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Biobanks advance biomedical and clinical research by collecting and offering data and
biological samples for numerous studies. However, the impact of these repositories
varies greatly due to differences in their purpose, scope, governance, and data collected.
Here, we computationally identified 2,663 biobanks and their textual mentions
in 228,761 scientific articles, 16,210 grants, 15,469 patents, 1,769 clinical trials,
and 9,468 public policy documents, helping characterize the academic communities
that utilize and support them. We found a strong concentration of biobank-related
research on a few diseases, including obesity, Alzheimer’s disease, breast cancer, and
diabetes. Moreover, collaboration, rather than citation count, shapes the community’s
recognition of a biobank. We show that, on average, 41.1% of articles fail to reference
any of the biobank’s reference papers, but 59.6% include a biobank member as a
coauthor. Using a generalized linear model, we identified the key factors that contribute
to the impact of a biobank, finding that an impactful biobank tends to be more open
to external researchers and that quality data—especially linked medical records—as
opposed to large data, correlates with a higher impact in science, innovation, and
disease. The collected data and findings are accessible through an open-access web
application intended to inform strategies to expand access and maximize the value of
these resources.

science of science | research impact | biobanks | hidden citations

In 2009, Time magazine listed biobanks among the ten ideas changing the world (1).
Indeed, these repositories of human biological samples and associated data have become
fundamental resources for biomedical research, indispensable for understanding the
genetic basis of disease and accelerating drug discovery (2–4). Biobanks provide essential
cohort data for population studies and genome-wide association studies (GWAS) (5, 6),
supporting high-impact research worldwide.

One of the first biobanks, The Framingham Heart Study, was established as a cohort
study in 1948 to document the health of 5,209 adult residents from Framingham,
Massachusetts, helping define the models still used today for cardiovascular and heart
disease risk prediction (7, 8). Equally influential is the relatively new UK Biobank,
founded in 2006 to collect into a single resource the genetic information, lifestyle, diet,
and medical records of 500,000 adults from the United Kingdom (9). The datasets arising
from the UK Biobank are widely used to advance our understanding of the genetic bases
of disease, genetic epidemiology, and public health (10–13).

Prior studies have used survey data to explore factors related to biobank impact,
from public trust to financing rates, and available data (14–18). Yet, quantifying and
understanding the scientific impact of biobanks remains a challenging task, given the
significant heterogeneity in their goals, usage policies, and cohort characteristics. As a
result, we lack a summary-level understanding of the breadth and the diversity of biobanks
and the community using them, nor do we have metrics to capture their multidimensional
impact, affecting science, patents, clinical trials, and public health (19–22). The problem
is more fundamental: We do not know how many biobanks there are (23, 24), what
medical areas they cover (2), who uses them (18, 25), and how their impact is being
recognized (26). The last point is particularly concerning given the resource-intensive
nature of biobank creation and maintenance.

Here, we fill this gap by relying on big data and the tools of Science of Science (27–30)
to identify, catalog, and analyze the usage characteristics of 2,663 biobanks, mapping
out 228,761 research publications, 16,210 grants, 15,469 patents, 1,769 clinical trials,
and 9,468 public policy documents where these resources are textually mentioned. We
use this dataset to track the research footprint of each biobank, offering a quantitative
analysis of biobank usage, focus, and impact across multiple dimensions, including
research, innovation, public health, and disease. To measure a biobank’s true impact,
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we introduce the Biobank Impact Factor (bIF), a comprehensive
metric that tracks its influence across research, funding, patent
applications, clinical trials, public health initiatives, and disease.
Our data-driven analysis of biobank impact provides insights into
how many biobanks there are, what research areas they cover, who
uses them, and how biobanks get recognition.

The Dataset

Based on the definition of a biobank as a “collection of
human biological material linked to relevant personal and health
information” (31, 32), our dataset includes resources that provide
physical or digital human biological data associated with lifestyle,
demographic, or health information, such as cohort studies,
cancer registries, and large surveys with biological data, as well as
tissue, blood, and brain banks.

To identify the true corpus of biobanks, we integrated 16
biobank catalogs and expanded this list by systematically scanning
141,219,539 research articles for mentions of human biobanks
(SI Appendix, section 1). We employed natural language pro-
cessing and network similarity techniques to remove duplicated
entries (SI Appendix, section 2). Finally, we searched Dimensions
database (33) for biobank mentions in the text of 5,040,039
grants, 158,390,184 patents, 801,708 clinical trials, and of
1,783,533 public policy documents.

Through this computational approach, we identified 2,663
unique biobanks that originated from and were utilized in 139
countries (Fig. 1 A and B). Collectively, the biobanks were

mentioned across 228,761 scientific articles, 16,210 grants,
1,769 clinical trials, 15,469 patents, and 9,468 public policy
documents (Fig. 1 C ). Based on these documents, we extracted
additional features related to the biobank’s cohort composition,
data offered, and its overall impact (SI Appendix, section 9
and Table S1). To allow easy access to the collected data and
metrics, we developed an online tool to search, explore, and
compare the impact of biobanks, available as a dashboard at
http://biobanks.pythonanywhere.com/ and deposited the dataset
at https://zenodo.org/records/11671294 (34).

Results

The Disease Focus of Biobanks. The most studied diseases by
each biobank reflect not only their focus but also the research
interests of the scientific community using them. To capture the
impact areas of biobanks, we constructed a cocitation network,
whose nodes represent individual biobanks, and connections
between nodes occur when biobanks’ corresponding publications
are cited together (Fig. 2A and SI Appendix, section 4). We chose
cocitations instead of direct citations as they capture the pairwise
association of two biobanks through third-party publications
rather than a unilateral association. Additionally, we identified
the diseases studied by each biobank by analyzing the medical
subject headings (MeSH) related to the publications mentioning
these resources (SI Appendix, section 7.1). From this analysis, we
identified 2,901 unique conditions across 20 disease categories
based on 111,525 research publications. The network is visibly

A

B

Biobank Origin

Biobank Use

C Yearly Count of Biobank Mentions (1985-2022)

Fig. 1. Biobank origin, use, and mentions. (A) The origin
of biobank cohorts based on the nationalities included
in the biobank’s cohort sample (SI Appendix, section 9).
(B) The countries using biobanks based on the affiliation
of authors mentioning a biobank in their publications.
(C) Number of biobank mentions per year across papers,
grants, patents, clinical trials, and public policy documents
between 1985 and 2022.
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A B

C D

Fig. 2. The biobank disease universe. (A) The biobank cocitation network whose nodes are biobanks connected by an edge if the same articles frequently cite
publications that mention them together. The size of each node is proportional to its number of article mentions, and each node is colored by its principal
MeSH disease category (SI Appendix, section 7). (B) The number of biobanks by disease category representing the communities in the cocitation network. We
extracted the Research, Condition, and Disease Categorization (RCDC) classification of biobank publications, along with each RCDC category’s average annual
funding by the NIH, to study: (C) The relationship between the number of biobank publications and funding per RCDC category. (D) Over- and underrepresented
RCDC categories in biobank publications measured by the difference between actual and expected publications as a percentage of the number of expected
publications on each disease category based on its annual funding.

modular (35), but we find that each community is only partially
characterized by the focal disease category of its biobanks, as
reflected by their modest normalized mutual information (NMI)
score (36) and other overlap metrics (37) (NMI = 0.247,
SI Appendix, section 4.1). This result suggests that biobank
communities are formed on more than a single factor, as generally
expected for real-world networks (38).

Our analysis shows that biobank research focuses on a few
disease categories, with seven of ten biobanks classified as general-
purpose, nervous system, urogenital, cancer, infections, or cardio-
vascular disease (Fig. 2B). Combined, these categories account for
80% of all disease-focused publications using biobanks, covering

60% of all studied conditions. Despite finding a similar concen-
tration on few diseases when we look at the 31 million articles with
MeSH classifications (SI Appendix, section 4.2), we find that car-
diovascular (15% of biobank articles vs. 8.7% of total articles) and
nutritional diseases (14.3% of biobank articles vs. 4.11% of total
articles) are overrepresented in biobank research while investiga-
tions on infections (4.4% of biobank articles vs. 12.5% of total ar-
ticles) and cancer (12.7% of biobank articles vs. 20.8% of total ar-
ticles) are underrepresented categories. Within each community,
we also find a high concentration of research on a few conditions,
with obesity, Alzheimer’s disease, breast cancer, and diabetes
being studied in one of five publications (SI Appendix, Fig. S2).
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Despite this high concentration across communities and condi-
tions, biobanks demonstrate flexibility in responding to emerging
research needs, as captured by the rapid attention to COVID-19
displayed by infectious disease and respiratory tract biobanks.

Alignment of Funding and Research in Biobank Studies. To
identify the under and overrepresented conditions in biobank
research relative to the rest of the biomedical community, we
use historical funding data from the NIH to estimate the
expected number of publications on each condition. To align
with the classification used by the NIH, we extracted the
Research, Condition, and Disease Categorization (RCDC) codes
of 228,984 biobank publications and associated NIH funding
amounts between 2008 and 2022 (SI Appendix, section 7.3).
Our analysis reveals a strong linear correlation between NIH
funding and publication output (r = 0.71, P < 10−8, Fig. 2C ),
suggesting that biobank research increases for categories with
a higher available funding. For example, clinical research, the
highest-funded category with an annual average of 12.8 billion
USD, is the most studied by biobank research, with 73,715
papers. On the other hand, aging is significantly overrepresented
in biobank research, ranking third with 57,030 papers, yet only
15th in funding at 3.5 billion USD.

Next, we use the regression’s residuals to evaluate the disparity
between a category’s expected and actual research outputs in
biobank publications, where a positive (or negative) residual
indicates an overrepresentation (or underrepresentation) of the
category in biobank research (Fig. 2D). We identify 17 RCDC
categories overrepresented in biobank research, with an average
residual of 11,599 publications per category. Nutrition is the
most overrepresented, with over three times the number of
expected publications (9,293 expected and 30,673 actual papers,
230% surplus), followed by aging (207% publication surplus),

mental illness (160%), and cardiovascular disease (115%). On
the other hand, 23 RCDC categories are underrepresented in
biobank publications, with an average residual of −8,651 publi-
cations. Strongly underrepresented categories include immuniza-
tion, with less than 12% of the expected number of publications
(88% publication deficit), followed by stem cells (82%), orphan
drugs (80%), and precision medicine (78%). These results evoke
the historically limited focus on a few disorders and their genetic
makeup (39), driven potentially by clinical applications rather
than commercial interests, as demonstrated by the stronger
presence of overrepresented categories in biobank-related clinical
trials compared to patents (SI Appendix, section 7.3). However,
the diversity of biobank research has improved in the last decade,
aided significantly by emerging specialized biobanks (40).

Biobank Impact Factor. While the traditional measure of impact
is citation-based, the scientific impact is multifaceted and cannot
be fully captured by citations alone (41–43). This is especially
true for biobanks, which often lack standardized citation credits
(19, 22, 26, 44). Here, we introduce the biobank Impact Factor
(Fig. 3A and SI Appendix, section 10), a metric that integrates
multiple dimensions of impact by leveraging the emergence of
alternative data sources in biomedicine (45–47) and building on
established bioresource evaluation frameworks (44, 48).

To assess the multidimensional impact of a biobank, the
bIF combines two key components: research impact (R), and
disease impact (D). The research impact quantifies a biobank’s
widespread visibility across research publications, grants, patents,
clinical trials, and public policies:

R =
5∑

i=1

ri − �i
�i

, [1]

A

+
0.1   (Disease Scope + Disease Depth + Rare Diseases)

0.9   (Publications + Grants + Patents + Clinical trails + Policies)

=Biobank Impact Factor (BIF)

B

= +

Multidimensional Impact

Disease Impact

+

+

Fig. 3. Dimensions of the Biobank Impact Factor (bIF). We built a Biobank Impact Factor based on the number of mentions a biobank has across science,
innovation, public policy, and the depth and scope of its disease impact, including rare diseases. (A) The formula to calculate bIF based on a weighted sum of the
disease impact of a biobank (disease scope and depth and rare disease impact) and its relative number of mentions across each document type (SI Appendix,
section 10). (B) The values of the two metrics composing the bIF are shown for the top 20 biobanks.
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where ri represents mentions in research document type i, �i and
�i are the mean and SD across all biobanks for that document
type. To prevent document-specific outliers, each standardized
score is normalized at [−1, 1], resulting in a total research impact
R ranging from−5 to 5, where 5 represents exceptional visibility
across all research sectors and −5 indicates minimal presence.
On the other hand, the disease impact evaluates a biobank’s
contributions across three complementary measures:

D = (Dscope + Ddepth + Drare) [2]

Here, Dscope measures the range of medical conditions studied,
Ddepth captures the fraction of disease-specific publications
mentioning the biobank, and Drare evaluates impact on rare
diseases through publication share (detailed methodology in SI
Appendix, section 7). Each measure contributes a score between
−1 and 1, and their sum D ranges from −3 to 3, where 3
indicates the greatest contributions to all three disease-based
metrics and −3 the smallest. The final bIF weights these
components to balance broad scientific visibility with disease-
specific contributions, normalized by the biobank’s age to ensure
fair comparison across biobanks of different ages (see SI Appendix,
section 10.1 for weight sensitivity analysis):

bIF =
1
Y

(0.9 · R + 0.1 · D), [3]

where Y is the biobank’s age and the resulting bIF varies between
−4.8/Y and 4.8/Y , where 4.8 is the maximum impact score in
both R and D ((0.9 · 5 + 0.1 · 3) = 4.8) and −4.8 the lowest.
Hence, a positive bIF indicates above-average impact relative
to other biobanks, while a negative bIF suggests below-average
performance.

We computed the bIF of all 1,326 biobanks in our dataset
with at least 20 publications, a cutoff chosen to have sufficient
coverage across disease classes while retaining at least half of the
biobanks. Among the biobanks with the highest bIF (Fig. 3B and
SI Appendix, Fig. S4), we find the Diabetes Prevention Program
(second, bIF = 0.48), the Women’s Health Initiative (fourth, bIF
= 0.35), the Human Microbiome Project (fifth, bIF = 0.32), the
Cancer Genome Atlas Program (sixth, bIF = 0.31), the Fram-
ingham Heart Study (eighth, bIF = 0.28), and the Genotype-
Tissue Expression Project (ninth, bIF = 0.25), all supported by
the NIH. The list also includes two UK-based biobanks: The
UK Biobank (first, bIF = 0.61) and the European Collection
of Authenticated Cell Cultures (seventh, bIF = 0.29), as well as
two other US-based studies, the National Health and Nutrition
Examination Survey (third, bIF = 0.44), and the Health and
Retirement Study (10th, bIF = 0.25), completing the top-10 list.

Biobank Impact is LocallyBounded. A current survey on biobank
use concluded that researchers have a strong preference for local
and familiar sources (25), prompting us to measure the extent to
which biobanks have local vs. global impact. We first identify the
host institution of each biobank (SI Appendix, section 5.2) and
measure the share of publications mentioning the biobank com-
ing from the host institution or the host country. We find that, on
average, 73.5% of the publication impact comes from researchers
in the host country of the biobank, and 29.4% have the same
institutional affiliation (Fig. 4A). We compare these results to a
null model where we randomly rewire the citation network while
preserving the number of citations of each biobank, finding that
the local impact by country and affiliation are highly statistically
significant (P-value < 10−10, SI Appendix, section 6).

By comparing biobanks in the top and bottom quintiles of the
bIF distribution, we find that while the impact of bottom-20%
biobanks is 6% more national than top-20% biobanks (t test
P < 0.02, Fig. 4B), both depend more than 70% on national
users, potentially reflecting the challenges of sharing biological
data across borders (15, 49). On the other hand, our results
show a large and significant difference in institutional impact
based on the impact level of a biobank, finding that, on average,
institutional impact bottom-20% biobanks is twice as high
(37% ± 27%) compared to top-20% biobanks (20% ± 19%,
P < 10−16, Fig. 4D). In other words, higher-impact biobanks
are, at the same time, less institutional and more international.

Access to Biobanks Driven by Coauthorship. Biobanks often
restrict scientists’ access to their data, partly driven by privacy and
ethical considerations and less justifiably so because maintaining
and supplying the data is costly (26). Yet, the often lengthy
application process to obtain access to the data is often bypassed
via coauthorship with the biobank team, congruent with surveys
reporting coauthorship as a prime incentive for biobanks to
data sharing (50). This practice has a profound effect on the
authorship of the 147,656 articles mentioning a biobank for
which we identified its supporting team (SI Appendix, section
5.2). Indeed, on average, we find that at least one team member
is a coauthor on 59.6% of the articles mentioning the biobank.
However, the distribution of the number of coauthorships is
bimodal, either very high or almost zero, classifying biobanks
into two groups (Fig. 4C ). Most collaborations resulting in
coauthorship occur within the same country (39,496 out of
49,192, 80%) but rarely within the same institution (185, 0.3%),
limiting international impact but indicating that the institutional
impact of a biobank is purely based on the team’s publications.

Interestingly, the number of coauthorships is markedly dif-
ferent between biobanks at either end of the bIF distribution.
Indeed, on average, team members of top-20% biobanks are
listed as coauthors in 44% of the papers mentioning the
biobank, compared to 67% for bottom-20% biobanks (Fig. 4D),
suggesting that a lower share of coauthorship of a biobank
may be indicative of the demand for the data. Moreover, non-
PI members of top-20% biobanks coauthor on average 24
publications without the biobank PIs, a significant percentage
(24% of total, P < 0.036) compared to bottom-20% biobanks,
where non-PIs collaborate in only three papers without the
biobank PIs (12%,P = 0.06). In other words, collaborative work
increases the recognition and scientific impact of biobanks but
also sets geographical barriers to their use, limiting their impact.

Citations Underestimate the True Scientific Impact of
Biobanks. The articles introducing the UK Biobank have been
cited 14,995 times (9, 51–54). Yet, we find that 41% of the
10,123 articles mentioning the biobank fail to cite any of them,
indicating that many users fail to acknowledge their reliance on
the biobank through citation, raising the question, does citation-
count capture the true scientific impact of biobanks? We find
that not all papers that use biobank data give citation credit
to the biobank. Therefore, to estimate the scientific impact
of biobanks not visible via citation counts, we identified their
“hidden citations”—articles that mention the biobank but fail to
cite any of its official publications (55).

To do so, we identified 962 reference papers published
by 500 biobanks and evaluated their hidden citations across
96,745 publications (Fig. 4E and SI Appendix, section 5). Our
analysis reveals that, on average, 41.2% of the 203 articles
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Fig. 4. Provenance of biobank research impact and hidden citations. (A)The joint distribution of national (same country, purple) and institutional (same research
affiliation, pink) impact of biobanks based on mentioning papers. (B) Mean percentage and 95% CIs of mentions coming from papers in the same country and
institution for bottom-20% (orange) and top-20% biobanks (blue) based on biobank impact factor. Error bars represent 95% CIs. (C) Joint distribution of the
percentage of mentioning papers listing at least one principal investigator (PI, light yellow) or a team member (light blue) of the biobank. (D) Mean percentage
and 95% CIs of mentions listing a PI or a biobank team member for bottom-20% (orange) and top-20% (blue) biobanks. (E) Distribution of papers mentioning a
biobank but not citing its reference papers (green), mentioning a biobank (orange), citing its reference papers (purple), or citing its mentioning papers (biobank
reach, pink). Presumably, mentioning articles should include a reference to one of the reference papers of each biobank so the number of hidden citations should
be small, as they account for papers for which the biobank is central but fail to cite its main articles. (F ) Impact metrics for 9 biobanks, including, from left to right:
The South West Dementia Brain Bank (SWDBB), Copenhagen Aging and Midlife Biobank (CAMB), Genotype-Tissue Expression (GTEx) Project, BioBank (BB) Japan,
Million Veteran Program (MVP), United Kingdom (UK) Biobank, China Kadoorie Biobank, Guangzhou Biobank Cohort Study, and Generation R Study Biobank.

mentioning a biobank fail to cite any of its reference papers,
indicating a systemic undercitation of biobanks similar to
that observed for software (44, 56). Some strongly undercited
biobanks include the GTEx Project (Fig. 4F, 967 hidden
citations, 77.1% of mentions), the South West Dementia
Brain Bank (85 hidden citations, 78.7% of mentions), and the
Copenhagen Aging and Midlife Biobank (55 hidden citations,
77.4% of users). Biobanks with a lower number of hidden
citations include the Guangzhou Biobank (28, 14.5%), the China
Kadoorie Biobank (66, 19.5%), and the Generation R Study
(108, 10.6%), indicating that traditional measures of impact,
i.e. citations, highly underestimate the true academic impact
of biobanks.

Scientific reach, measured by the number of articles citing the
publications mentioning a biobank, is a metric used to predict
future impact (42). We calculate the reach of each biobank
representing its longest stretch of influence, obtaining 120,551
unique papers for the UK Biobank or more than seven times its
current detectable citations. On average, we find that the scientific
reach of a biobank is 13 times greater than the number of citations
(Fig. 4E). Note that while these numbers may still underestimate
the true impact of biobanks, as we have not scanned the full text
of scientific papers, our focus on mentions in titles, abstracts,
and acknowledgments helps minimize potential overestimation
by excluding casual references that might appear in the main text

(SI Appendix, section 5.3). This methodological choice provides
a more conservative estimate of biobank usage, though it may
miss some legitimate uses only mentioned in the paper’s body.

Biobank Features and their Relation to bIF. Understanding
which variables play a more defining role in their adoption
can help biobank creators identify and implement strategies to
increase their impact. To differentiate the role of those variables,
we designed a generalized linear model explaining the bIF of a
biobank (Y ), given its set of characteristics (Model 4).

log(Y +1) ∝ �0+�1×X1+�2×X2+· · ·+�14×X14+�. [4]

On the r.h.s we list the 14 features of biobanks that could
affect bIF, namely sample size, open data index (SI Appendix,
section 9.9), PI’s prestige, population or hospital-based, genetic
data (gene markers, GWAS, whole-genome sequencing, and
gene–environment data), registries, surveys, follow-up data, and
medical records. The error term � follows a standard normal
distribution. The model was fitted using data from 468 biobanks
(R2 = 0.41), and the P-values of the coefficients were Bonferroni
corrected. The model’s deviance (0.686) and a Pearson chi-square
(0.687) suggest a good fit to the data (SI Appendix, section 11).

We find five statistically significant coefficients, capturing
the more important characteristics related to bIF (Fig. 5). The
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Fig. 5. Related biobank features to biobank impact factor. We present a generalized linear model to identify the key features explaining biobank impact. The
coefficients of different features are captured by Model 4 considering different binary characteristics of biobanks, including whether the cohort size is large
(top 10%), sampled from a general population, data access is open to external researchers, the average citation count of the biobank PIs (bottom and top-10%
with respect to all PIs), along with availability of genetic data (subdivided into genetic markers or DNA, GWAS, whole-genome sequencing, or gene–environment
interactions), follow-up data, disease-specific data (based on registries), surveys and questionnaires, and linked medical records. Each feature’s coefficient is
shown together with its 95% CI. Significant features after applying Bonferroni correction are indicated with a star symbol and red color.

largest significant coefficient is the one related to a high open-
data index (�oa = 0.0345, P = 0.002), followed by whole
genome sequencing data (�wg = 0.0286, P = 2× 10−6), gene–
environment interaction data (�ge = 0.0267, P = 9 × 10−8),
a highly cited founder (�pi = 0.0198, P = 0.002), and access
to medical records (�mr = 0.0187, P = 2 × 10−5). On the
other hand, most data features are not significantly related to
bIF, including follow-up data (P = 0.0037, not significant after
Bonferroni correction), surveys (P = 0.5), registries (P = 0.06),
and a large cohort sample (P = 0.426). Similarly, not all genetic
data help biobank impact, including DNA genetic markers
(P = 0.96) and GWAS data (P = 0.62).

Conclusions and Discussions

Biobanks have emerged as central tools for biomedical research,
yet their true impact remains largely underappreciated and
unexplored due to a lack of comprehensive data and metrics (44).
While the need for a biobank impact factor has been acknowl-
edged for years (19), our study introduces a comprehensive
measure of the multifaceted impact of biobanks. We address
long-standing challenges, including the absence of a centralized
biobank repository, limited data on biobank impact, and a lack
of standardized practices for biobank recognition.

Our analysis reveals that impact is significantly underestimated
by traditional metrics, as reflected by the fact that 41.2% of
articles fail to cite biobanks’ papers. To measure the true impact,
we scanned explicit biobank mentions and measured impact
across multiple dimensions—including funding, innovation, and

public policy. This comprehensive approach provides empirical
evidence to test theoretical insights. Here, we found that the
recognition mechanism of biobanks is based on “coauthorship
for access,” a result that aligns with previous survey reports (50).
More generally, the approach presented here lays the foundations
for a more holistic quantification of scientific impact, paving the
way for future studies in the science of science. Looking ahead,
the integration of language models capable of “understanding”
the context of biobank mentions by distinguishing between the
explicit usage or informal reference of a resource, ultimately
leading to more precise quantification of its contributions to
research (57, 58).

Data, Materials, and Software Availability. CSV files have been deposited
in Quantifying biobanks and cohort studies (34).
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