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‘We explore the impact of excluded volume interactions on the local assembly of linear
physical networks, where nodes are spheres and links are rigid cylinders with varying
length. To focus on the effect of elongated links, we introduce a minimal 3D model
that helps us zoom into confined regions of these networks whose distant parts are
sequentially connected by the random deposition of physical links with a very large
aspect ratio. We show that the nonequilibrium kinetics at which these elongated links,
or spaghetti, adhere to the available volume without mutual crossings is logarithmic in
time, as opposed to the algebraic growth in lower dimensions for needle-like packings.
We attribute this qualitatively different behavior to a delay in the activation of depletion
forces caused by the 3D nature of the problem. Equally important, we find that
this slow kinetics is metastable, allowing us to analytically predict the kinetic scaling
characterizing an algebraic growth due to the nucleation of local bundles. Our findings
offer a theoretical benchmark to study the local assembly of physical networks, with
implications for the modeling of nest-like packings far from equilibrium.

physical networks | nonequilibrium kinetics | bird-nest materials | random packings

Physical networks (1, 2), like brain connectomes (3—6), metamaterials (7-9) or biopoly-
mers (10-12), often display locally ordered structures (13, 14), such as bundles (15-19),
where nodes and links are orderly packed together without crossing. While recent
studies (20-22) have shed light on the role of volume exclusion in the global structure
of such networks, its impact at finer scales remains unknown.

Here, we address this problem by studying the local assembly of linear physical
networks (LPNs) (20), a generalization of the Erdés—Rényi model of random graphs
where links are rigid cylinders. To zoom into LNPs’ confined regions of available space,
whose distant parts can be connected by very elongated links, we introduce a minimal
bipartite model where links have diameter 4 and their endpoints are constrained to the
opposite faces of a unitary cube (Fig. 1). As in LPNs, we add links by random sequential
deposition (RSD) (23-25) and solve the resulting dynamics analytically, enabling an
exact comparison against simulations. We find that at the temporal onset of physicality,
7, & 1/4, the nonequilibrium kinetics of link adhesion undergoes a transition from a
noninteracting regime of linear growth to a strongly interacting one where the density
of links evolves logarithmically in time, in stark contrast with the algebraic behavior
observed in lower dimensions (26-28). We attribute this slow growth to a long-lived
balance between rejections, caused by the strong elongation of the links, and depositions,
granted instead by the 3D nature of the model. We further demonstrate the metastable
nature of the logarithmic regime, which persists until a second time scale, 7, oc 1/4%
with f > 3/2. This marks the onset of depletion (29-33), accompanied by the formation
of local bundles and an algebraic growth o¢ ##, where p=! =2+ 60 and § € R isa
numerical constant. We validate our predictions by simulations and discuss how these
phenomena depend on boundary conditions.

Model

Fig. 14 shows a link of diameter A connecting the opposite faces of a unit cube, modeling
a local region of available space in a LPN. Its deposition is performed by selecting
uniformly at random its lower endpoint x = (x,y) € [0, 1] and, independently from
x, an angle @ € [0,2x) such that the top endpoint of the link is X' = x + v,(¢),
where v,.(¢) = (rcos @, rsin @). We assume » € (0, 1) fixed and 7 > A, so that the
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Fig. 1. Packing bipartite nests. (A) Randomly deposited link with thickness
A, projection length r, and a randomly selected angle ¢ € [0, 2x). (Inset)
Configurations excluded by the deposition of a single link with 4 = 1/500
and r = 1/2. (B) Nearly saturated configuration of N; = 432 links with
A = 1/50, r = 1/2, and horizontally periodic boundary conditions (PBCs).
Blue and white colors distinguish links falling within the bulk of the cube
from those puncturing its walls (azure caps) and reemerging at the opposite
face. (C) Average number of conflicts, C, experienced by virtual links between
valid depositions for r = 1/2. For the colors of the curves and regions, see
the legend in (D). The dashed curve corresponds to the analytical solution,
Eq. 2, while t = 7p(r; 1) marks the onset of physicality. (Inset) Numerical time-
scales (symbols) vs. analytical prediction zp = z/24(dashed line). (D) Evolution
of the rescaled number of deposited links, #,(r;t); notice the linear regime
(black dot-dashed line) and the analytical solution (blue dashed curve), Eq. 2.
The dotted line reflects the asymptotic scaling in Eq. 4. Left (light blue):
(A) nonphysical regime; Right (light yellow): (B) physical regime. (Inset) Raw
evolution of A (t) for increasing (violet-to-red) values of 4 highlighting the
linear growth in the nonphysical regime. In simulations, we deposit links with
diameter 4 until either N; = 10° or t > 109; in the latter case, we consider
the packing saturated.

relevant length of each link greatly exceeds its thickness; in
practice, this corresponds to aspect ratios /A 2> O(10%),
consistent with the typical range of values adopted e.g. in fiber
networks (8) and observed in bird-nest materials (11). We study
the model under periodic boundary conditions (PBCs, Fig. 15)
and address boundary effects later on.

Link deposition proceeds by iterating two steps: 7) a virtual
link is generated following the above protocol; it is then tested for
collisions with the previously deposited links and, where present,
with the box’s boundaries; 77) if no collision is detected, the virtual
link is deposited, otherwise it is rejected. Like in LPNs (20) and
other RSD kinetics (24), a saturated or jammed state is reached
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when no more links can be formed due to volume exclusion
(Fig. 1 A, Inset). In the deposition of elongated 3D links, however,
this asymptotic regime is preceded by an intermediate one during
which the rejection of links is insensitive to their volume, O(42),
depending instead on the links” diameter, A. In fact, since links
are sampled uniformly at random, the probability that one of
them has no conflict with 7 previously deposited links is 7y ~
(1—p)”, where p is the probability that two randomly chosen links
intersect. We have p = m, A, where m, = 4r/n is the expected
Euclidean length of the difference of two random vectors with
length 7 and a uniformly distributed angle. Note thatif » < 1/p
then g ~ 1, but if 3> 1/p then 7y ~ 0. Thus, denoting with
¢ the number of attempted depositions and N, (#) the number
of deposited links at time #, we have N)j(¢) ~ ¢t if t < 1/p
and V() € rifr > 1/ p. In other words, the characteristic
time scale 7, = 1/m,A marks the onset of physicality above
which at least one virtual link is rejected with finite probability
before a successful deposition. Fig. 1C shows the evolution of

the average number of conflicts, Cj, experienced by virtual links

between valid depositions. As visible, 8,1 undergoes a transition
above 7, from a nonphysical regime (region A in Fig. 1C), where
links behave as if they had vanishing thickness, to a physical one
(region B), characterized by a large number of conflicts.

To understand the kinetics of the model, we develop a
continuous-time approximation (S/ Appendix, sections S.1-S.3)
for the growth rate of N;(s) with s = #/7,. This leads
to a Langmuir-type equation % = 7,¥[r; Nai(s)], where
¥[r; N;(s)]—the volume fraction eligible for a new link—
corresponds to the probability of a successful deposition at time
s. Evaluating W requires characterizing the random geometry
of the accessible configurations, a highly nontrivial task due
to the overlap of excluded volumes from previously deposited
links (Fig. 1 A, Inset). To enable analytical progress, we adopt
a meanfield approximation and assume that the link’s excluded
volumes are additive, i.e. their mutual overlaps can be neglected.
Under this assumption, the decay of W[r; N (5)] can be described

as a Poisson thinning process, so that ¥ = [1 — ﬂmr]Nl(f) o~

exp{— Am, N (5)}, which yields

dj\g(:) — 1N NG(0) = 0, (1]
5
whose solution predicts the logarithmic growth
t
it)=In(14+ —— |, 2
it = *ww) 2l

where n,(r; £) = Am,N,(r; t). The kinetics in Eq. 2 is markedly
slower when compared to the algebraic growth (see Table 1
in Discussion) characterizing RSD of 4 = 1, 2 elongated
needles (26-28). We attribute the slow growth above 7, to
an interplay between two competing mechanisms: While the
elongation of links depletes a large fraction of possible configu-
rations (/nset, Fig. 14 and SI Appendix, Fig. S1)—like in d < 2
needle-packings (SI Appendix, Fig. S2)—the 3D nature of the
problem grants sufficient spatial freedom to mitigate the effect
of excluded volume overlap, allowing many nearly independent
depositions. This yields a long-lived balance between rejections
and acceptances of the links, demonstrated by the identical
evolutions of C; and N in Fig. 1 C and D, that delays
depletion-induced correlations, needed for the emergence of
local order. In Discussion, we elaborate further on the generality
of this phenomenon and its relation to RSD kinetics in other
dimensions.

pnas.org


https://www.pnas.org/lookup/doi/10.1073/pnas.2427145122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2427145122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2427145122#supplementary-materials

Downloaded from https://www.pnas.org by NORTHEASTERN UNIVERSITY on October 20, 2025 from | P address 155.33.129.8.

Kinetic Instability

Simulated link packings (Fig. 1B) closely follow the evolution
predicted by Eq. 2 for several orders of magnitude and for a
broad range of link diameters A (details in caption, Fig. 1B and
SI Appendix, Fig. S3). Yet, a closer inspection of the difference,
D, (t), between simulations and Eq. 2 reveals the emergence of
instabilities at times much above T which, as we show below,
are due to the activation of depletion effects and the formation
of local link bundles.

We start by analyzing the influence of different aspect ratios
r/4 on D, (). As shown in Fig. 2, packings corresponding to
r € {1/4,1/2,3/4} undergo systematic deviations from Eq. 2
above 7,. While negative deviations correspond to packings
undergoing saturation—which we define by setting a maximum
waiting time # = 10° between successful depositions—the
positive overswing of D, (¢) (Fig. 2 B, E, and H) at large aspect
ratios indicates instead a faster deposition rate compared to the
logarithmic prediction. Beginning from » = 1/4 (Fig. 24),
we find that these positive deviations occur if 7/4 > O(10?)
and their extent widens for large ». This is evident, e.g., in the
evolution of the difference D corresponding to links of diameter
4 =102 in Fig. 2 B, E, and H (see also SI Appendix, Figs. S3
and S4 for results with » = 1).

To understand this phenomenon, recall that the exponential
decay of the deposition probability W—Iying at the heart
of the logarithmic growth, Eq. 2—assumes that collisions
of virtual links are independent and identically distributed.
This hypothesis breaks down above 7,, at which the virtual
collisions promote newly deposited links to align with the existing
configuration, favoring the formation of link bundles. This
implies the emergence of privileged directions of deposition,
potentially reflected in inhomogeneities of the link’s angle
distribution with respect to the uniform background. In Fig. 2
C, F, and I, we test this hypothesis by analyzing the evolu-
tion of detrended fluctuations of the links’ angle distribution,
F(@/2x;t) (details in caption, Fig. 2). The snapshots taken
from the onset of physicalicy (black symbols) until the last
deposition (teal symbols, Fig. 2—see also ST Appendix, Figs. S3
and S4), indicate that the instabilities reported in Fig. 2 B, E,
and H correspond to structured inhomogeneities of the link’s
angle distribution, having sinusoidal shape and self-amplifying
over time.

Analytical insights about this empirical observation can be
found by mimicking the spontaneous formation and growth
of a bump in the links’ angle distribution from a planted
inhomogeneous configuration. In this case Eq. 1 can be rewritten

as (8] Appendix, section S.5)

Fig. 2. Kineticinstabilities. (A) Nearly saturated packing of links withr = 1/4 and 4 = 1/10. (B) Temporal evolution of the difference, D, (t), between simulations
and theoretical prediction, Eq. 2. Light blue (A) and light yellow (B) regions are defined as in Fig. 1 C and D. (C) Stroboscopic snapshots of the fluctuations,
F(@/2x), obtained by detrending the empirical links' angular distribution of the uniform background expected at deposition times T = nzp, withn =1,2,3....
Visibly, a sinusoidal inhomogeneity (teal symbols) amplifies over time (increasing opacity) out of the uniform trend above the onset of physicality zp (black
symbols). (D-F) and (G-/) show results as in (A-C) for r = 1/2 and r = 3/4, respectively.

PNAS 2025 Vol. 122 No. 32 e2427145122

https://doi.org/10.1073/pnas.2427145122

3of 7


https://www.pnas.org/lookup/doi/10.1073/pnas.2427145122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2427145122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2427145122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2427145122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2427145122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2427145122#supplementary-materials

Downloaded from https://www.pnas.org by NORTHEASTERN UNIVERSITY on October 20, 2025 from | P address 155.33.129.8.

1

2z
#(t, @) = exp <_E/o r(t, @) | Ao 0 | d(p*>, (3]

where A, (¢, ¢*) = v,((p - v,((p*) and (% @) is a function
such that NV;(¢) ~ (¢ @)dp — N,), with N, being
the number of initial /Lnks dep051ted unevenly. We note that,
if N, = 0, the linearization of Eq. 3 around Eq. 2 yields
sinusoidal eigenfunctions. For N, # 0, we search instead
for a self-similar solution of Eq. 3 with the factorized form
(5 @) &~ B*(£)7(@h(1)) at large #, where 7 : R — R models
the shape of the inhomogeneity and 4 : R™ — R governs its
temporal evolution. Ultimately, we find that for # > 7,

Ni(t) ccaz ', u=(2+06)", [4]
where a; = A=(1+0)/(2+0) and 9 ~ 2.3389... is an integral
constant (SI Appendix, Eq. S20). Eq. Eq. 4 shows that Eq. 2 is
an unstable solution of Eq. 1 to random fluctuations of the links’
angle distribution, whose nucleation speeds up the kinetics in
algebraic fashion.

While suggestive, large coherent inhomogeneities like those
assumed above unlikely form spontaneously, hindering the
global behavior predicted by Eq. 4. This is visible in Fig. 1D
(ST Appendix, Fig. S3), where the scaling in Eq. 4 is displayed

(dotted line) for comparison.

Bundle Formation

The algebraic growth in Eq. 4 can be observed by studying
locally the formation of bundles. First, note that the self-similar
solution of Eq. 3 indicates that, as more links are deposited, they
become increasingly aligned. In fact, the expected angle between
randomly chosen links evolves as 9(¢) o< In(h(#))/h(t), where
h(z) oc t* for t > 1, (SI Appendix). Hence, the orientational
correlation function g(#) := 1 —(cos 9) decays algebraically with
a logarithmic prefactor as g(#) o« #7# In ¢, where p is the scaling
exponent defined in Eq. 4.

While the above confirms that links become asymptotically
parallel, it does not bear information about their positional
order. Because this analysis gets mathematically demanding, we
characterize local bundle formation via simulations. To compute
the latter, we identify the set of nearest neighbors of a link in
the top and bottom plane using a proximity graph (details in
SI Appendix, section S.6) constructed via the 2D a-complex of
the links’ coordinates (35). We then consider two physical links
as bundled if they are nearest neighbors in both the bottom and
the top plane of the unit box. We measure the bundling number,
B,(2), representing the total number of bundled links divided
by its corresponding value in the nonphysical limit (A = 0)
which is proportional to Ny (ST Appendix, section S.6). We
also quantify the relative orientation of link bundles by their
local nematicity O; = Zjeai P>(@ij)/ ki, where P, is the second
Legendre polynomial, @;; = @; — ¢ is the relative angle between
links 7 and j, and £; is the degree of the i-th physical link in the
proximity graph.

Fig. 3 A and B highlight the bundles formed until the
last deposition, indicating that locally aligned links typically
form pairs and small motifs. Interestingly, a similar pairing
phenomenon has been observed in the self-limited assembly of
nanorods (18) in the presence of attractive van der Waals forces.
In our model, instead, these microstructures spontaneously
nucleate under the sole effect of volume exclusion from local
fluctuations of the links’ angle distribution, whose growth can be
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Fig. 3. Local bundling. (A) Configuration of bundles, highlighted in color out
of a nearly saturated packing of 3D links with r = 1/2 and 4 = 1/100.
(B) Bottom plane view, displaying bundled links (in blue) identified by posi-
tional proximity (orange bonds) and their assembly in small microstructures
(zoom-out /nset). (C) Evolution of the bundling number, B, (t) of the packing;
notice the onset of bundling =}, (4) o« =7 with p ~ 1.75—marking the kinetic
transition from the physicality regime (B) to the bundling regime (C)—and the
algebraic growth, Eq. 4, above 7, (dashed line). See also S/ Appendlix, Fig. S7
for results with r = {3/4,1}. (Inset) Local nematicity, O;, of bundled links
and their average (symbols) for r € {1/2,3/4,1}; notice the power-law decay
(0j) ~ 1= 473/% (red dashed line).

interpreted as a local analogue of the self-amplifying mechanism
underlying Eq. 3, suggesting an algebraic growth akin to Eq. 4.
Fig. 3C supports this rationale (Fig. 4 C and G), whose agreement
with simulations increases at larger aspect ratios (SI Appendix,
Fig. S7). The Inset of Fig. 3C confirms that bundled links are

nearly parallel.

Depletion Activation
In Fig. 3C and SI Appendix, Fig. S7 C and F, we have rescaled

the bundling number in units of a new time scale 7, o AP
whose exponent f > 1 indicates that ordered microstructures
emerge always above the onset of physicality. We support this
observation by studying the stability of a planted inhomogeneity
above 7,. In essence (details in S Appendix, section S.7), we
consider the space-dependent Langmuir—type equation for the
bipartite model, i.e. 3, p(x, @, 7) = exp{—(Ap)(x, @, 7)}, where
A is a (self-adjoint) integral operator (SI Appendix, Eq. S4 and
section S.2) and 7 = #/7,(r; A) is the rescaled time in Eq. 2.
We linearize around the constant function p(x, @,7) = p(2)
which solves 3;p = ¢77’—i.e. the logarithmic growth, Eq. 2—
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Fig. 4. Growth and bundling in the bipartite model with given boundary shapes. (A) Nearly saturated packing of bipartite spaghetti with diameter 4 = 1/100
and projection length r = 1/2in a unitary cube. Notice the strong alignment in proximity of the hard boundaries. (B) Rescaled link density, S, (t) = p, (t)/t* with
u~V =2+06and o =2.3389..., highlighting a macroscopic regime of algebraic growth defined by the asymptotic scaling in Eq. 4 (teal dashed line). Colored
regions are defined as in Fig. 1 C and D. Like in Fig. 1D, the black dot-dashed curve highlights the logarithmic growth in Eq. Eq. 2. (Inset) Angular distribution at
saturation, displaying large inhomogeneities caused by the box hard-walls. (C) Evolution of the bundling number, B(t), characterizing the formation of motifs
of bundled spaghetti, marked in (D) by red bonds in the zoomed portion of the Top plane of the box highlighted in blue in (A); similarly to the case of periodic
boundary conditions, also here the onset of bundling, 7}, is decoupled from the onset of physicality, zp, with 7}, (1) o« 4P with g ~ 1.5. (F) Nearly saturated
packing of bipartite rods with 4 = 1/100 and r = 1/2 constrained to a cylindrical box of unitary height and diameter; notice the formation of shells of oriented
spaghetti. Figures (F-H) follow the same captions as for the cubic box model, with the difference that the onset of bundling, z;, (1) scales now as 7, (4) o 27

with g ~ 1.8 (see text for more details).

where A1 =: y1 and y € R is the leading eigenvalue of A
and 1 is the indicator operator of a successful deposition. The
perturbation § = p+ & yields 3,& = exp{—yp}(exp{—AE} — 1)
which, to leading orders, can be written in linear form 9, =
—(y7 + 27) L AE. We search for solutions with the factorized
form &(x, @, 7) = C(7)w(x, @), where y : [0, 1]2 x [0, 27) —
R is such that (Ay)(x, ¢) = pw(x @) and p is the most
negative eigenvalue of A; notice that —0o < p < 0 since A
has zero trace. The temporal profile, C(7), then solves 3; InC =
—u(y7 +2x)7", yielding the scaling C(7) ~ C(1)z=#/7, where
lul/y € (0,1) and C(1) = /A (see ST Appendix, section S.7 for
details). Summing up the above, we find p >~ p + VAT H Ny so
that, to leading orders, a global inhomogeneity emerges as soon as
C(7) > 1, thatis roughly above a second characteristic time scale

4
=1+ —. 5
f=1+ 2] (5]

Since y/|u| > 1, it follows that f/ = 3/2 is a lower bound
for the onset of depletion, in agreement with the characteristic
time scales observed in Fig. 3C and SI Appendix, Fig. S7 C
and F. Notice that, owing to their distinct A dependencies,
the separation between 7, and 7 increases as the link thickness
decreases, thereby delaying the onset of orientational order in
packings of progressively thinner physical links.

75(4) o< A7P,

Boundary Effects

We now explore the influence of hard boundaries on the kinetics
of our model. In particular, we analyze the cases of cubic and
cylindrical shapes of the box where the spaghetti are sequentially
deposited. Although we do not solve analytically these cases, we

PNAS 2025 Vol. 122 No. 32 e2427145122

expect to observe kinetics regimes akin to those reported in the
model under PBCs. The intuition behind this roots on Rényi’s
car parking problem in one dimension (36, 37), where inhomo-
geneities in density and order correlations in RSD develop in a
similar way, whether particles interact with each other or with
the boundaries of the interval. In 3D, on the other hand, we
expect that the presence of extended boundaries will boost the
activation of depletion forces with respect to the case with PBCs,
attracting spaghetti to the walls (33, 38). Hence, we anticipate
that microconfigurations of bundled spaghetti will form earlier
than in the case with PBCs and that the packing kinetics will
rapidly escape the metastable regime of logarithmic growth.

We start from cubic hard boundaries. Fig. 44 shows a nearly
saturated packing of elongated spaghetti deposited within a
unit cube. As visible, large bundles of physical links form
oriented structures near the external faces of the box and, as
expected, the evolution of the spaghetti density departs from
logarithmic growth earlier than in the model with PBCs. To
highlight the latter, we plot in Fig. 4B the rescaled link density,
Si(¢) = pa(2)/t* with u=! = 24+ 6 and 6 = 2.3389...,
which reveals a long-lived regime of algebraic growth, with the
same kinetic scaling predicted by Eq. 4. Notice that this is
in contrast with the kinetics found in the model with PBCs,
where the scaling law in Eq. 4 could not be observed during
the evolution of the packing’s density (see SI Appendix, Fig. S3
and results therein). The appearance of the kinetic exponent
u~ ! = 2+ 6 in the presence of hard boundaries can be explained
by noticing that the planted inhomogeneities assumed in the self-
similar argument leading to the algebraic growth in Eq. 4 in the
case with PBCs (87 Appendix, section S.5) naturally arise here
due to the privileged orientations imposed by the box’s hard
boundaries, which are visible in the fnser to Fig. 4B. These effects
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favor the formation of bundles close to the boundaries, as shown
in Fig. 4D, whose intensity is measured by the bundling number,
B;(z). The evolution of B,;(¢) (Fig. 4C) reaches values nearly
10 times larger then the nonphysical reference, Bo(z) ~ /7 (c.f.
with the » = 1/2 case with PBCs studied in the main text).
Furthermore, as expected, we show numerically that the onset of
bundling, 7, is still decoupled from the onset of physicality, 7,

and scales as 7(A) o« A7 with f >~ 1.5, i.e. at an earlier time
scale then in the case with PBCs.

In the case of a cylindrical box, shown in Fig. 4F, we find
a richer scenario. Here, the hard cylindrical boundaries still
attract the deposition of spaghetti while leaving more freedom in
their orientation. It is visible from the saturated packing shown
in Fig. 4F that spaghetti self-assemble in chiral shells around
the cylinder’s disk, forming surfaces characterized by locally
aligned particles with clockwise or counterclockwise orientations
(Fig. 4H). Similarly to the case of the cubic box, also here
(Fig. 4F) the link density exhibits a regime of algebraic growth
characterized by the scaling in Eq. 4 whose duration lasts for
several orders of magnitudes. However, differently from the cubic
box case, the angle distribution (Fig. 4F) of nearly saturated
packings does not reveal clear patterns of inhomogeneities,
suggesting that spatial correlations play a major role in this
setting. Surprisingly, despite these intriguing differences, the
growth of spaghetti bundles is, here as well, in good agreement
with the analytical algebraic scaling, Eq. 4, found for the
model with PBCs and observed in the case of hard cubic
boundaries.

Discussion

We have studied a minimal 3D model characterizing the
local assembly of links in linear physical networks (20) and
showed that it features rich kinetics, characterized by long-
lived metastable regimes of logarithmic growth, dynamic insta-
bilities, and bundle formation. Remarkably, these phenomena
persist in the presence of hard boundaries of varying shape
(SI Appendix, section S.7) as shown in Fig. 4 for packings
in cubic (Fig. 4 A-D) and cylindrical boxes (Fig. 4 E-H).
Despite some intriguing differences—such as the formation of
density and orientational inhomogeneities—we attribute these
similarities to the strong elongation of the physical links and the
3D nature of the system, whose interplay underlies the long-
lived logarithmic kinetics observed. In SI Appendix, section S.8,
in particular, we show that the logarithmic growth persists for
an even longer lifetime (87 Appendix, Fig. S8) when relaxing the
bipartite constraint of the model.

It is worth emphasizing that mean-field Langmuir-type equa-
tion, Eq. 1, and their logarithmic solutions, Eq. 2, can in
principle describe any RSD kinetics of hard-core particles, from
disks to spheres or needles. However, in dimensions d < 2,
the mean-field approximation underlying the independence of
the excluded volumes of the particles typically breaks down
at the onset of physicality, yielding a kinetic transition from
linear (noninteracting) to algebraic growth (24, 25), where
local orientational order emerges. Drawing an analogy with
critical phenomena—where mean-field approximations improve
with increasing dimensionality—logarithmic kinetics become
increasingly accurate in describing the growth of elongated
particles as dimension grows. This suggests the possibility of
an upper critical dimension above which the RSD kinetics of
elongated particles are characterized by stable logarithmic growth.
Such regime, which in our 3D physical link model is long-lived
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Table1. Kineticscalings above the onset of physicality
and above the onset of bundling (ordering growth),
together with the orientation decay and the ordering
time scale in RSD packings of elongated needles—i.e.
with infinite aspect ratio, a—in d = 1, 2 compared with
the results of this work for d = 3 highly elongated—
aspect ratiosr/1 > 0(102)—physical links

d=1,2 d=3
kinetic growth ~ t1/3 (26) ~In(1+1)
ordering growth ~ tY2-1(28) ~ tH
correlations decay ~ tY3-v2-1 (25) ~t HInt
ordering time scale o~ ¢3/(+2V2) (34) 7, > 2732

Notice that, in d = 3, the algebraic scaling of ordering growth has exponent y = (24-6)~"
with § ~ 2.3389... (see Eq. 4 for more details). See refs. 24 and 25 for details about the
results of d = 1, 2 needle-like packings.

but metastable to random fluctuations of the links orientation,
is therefore a distinct dynamical phase of RSD packings, where
growth is curtailed by volume exclusion yet no local orientational
order emerges.

We expect this slow growth to be a general phenomenon
extending to LPNs made of very elongated links, with potential
implications for the modeling of nonequilibrium assembly of
“bird-nest” materials (11) and nest-like packings (18, 39). This
is an intriguing direction for future research, bearing analogies
with glass formers (40—42), relaxation in granular compactions
(43, 44) and other kinetically constrained systems (45-47).
In this regard, it would be desirable to understand how the
onset of saturation depends on the geometry of the random
link packings. Furthermore, we expect that generalizations of
our null model, obtained by e.g. relaxing the rigidity of the
links via curvilinear fibers and/or by enabling equilibration steps
e.g. by molecular dynamics (38), will provide fruitful venues for
developing mathematically tractable models of physical networks
with increasingly realistic features. In this context, we believe our
simple model could offer insights about bundle formation in
systems like neuronal or vascular networks (48), where elongated
structures grow under geometric or excluded volume constraints.
Finally, from a theoretical perspective, our results make essential
steps forward for the theory of RSD of elongated particles, where
analytical solutions are only known in 4 = 1 and d = 2
dimensions (Table 1), providing relevant insights for 4 = 3
dimensions, a crucial case for real applications.

Data, Materials, and Software Availability. The data and code used in
this study are publicly available at the GitHub repository: https://github.com/
hokanoei/Bundling_spaghetti (49).
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