], with a new dimension that can be defined as society-centred AI. This perspec-
tive departs from technology-centred AI because it considers that the impacts of the feedback loop cannot be managed solely with 
additional AI technology. Moreover, it embraces seminal insights from human-centred AI and collective intelligence. On the one 
hand, from a human-centred AI perspective, it hypothesises that the feedback loop might curtail human well-being. On the other, 
from a collective intelligence perspective, it theorises how human-recommender interactions can drive coevolution towards desir-
able outcomes. Society-centred AI brings three additional elements to the debate (see Fig. 2): (i) the feedback loop impacts human 
well-being not only at an individual, but also at the societal level; (ii) managing the feedback loop requires the development of new 
scientific approaches; and (iii) the issues related to human-AI coevolution cannot be solved without legal and political interven-
tions.

The remainder of the paper proceeds as follows. We review the methodologies employed in the literature to examine the interaction 
between humans and recommenders (Section 2). We then illustrate the outcomes of this interaction in four key ecosystems, i.e., social 
media, online retail, urban mapping, and content generation ecosystems (Section 3) and speculate on the social impact of human-AI 
coevolution (in Section 4). Finally, we outline open challenges in the study of human-AI coevolution, providing new avenues for 
3

future research (Section 5).
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Fig. 2. We enrich current philosophical perspectives about AI, i.e., technology-centred AI, human-centred AI, and collective intelligence, with a new dimension that 
can be defined as society-centred AI. Society-centred AI brings three additional elements to the debate.

2. Methods for the study of human-AI coevolution

This section provides a critical perspective on existing studies about the interaction between humans and recommenders and 
illustrates that only a few of them investigate the role of the human-AI feedback loop. In what follows, we analyse the pros and cons 
of each methodology employed and highlight shortcomings and potential ways for capturing feedback loop mechanisms.

Empirical vs simulation studies

Existing studies mostly employ either an empirical or a simulation approach. Empirical studies are based on data generated by users’ 
behaviour on real platforms, which emerge from dynamic interactions between humans and recommenders. These studies provide 
evidence about specific phenomena and an empirical basis for their understanding. When based on large samples or diverse datasets, 
empirical studies also enable researchers to make generalisations about broader populations. Nonetheless, the possibility to draw 
general conclusions is limited by the specific time frames and conditions under which these studies are conducted. In addition, as 
data are primarily owned by big tech platforms and rarely made public, these studies are hardly reproducible.

Simulation studies are based on data generated by mechanistic, AI-, or digital-twin-based models. Simulation studies provide 
a cost-effective alternative to empirical studies, especially when dealing with large-scale ecosystems or when data is not readily 
available. They can be reproduced with the same initial conditions, allowing for the verification and validation of results. Scholars 
can manipulate parameters to observe the effects on the human-AI ecosystem, helping the research community understand the 
intricate relationships between variables. However, as they are based on heavy assumptions, simulations do not necessarily reflect 
real-world dynamics and are, therefore, limited in unveiling unexpected or unintended outcomes. The settings of specific parameters 
may close the door to unforeseen results.

Controlled vs observational studies

Both empirical and simulation approaches can be either observational or controlled. Controlled studies, called experiments in social 
sciences [78,79], include quasi-experiments, randomised controlled trials and A/B tests. These studies split the sample into a control 
group and one or more experimental groups, each subjected to different recommendations [78]. The influence of recommendations 
is measured by comparing the outcomes obtained in the two (or more) groups. Controlled studies allow researchers to control for 
various factors and conditions, facilitating the isolation of the effect produced by a specific intervening variable. Their main advantage 
is to establish causal relationships and attribute observed effects to the recommendation. Moreover, sample randomization reduces 
selection biases, ensuring that participants in both groups have an equal chance of receiving the recommendation. However, controlled 
studies also have important shortcomings: the inclusion and exclusion criteria of the controlled settings might limit the generalisability 
of findings; and there is limited flexibility in adapting to changes intercurring during the experiments. Moreover, they are hard to 
design because they require direct access to platforms’ users and recommenders [80].

Some examples of controlled studies can help clarify the characteristics of these methodologies. Huszár et al. [20] document an 
experiment that investigates the effect of Twitter personalised timeline on the diffusion of political content from different parties. 
The platform selected a group of users that were exposed to tweets in reverse-chronological order from accounts they followed, while 
a treatment group of users was exposed to the AI-based personalised recommender. The personalised recommendations resulted in a 
substantial amplification of political messages, with mainstream right-wing parties benefiting more from algorithmic personalisation 
4

than their left-wing counterparts. Cornacchia et al. [28] used a traffic simulator to estimate the impact of real-time navigation services 
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on the urban environment. The study found that navigation services may increase travel time and CO2 emissions when the adoption 
rate crosses a threshold.

Observational studies assume a single recommendation principle without any control [81]. Examples include the analysis of 
Facebook users’ behaviour [82], Google Maps’ suggestions to drivers [83], data gathered from browser loggers [84,85], platforms’ 
APIs [82,86], bots that simulate human behaviour [87–89], and experiments that ask volunteers to behave in specific ways [90–93]. 
A strength of observational studies (either based on empirical data or simulations) is that, when data is big and representative 
enough, they allow researchers to make generalisations about a broader population, enhancing the external validity of findings and 
highlighting potential biases towards different population segments. A significant limitation, however, is that establishing a causal 
relationship is challenging; additional evidence is required to support causal claims. Moreover, findings of observational studies may 
suffer from selection biases, measurement errors, or the presence of confounding variables; this may compromise their accuracy and 
reliability.

To clarify the characteristics of observational studies, we rely on two examples. Cho et al. [93] analysed factors leading to political 
polarisation on YouTube, finding that a recommender can contribute to this polarisation, but mainly through the channel of a user’s 
preference. Fleder et al. [94] investigated the influence of recommenders on users’ purchases on a music streaming platform. They 
found that users exposed to recommendations purchase more items and are more similar to one another in the variety of what they 
buy.

Modelling the feedback loop

There is a handful of studies that move beyond the static investigation of the influence of recommenders on users’ behaviour, analysing 
feedback loop mechanisms theoretically and/or empirically [11–13,95,96]. Some of these works introduce mathematical models to 
provide insights on recommenders’ influence based on their parameters. Jiang et al. [11] theoretically investigated whether feedback 
loop mechanisms lead to a degeneration of users’ interest: an oracle recommender (with perfect accuracy) induces a quick degen-
eration, while injecting randomness in users’ choices and enlarging the pool of items slows this process down. Therefore, this study 
provides insights and potential remedies against the degeneration of the feedback loop.

There is also research that combines a theoretical and an empirical appraisal of the feedback loop. Ensign et al. [95] investigated 
the impact of a predictive policing recommender, based on historical crime data, on distributing police resources among urban 
districts. They simulated a scenario where the following feedback loop takes place: officers are deployed daily to districts with the 
highest predicted crime rate, crimes discovered by these officers are reported, and then data about these reported crimes are fed 
back into the recommender. The process continues iteratively. Given this feedback loop, the recommender repeatedly redirects police 
attention to districts where more crimes are reported. As more crimes are likely to be discovered in these districts due to the increased 
presence of officers, in the long run, the simulation leads to a distribution of crimes that is unrealistic if compared with observed 
historical crime data. The authors proposed a correction mechanism where the likelihood of police deployment to a district decreases 
as discovered crime data are incorporated into the recommender. Simple urn models were employed to model the feedback loop and 
the correction mechanism. One may interpret this evidence as suggesting that small changes in the recommender can make a real 
difference in the human-AI ecosystem.

Although these seminal studies provide intriguing insights into feedback loop mechanisms, there are important avenues for further 
improvement in the analysis of human-AI coevolution. At the empirical level, data employed in these studies allow drawing only an 
incomplete picture of the interaction between humans and recommenders. Typically, they only describe users’ choices at time 𝑡𝑖 , 
without considering which recommendations are provided to influence users’ choices at 𝑡𝑖−1 . Moreover, we have no information 
about how often platforms re-train recommenders on users’ choices to update the knowledge of their preferences. For these reasons, 
existing studies employ available data only to validate theoretical approaches that model feedback loop mechanisms. To overcome 
this limitation, we need empirical studies based on longitudinal data describing, at each iteration of the feedback loop: (i) the 
recommendations provided to users; (ii) the reaction of users to these recommendations; and (iii) the process of re-training based on 
users’ choices influenced by previous recommendations. Studies of this kind would permit looking at causation bi-directionally and 
not only unidirectionally.

3. Outcomes of human-AI coevolution

An outcome can be defined as the by-product of the interaction between recommenders and users within each step of the feedback 
loop. Outcomes can be measured at different levels, i.e., individual, item, model, and systemic. Individual outcomes refer to the 
influence of recommenders on users, e.g., sellers and buyers in the online retail ecosystem, and drivers and passengers in the urban 
mapping ecosystem. Item outcomes refer to the influence of recommenders and users’ choices on the characteristics of specific objects; 
examples include posts on social media, products on online retail platforms, rides in urban services, and text or images on the content 
generation ecosystem. Model outcomes pertain to the influence of users’ choices on the characteristics of the recommender. This 
encompasses whether the recommender alters its behaviour and the nature of its recommendations in response to users’ choices. 
Systemic outcomes refer to the collective impact of the interaction between humans and recommenders.

Reviewing the literature, we detect several systemic outcomes, such as polarization, echo chambers, inequality, concentration, 
and segregation. Polarization is a sharp separation of users or items into groups based on some attributes (opinions or beliefs) [14,
19,88,93,97–110]. Echo chambers are environments in which opinions or item choices within a group are confirmed and reinforced 
[19,85,103,111]. Inequality indicates an uneven distribution of resources among members of a group, while concentration is a close 
5

gathering of users or items [86,112–116]. Concentration is typically identified as congestion in the urban context [17,28,31,32,68,
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83,117–121]. Segregation is a situation in which groups of users are set apart from each other [122,123]. Some outcomes emerge at 
the individual or model level only. Examples are filter bubbles (individual level), which is a conformation of contents with a user’s 
own beliefs [43,124–126], and model collapse (model level), i.e., a deterioration of the recommender’s performance as it continues 
to coevolve with users [127–135]. Finally, outcomes emerging at all levels are changes in volume (i.e., a quantity measuring some 
users’ or items’ attribute) and changes in diversity, which can be defined as the variety of items and users’ behaviours [136–144].

All these outcomes emerge, often unintendedly, as the result of the human-AI coevolution. A notable example is the emergence of 
concentration, conformism and diversity loss. In what follows, we briefly discuss other examples gathered from four largely studied 
human-AI ecosystems, i.e., social media, online retail, urban mapping, and content generation ecosystems. For a more comprehensive 
discussion of outcomes in these four ecosystems, refer to [145].

Social media. Recommenders have achieved considerable success in the realm of social media, where they are deployed to suggest 
new posts and users to follow. This coevolution between users and recommenders gives rise to two interconnected feedback loops. 
First, previous interactions between users and posts shape actual recommendations; these recommendations influence subsequent 
interactions between users and future posts. Second, the accounts a user follows shape actual user recommendations; these recom-
mendations influence subsequent interactions between users and their followers. Given that social media disseminate opinions, this 
feedback loop can lead to various outcomes, at individual (filter bubble, homophily) and systemic levels (polarisation, fragmentation, 
echo chamber). While recommenders assist users in accessing content and connecting with like-minded individuals, the underlying 
algorithms may confine them within a filter bubble. This confinement can contribute to significant polarisation of opinions and users, 
fostering the potential for radicalization of ideas. For example, as previously discussed, personalised recommendations on Twitter 
overexpose users to certain political content [20].

Online retail. Recommenders also play a pivotal role in the success of e-commerce and streaming giants like Amazon, eBay, 
and Netflix. The coevolution of these recommenders with consumers may give rise to intricate feedback loop mechanisms. The rec-
ommended items (e.g., consumer goods, songs, movies) depend on previous purchases, which in turn were influenced by previous 
recommendations. A crucial distinction in this human-AI ecosystem lies between collaborative filtering and personalised recom-
menders. Collaborative filtering operates on the principle of “who-buys-this-also-buys-that”, relying on collective user behaviour; 
while personalised recommendations tailor suggestions to individual user taste. For example, collaborative filtering may increase 
sales volume and individual consumption variety while, at the same time, may decrease overall aggregate consumption diversity, 
amplifying the success of popular products [146,147]. On the one hand, recommenders help users better navigate the large space of 
product choice, reducing effort and choice overload, allowing a rapid allocation of needed goods and boosting platform revenues. On 
the other, at the aggregate level, they might reduce the variety of purchased products (i.e., creating filter bubbles around the user) 
and increase concentration, favouring certain brands and reducing competition.

Urban mapping. Navigation services recommend a route to a destination, considering changing traffic conditions and assisting 
users in exploring unfamiliar areas. Therefore, users with the same origin and destination receive similar recommendations. The 
impact of navigation services on the city is unclear: being designed to optimise individual travel times, they may also cause congestion 
and lead to longer travel times and higher CO2 emissions in the environment [17,25,26,28,31–33]. For example, in 2017, Google 
Maps, Waze and Apple Maps re-routed drivers from congested highways to the narrow and hilly streets of Leonia (a small town in New 
Jersey), creating such congestion that people could not get out of their driveways [17,25,27]. These issues are exacerbated by the 
coevolution between drivers and algorithmic updates, generating a feedback loop: travel times, which shape actual recommendations, 
also depend on drivers’ route choices that were influenced by previous recommendations. Drivers’ behaviour may change travel times 
in return, shaping subsequent recommendations. In this context, if too many drivers choose the same “eco-friendly” route, this route 
will cease to be eco-friendly.

Content Generation. Recently emerging large language models (LLMs), deployed by big tech companies (e.g., Amazon, Baidu, 
Google, Meta, Microsoft, OpenAI) and/or open source projects (e.g., Bloom, Cerebras-GPT, Dolly, Falcon, Mistral, Zephyr), are rapidly 
permeating various domains, e.g., education, politics, work. It has been observed that LLMs may potentially compress diversity, thus 
standardising the use of language in generated text [127–135]. Recent studies show that when LLM-generated content is used to 
fine-tune LLMs themselves, a “regression to the mean” can take place with a loss of linguistic diversity in the form and substance of 
the generated text. This process of autophagy will be increasingly widespread as content on the web, which is the fuel that trains and 
fine-tunes LLMs will be more likely to be generated by machines rather than humans. At an analytical level, we need to understand this 
coevolution to develop recommenders that balance the feedback loop’s potential positive (standardisation of language) and negative 
impacts (compression of linguistic diversity).2

4. Social impact of human-AI coevolution

With our concept of human-AI coevolution, we do not simply propose a reflection on the interconnection between complex systems 
and AI, but also on their relationship with society. Some of the outcomes discussed above have a long history in social science. Notable 
examples are polarization (in political science [148,149]), inequality (in economics [150], in sociology [151]), and segregation (in 
economics [152], in urban studies [153]).

2 Note that, in this ecosystem, feedback loops can occur at various levels of abstraction. For example, LLMs can be improved through human feedback within a 
Reinforcement Learning from Human Feedback (RLHF) framework. This approach leverages human insights to refine AI models, ensuring they evolve in ways that 
align with human needs and ethical standards. As a result, LLMs will be frequently and continuously modified based on human feedback. This creates a distinct 
6

feedback loop, different from autophagy, where human input shapes the next generation of LLMs, which in turn influences future human feedback.
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The fact that recommenders have substantial and often “unintended” consequences on these social phenomena is central to 
human-AI coevolution, as they might amplify trends already in motion in society. Studies in different social science fields (e.g., 
political science, sociology, political economy, economics and psychology) have shown that the increase of individualism [154] and 
inequalities [155,156] and the retrenchment of public and social policies [157–162] are tangible realities across several countries. 
In this respect, human-AI coevolution as a field of study should also integrate insights from social sciences to evaluate potential 
societal consequences of feedback loop mechanisms. For reasons of brevity, we will put the spotlight on three examples of such an 
intersection, but our considerations extend well beyond: (i) individual utility vs common goods; (ii) ownership of “the means of 
recommendation”; and (iii) phenomena of inequality and concentration.

Research on recommenders is mostly designed for the maximisation of individual utility and profit for companies (e.g., [122,163]
for the urban mapping ecosystem, [24,137,140,164,165] for the online retail ecosystem), and this generates a lack of consideration 
for common goods. A good starting point to understand the classical limitations of this approach is the debate on rational choice 
theory and methodological individualism [166,167]. Rational choice theory is grounded in the idea that individual agents act in 
society by following rational reasoning, and therefore maximising their utility. Methodological individualism is a sort of corollary 
and explains societal outcomes as the sum of the relational behaviours of all agents within society. Recommenders designed on the 
basis of methodological individualism might not take into account collective utility.

History offers plenty of examples of societal damage generated by the prevalence of individualistic over collective behaviours. 
One could go back to Thomas More and “the drama of enclosures” to conceptualise the potential paradoxes that the coevolution 
between humans and recommenders might generate. The enclosures were a vast movement, which privatised land that had been used 
collectively. Similarly, employing individual utility as the main driver to set up recommenders can reduce the potential collective 
utility provided by the development of AI, and therefore, reinforce polarisation mechanisms already existent in society.

Human-AI coevolution is connected to the functioning of capitalism: the dramatic technological developments related to rec-
ommenders and AI are taking place in a period dominated by rational choice theory, methodological individualism and ultimately 
neoliberal economics [168]. Our reflection extends Kean Birch’s notion of “automated neoliberalism” [169], which posits that digital 
platforms shape markets, personal data accumulation transforms individual lives, and algorithms have the potential to automate 
social relations.

The potential for improving collective utility might be reduced because the coevolution between AI and society takes place in a 
context where there is no balance between those who own mainstream recommenders and those who use them uncritically. The old 
question about who owns the means of production strikingly applies today and takes a new form in an environment of human-AI 
coevolution. In this respect, owning the platforms that generate the largest number of interactions through mainstream recommenders 
– what we call “means of recommendations” – might be a game changer in economics and society. Readapting Marx’s reasoning [170], 
who owns the means of recommendations? How do these recommendations affect subsequent interactions between humans and AI? 
How could this reinforce outcomes such as inequalities and polarisation?

It is not the scope of this perspective article to delineate a political economy of human-AI coevolution [171], intended as a 
systematic analysis of the interconnection between asset ownership and the influence of recommenders. However, this aspect is a 
fundamental contextual element to discuss, at least theoretically, the potential unintended consequences of the coevolution between 
humans and recommenders. If recommenders have a powerful influence in shaping individual choices, and these individual choices 
shape collective outcomes, we have to reflect on how these choices are taken. Moreover, the impact of coevolution can further 
strengthen outcomes and increasingly harm collective utility. The opposite reasoning is also valid, and a different socio-economic 
context, where recommenders are geared towards shared collective objectives, can foster positive societal outcomes through coevo-
lution. This point underlines that mere techno-solutionism [172], the idea that technology is the answer to any challenge we face, 
is a risky intellectual posture, and we need more studies on human-AI coevolution to steer positive outcomes. A review of recent 
research shows that AI tendentially increases the social divide, especially for historically marginalised groups (e.g., research about 
the US points to racial and gender effects) [173]. These patterns are even stronger in low/middle income countries [174]. One could 
reasonably hypothesise that the uneven impacts of AI are underestimated or overestimated because we miss research measuring 
human-AI coevolution and feedback loop mechanisms.

Human-AI coevolution might, therefore, foster inequality and concentration across different ecosystems. Within the social media 
ecosystem, recommenders may intensify exposure inequalities at the individual level, exacerbating the rich-get-richer effect regardless 
of user attributes or network characteristics [114]. Concerning the online retail ecosystem, purchase-based collaborative filtering 
might increase the number of items purchased and the variety of products considered. However, this might also push users to buy the 
same products, contributing to concentration at the systemic level [165]. In the urban mapping ecosystem, ride-hailing recommenders 
(like Uber and Lyft) may mislead low ridership in poor and black neighbourhoods as a reflection of low users’ demand, reinforcing 
in this way existing racial and socio-economic inequalities [175,176]. The autophagy process in a content generation ecosystem may 
lead to diversity loss in the generated content [127].

5. Open challenges of human-AI coevolution

The study of human-AI coevolution presents important challenges for the future that can be conceptualised at increasing levels of 
abstraction, i.e., scientific, legal and socio-political (see Fig. 3).

From a scientific perspective, we need a method to continually measure the impact of the feedback loop on the behaviour of 
humans and recommenders. Such a method could be developed by tracking step-wise how the measured outcomes change every time 
7

the recommender is re-trained. For example, one can measure the variety of products purchased by users at time 𝑡0 , assessing the 
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Fig. 3. Human-AI coevolution presents important challenges for the future, that can be conceptualised at increasing levels of abstraction: scientific, legal and socio-
political.

extent to which feedback loop mechanisms might amplify or reduce this variety with successive steps, e.g., 𝑡1 , 𝑡2, … , 𝑡𝑛. How many 
successive feedback loop iterations might be required to alter this variety of purchases? In a similar fashion, we could track how the 
recommender changes after subsequent re-training rounds: how long it takes a generative AI model to collapse and lose linguistic 
diversity?

An important technical aspect of studying human-AI coevolution is the occurrence of biases at different stages of the feedback loop 
[177]: data collection from users may introduce biases such as user-selection and exposure biases; learning of recommenders from 
collected data can result in inductive bias; and returning recommendation results to users can lead to popularity bias and unfairness. 
These biases as well as other issues like data contamination, can shape feedback loop mechanisms and individual, item, model, and 
systemic outcomes. The interactions among biases at the different stages of the feedback loop are not sufficiently measured in the 
current literature.

The conformism/diversity balance is yet another fundamental aspect related to the feedback loop that deserves more attention. 
At a general level, we also need a conscious effort in mathematical modelling to capture feedback loop mechanisms and their impact 
on human-AI ecosystems. At the epistemological level, understanding the causal interplay between humans and recommenders is 
key; however, much of the existing literature overlooks coevolution. Some steps could be undertaken to mitigate this issue, such as 
the development of controlled studies accounting for feedback loop mechanisms. Moreover, we must move beyond a unidirectional 
view of causality and explore it bi-directionally: humans and recommenders exert continuous influence on each other, necessitating 
a holistic study of their coevolutionary dynamics.

Beyond scientific challenges, other barriers can prevent our capacity to study the emerging phenomenon of human-AI coevolution, 
e.g., the limited access to data for researchers that are external to platforms and the lack of transparency on how recommenders are 
designed and employed within different platforms [15,80]. This severely impairs the reproducibility and replicability of potential 
studies about human-AI coevolution. Initiatives like EU’s Digital Services Act might mitigate this barrier, but it remains unclear how 
vetted researchers will be allowed to access privately-owned platforms. Besides a new legal transparency framework, an intriguing 
way to overtake these barriers might involve the development of specialized APIs. APIs can allow external researchers to interact 
with platforms, and conduct empirical controlled experiments by changing recommenders’ parameters or building experimental and 
control groups of users. Governments should foster a culture of impact evaluation of feedback loop mechanisms among platforms. 
This might follow the model already in place to reduce and compensate for other forms of negative externalities, e.g., pollution and 
drug undesired effects.

Increasing transparency also requires dealing with other fundamental challenges at the socio-political level. The concentration of 
8

what we defined as “the means of recommendations” is crucial in this perspective. In a context where big tech companies enjoy a 
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situation of oligopoly, recommenders are calibrated to generate high profits for the few. In this respect, a socially desirable develop-
ment of human-AI coevolution as a field of study might be hindered by the lack of political intervention to redistribute the means of 
recommendation across markets with many smaller players and, more broadly, society. Such a configuration could be conducive to 
developing more transparent rules in data access and a fairer distribution of the means of recommendation. In the long term, small 
changes in the functioning of recommenders or humans’ behaviour might lead to a significant impact on social outcomes, be they 
positive or negative. This could create a sort of “butterfly effect” of the feedback loop [178] that we have to study and understand.

The discussed challenges will persist even in the case of potential deep transformations in future online platforms, such as the 
emergence of decentralised platform architectures, user ownership of data and AI agents, and novel models for platform oversight 
and governance. These challenges not only concern scholars and their capacity to do research, but also go well beyond and bear upon 
the social and political realm. Only by accurately measuring and understanding the influence of recommenders on human behaviour 
we will be able to inform policymakers on how to make sensible decisions “taking into account not only the world as it is, but the 
world as it will be” [1]. This understanding will be key to designing adequate policies to avoid the potential negative externalities of 
an uncontrolled coevolution between humans and recommenders. We aim at a future society-centric AI that is part of the solution to 
long-standing societal problems, instead of being part of the problem.
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