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Recovery coupling in multilayer networks
Michael M. Danziger 1✉ & Albert-László Barabási1,2,3

The increased complexity of infrastructure systems has resulted in critical interdependencies

between multiple networks—communication systems require electricity, while the normal

functioning of the power grid relies on communication systems. These interdependencies

have inspired an extensive literature on coupled multilayer networks, assuming a hard

interdependence, where a component failure in one network causes failures in the other

network, resulting in a cascade of failures across multiple systems. While empirical evidence

of such hard failures is limited, the repair and recovery of a network requires resources

typically supplied by other networks, resulting in documented interdependencies induced by

the recovery process. In this work, we explore recovery coupling, capturing the dependence

of the recovery of one system on the instantaneous functional state of another system. If the

support networks are not functional, recovery will be slowed. Here we collected data on the

recovery time of millions of power grid failures, finding evidence of universal nonlinear

behavior in recovery following large perturbations. We develop a theoretical framework to

address recovery coupling, predicting quantitative signatures different from the multilayer

cascading failures. We then rely on controlled natural experiments to separate the role of

recovery coupling from other effects like resource limitations, offering direct evidence of how

recovery coupling affects a system’s functionality.

https://doi.org/10.1038/s41467-022-28379-5 OPEN

1 Network Science Institute, Northeastern University, Boston, MA, USA. 2Division of Network Medicine, Department of Medicine, Harvard Medical School,
Boston, MA, USA. 3Department of Network and Data Science, Central European University, Budapest, Hungary. ✉email: mmdanziger@gmail.com

NATURE COMMUNICATIONS |          (2022) 13:955 | https://doi.org/10.1038/s41467-022-28379-5 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-28379-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-28379-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-28379-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-28379-5&domain=pdf
http://orcid.org/0000-0002-2674-0109
http://orcid.org/0000-0002-2674-0109
http://orcid.org/0000-0002-2674-0109
http://orcid.org/0000-0002-2674-0109
http://orcid.org/0000-0002-2674-0109
mailto:mmdanziger@gmail.com
www.nature.com/naturecommunications
www.nature.com/naturecommunications


As critical infrastructure systems have increased in size and
complexity, so has the interdependence between them-
communication systems require electricity from the

power grid, whose functioning and maintaining relies, however,
on communication systems. Both networks rely on the trans-
portation system for repairs, and in turn, transportation needs
both electrical power and a functioning communication system.
These multiple interdependencies, and their consequences for
resilience, have inspired an extensive literature on coupled mul-
tilayer networks, crossing disciplinary boundaries1–10.

The common hypothesis behind the current multilayer net-
work modeling framework is one of hard interdependence, where
a node or link failure in one network causes node or link failures
in another network, which in turn may induce additional failures
in the original network, resulting in a domino-like cascade of
failures across multiple systems3 (Fig. 1a). Despite the many
modeling insights it has offered, evidence of such hard cascading
failures remains limited in real systems. For example, while
communications and some transit networks do depend directly
on electricity, failures in these networks rarely cause electrical
failures8. Furthermore, while cascading failures in the electric grid
are well documented11–16, despite a decade-long body of litera-
ture on the subject, we continue to lack convincing empirical
evidence of these cascades, inducing cascades of failures in other
infrastructure systems.

While direct evidence of hard coupling across multiple net-
works is limited, there are multiple accounts of interdependencies
not considered by the current modeling frameworks, those
induced by the recovery process8,17–19. Indeed, the repair and the
recovery of a network following a local or global failure requires
resources typically supplied by other networks. For example,
restoring failed power components requires that the repair crews
have access to transportation (road networks) and coordination
through communications (cellular networks and internet). If the

support networks are not fully functional, the delivery of
resources critical for recovery will be slowed or impaired (Fig. 1b).
Indeed, while a blocked road or an internet outage in a given
location will not cause a power outage, it may delay the repair of
power outages in the affected area. And because the damage may
continue regardless of the system’s ability to recover, impaired
recovery could eventually lead to a system’s collapse. Such
recovery-based interdependencies were well documented in the
aftermath of Hurricane Sandy: at least 85 incidents of recovery
interdependence were reported, including the dependency of the
power grid’s recovery on other networks17.

Results
Here we show how recovery coupling affects a network’s func-
tionality, finding that its signatures and dynamics are different
from the much-studied multilayer cascading failures, as well as
from interdependent networks with coupling20–24. To empirically
test the developed framework, we collected data on millions of
power grid failures in the contiguous United States, finding evi-
dence of striking nonlinear behavior in recovery following large
perturbations, consistent with the model predictions.

Network damage and recovery at constant rates. Consider two
infrastructure systems X and Y, each composed of N elements
(nodes). Each network is described by its adjacency matrix, Xij

and Yij, and we label the nodes geographically so that co-located
nodes xi and yi, have the same index i. At any moment, each node
can either be functional (xi= 1, yi= 1) or non-functional (xi= 0,
yi= 0). A non-functional node can cause secondary damage
either by isolating its neighbors from the rest of the network, or
via cascading mechanisms16. Though a single node or link failure
can render other parts of the network nonfunctional, once the
initial failure is repaired, typically the secondary failures will also
return to functionality25. For example, though a downed power

Fig. 1 Damage and recovery in interdependent networks. a Under the hard coupling model, when node x1 fails, it causes a cascade across both networks
that disables the entire system. b With recovery coupling on the same network, when node x1 fails it is repaired using resources from network Y delivered
through node y1. Failures in network Y will impair that repair process.
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line may cut off power to many homes, once the line is repaired,
the power will be restored to each home without needing the
individual repair of each component.

Assuming a constant damage rate γdμ and a constant repair rate
γrμ, the fraction of primary failed nodes in each network fμ evolves
in time as

_f μ ¼ γdμð1� f μÞ � γrμf μ; ð1Þ

reaching the equilibrium damage fraction

hf μi ¼
1

1þ γrμ=γ
d
μ

: ð2Þ

The damage rate γdμ is largely exogenous and determined by
weather, accidents, or component failures. The repair rate γrμ, in
contrast, is determined by the resources available for repair, such
as crew and supplies.

Equations (1)–(2) predict a linear relationship between the
number of damaged nodes and the number of repairs executed
within a given time window, analogous to the elastic balance
between displacement and restoring forces in stress-strain
relationships in materials science26,27. A constant damage rate
γdμ leads to γdμN sites being damaged at any time, and temporal

variability can be modeled by replacing the constant γdμ with a
stochastic variable from a representative distribution (see
supplementary note 3).

Observed outage recovery behavior. To empirically test the
validity of elastic recovery, we built an Outage Observatory, a
suite of continually running web crawlers that record live-
updating outage maps28–30 from electrical utilities around the
United States (Fig. 2a). During 2019 the Observatory recorded
over 5 million power outages, capturing the geographic location
and time of each outage and the repair time for each incident
(Fig. 2e). By comparing the number of repairs and outages
occurring in a utility at any time, we can construct the damage-
repair curves for each utility (Fig. 2b and c), finding that for most
utilities the recovery follows the linear response of Eq. (1) 95% of
the time, whose slope provides the repair rate (supplementary
note 5 for details). However, we also observed multiple large
disruptions, for which the number of repairs systematically and
significantly deviates from the linear pattern characterizing the
elastic behavior (Fig. 2d). We have been able to link many of these
to large events such as severe winds, rainfall, snowfall, and fires.
For example, a derecho system that struck the Northern Midwest
on 19 July 201931 caused over 55,000 outages, resulting in over 60
million lost customer hours. Each perturbation impacts the power
grid and its support systems in different ways, hence the precise
deviation from linearity cannot be inferred from the number of
outages alone. Though each large failure has its unique cause and
recovery dynamics, when we place all perturbations on the same
graph we observe a remarkable universality, finding that all large
events display similar nonlinear behavior (Fig. 2d).

Modeling recovery coupling. The loss of elasticity during
extreme perturbations indicates that the hypothesis of a constant
repair rate is not sufficient to explain the system’s behavior. Given
that the repair process requires resources from other networks,
we hypothesize that a multi-network approach could explain the
observed deviation. To model the observed dependency, we allow
the repair rate γrX;i of the primary network X (e.g., power grid) at
node i to depend on the state of the support network Y (e.g., road
or communication network) at the same location (Fig. 1b),

obtaining

γrX;iðtÞ ¼ gðhyiiðtÞÞ ¼ gð1Þ � g 0ð1Þð1� hyiiðtÞÞ þ oðð1� hyiiðtÞÞ2Þ;
ð3Þ

where g(x) is an unknown function that represents the functional
dependence of the repair rate of system X on the state of network
Y around site i, which we assess with the network average

hyiiðtÞ ¼
1

kþ 1
∑
i
YijyjðtÞ; ð4Þ

to capture the fact that repair resources are drawn from the
neighborhood of the failure and are affected by the networks
which supply them. Thus 〈y〉i may represent the dynamically
evolving accessibility, or availability of electricity. In (4), the
variable 〈y〉i(t) captures the temporally evolving local state of
network Y, which may itself co-evolve with the state of the nodes
in network X if dependencies exist between the two systems.

Denoting with γr;0X ¼ gð1Þ the elastic repair rate and with
α ¼ g 0ð1Þ=gð1Þ, we obtain

γrX;iðtÞ ¼ γr;0X ð1� αð1� hyiiðtÞÞÞ; ð5Þ
enabling us to describe the expected behavior of g(x) to first order
with the assumption that α∈ (0, 1). Specifically, we assume
that damage in Y will not improve repair in X (g 0ð1Þ≥ 0 ! α≥ 0)
and that the repair rate must remain positive
(jg 0ð1Þj≤ jgð1Þj ! α≤ 1).

If damage is sporadic and uncorrelated across both systems, the
simultaneous failure of xi and yi for a given i is rare, and when the
failures are limited to a single network, recovery is not impaired
(Fig. 1b). However, if damage in X and Y is correlated in time or
space, simultaneous damage of nearby sites in X and Y will occur
with higher frequency and based on Eq. (5) we expect a reduction
in the repair rate. Such correlations are often caused by severe
weather events, the main source of disruptions to all infra-
structure systems in the United States32–34. These events are
highly localized in time and space, simultaneously damaging the
electric, communications, and transportation networks. Hurri-
cane Sandy, for example, induced failures across the power grid
and communications networks (downed lines, flooded control
centers) and transportation networks (flooded roads). These
simultaneous failures lead to recovery delays, as power outages
could not be repaired because roads were flooded. At times, the
coupling was bi-directional: some flooded roads had pumping
systems for drainage, which could not be operated without
electricity17.

Recovery coupling case study: Tropical Storm Imelda. When
there are many outages at once, the repair time can also be
affected by resource limitations, like a limited number of repair
crew members and trucks. Yet resource limitations are expected
to impact the whole service area equally. If, however, the slow-
down is limited to regions where the support infrastructure is
damaged, recovery coupling is the main driving factor. To dis-
tinguish between these two mechanisms, we relied on natural
experiments, when exogenous shocks simultaneously affected the
electrical network and its support networks. In September 2019,
Tropical Depression Imelda caused widespread power outages
and flooding in Houston, Texas, and the surrounding area
(Fig. 3a). We analyzed the duration for all power outages in the
vicinity of flooded roads, using areas without flooding as control,
allowing us to test whether the slowdown in outage repairs was
due to system-wide drains on resources or on the dependence of
the repair rate on road networks. We also considered a temporal
control, inspecting the repair times of outages reported over the
previous 60 days in the same area (Fig. 3b, e). We find that the
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slowdown in outage restoration is heavily localized in both space
and time around the flooded roads: while more than 95% of the
outages located more than 30 km from the flooded roads were
repaired within 10 h, 40% of the failures occurring within 5 km of
a flooded road remained unrepaired after 10 h. Furthermore, even
during the storm, outages far from flooded roads were repaired at
the same rate as without a storm (spatial control, Fig. 3e). The

observed separation of outage survival curves at different dis-
tances from flooded roads offers direct evidence of multilayer
recovery coupling, illustrating how damage in a non-electrical
infrastructure impacts the functionality of the electrical
infrastructure.

Further evidence of the proposed phenomenon is provided by
the coexistence of elastic behavior far from the flooded roads with
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inelastic behavior near them (Fig. 3c, d). We note that the repair
amounts are not only below the elastic prediction, but decrease
with increased damage, in line with the prediction that the
deviation from elasticity is not due to resource constraints which
tend toward saturation of repair per unit time (Supplementary
note 2 and ref. 35).

Recovery coupling simulations and phase space. To understand
the implications of recovery coupling for multilayer network
resilience, we consider the symmetric case in which the network
structure, damage, and recovery parameters are the same in both
systems. Since the two systems support each other, we let the
repair rate of Y be influenced by the state of X in the same
manner as Eq. (5): γrY;iðtÞ ¼ gðhxiiðtÞÞ. In the symmetric case
fx= fy= f, leading to a single equation that governs the state of
the system. If the failures are uniformly distributed, we can use
percolation theory36,37 to analytically derive the equation that
governs the expected fraction of primary failures in the coupled
system,

f ¼ 1

1þ γr;0

γd ð1� αð1� uð1� f ÞÞÞ
; ð6Þ

where u(x) is the probability that a link does not lead to the
largest connected component when a random fraction 1− x of
the nodes are removed, and is determined by the network
topology. Equation (6) has one or two stable solutions depending

on the value of the control parameter γr;0

γd . The non-symmetric case

has similar results, as we shown in supplementary note 1 and
Supplementary Fig. 1. In contrast, the uncoupled case (2), which
we recover from (6) for α= 0, has a single stable solution. The
new solution describes a stable fixed point at f= 1 (all nodes

failed), which persists even for high recovery rates γr;0

γd (see Fig. 4a).

The existence of two stable solutions for f for the same recovery

rate γr;0

γd indicates that for a wide range of conditions, recovery

coupled networks are resilient: they display functionality com-
parable to the uncoupled case and return to full functionality
following small perturbations38,39. However, a sufficiently large
perturbation can force the system to cross the unstable branch,
pushing it into a dynamically stable non-functional state (Fig. 4a).
This is more likely with correlated perturbations across layers, as
we show in Supplementary Fig. 2. The existence of this behavior
analytically predicts a “catch 22” phase that follows a sufficiently
large disaster: infrastructure system X cannot be repaired because
it requires resources from Y, and Y cannot be repaired because it
requires resources from X. The fact that the collapsed state per-
sists even for high repair rates and low damage rates predicts that
it is harder to bootstrap a broken system than it is to maintain the
functionality of one that is damaged but still working. Synthe-
sizing elastic residual curves (Fig. 4c) like the observations in
Fig. 2d, we find that the full coupling α= 1 reproduces the shape

of the curve, while lower values of α do not, providing further
evidence that the general deviation from elasticity is consistent
with recovery coupling.

Discussion
The 27 September 2003 blackout in Italy is often used to illustrate
how the interdependence of communications and electrical
infrastructure can cause cascading failures3,40. However, a closer
look at the sequence of events indicates that though transmission
network overload cascades triggered the power outage41, depen-
dence of repair activities on the communication network which
was itself disabled, prolonged the recovery process42. Here we
demonstrated that such recovery coupling can lead by itself to a
collapse of functionality. More importantly, we have shown that
the signatures of recovery coupling are directly observable during
severe weather events, indicating that the proposed mechanisms
have direct relevance to real multilayer networks. Domino-like
dependencies, which could co-occur, further amplify this danger,
though some interdependencies have been shown to reduce
cascading43.

The data-driven approach presented here enables a more
precise understanding of infrastructure interdependence. For
example, we find that while the set of flooded roads as a whole
caused slowdowns in power outage repairs, some impaired roads
had much stronger effects than others. The roads in downtown
Houston caused only minor delays when flooded, while in
Beaumont and Northeast Houston flooded roads caused severe
delays (Fig. 3a). Improving the precision with which we measure
infrastructure vulnerability is particularly important in light of
aging infrastructure and climate change.

Our findings reinforce the importance of engineering for
resilience not only through strengthening critical infrastructure,
but also focusing on the socio-technological layers needed to
restore the infrastructure when damaged. These recovering sys-
tems may supply electricity, fuel or access, or they may provide
human connections through social networks, which have also
been shown to play a powerful role in disaster recovery44.

Recovery coupling has relevance for other systems affected by
multiple networks. A pertinent example is the impact of loss of
healing ability during aging. Living organisms display a funda-
mental asymmetry between damage and repair, similar to what
we observe in infrastructure networks: damage is typically caused
by external factors (oxidants, pathogens, shocks, etc.) while repair
is endogenous and is governed by multiple coupled networks
(regulatory, metabolic and signaling) requiring diverse resources
(nutrients, oxygen, immune cells, etc.). From this perspective our
work complements recent network-based modeling of the rela-
tion between repair and aging45,46, illustrating how the well-
documented loss of healing ability in individual systems47, can
lead to systemic frailty, where the organisim can lose its ability to
respond to shocks that it could tolerate under normal
conditions48.

Fig. 2 Elastic and inelastic recovery in the power grid. a Locations of outages recorded by the Outage Observatory, colored by the utility serving that area.
b, c Repairs executed vs total outages recorded for each 2-h window for DTE Energy (b) and Consumers Energy (c), two large utilities in Michigan. An
elastic response implies that a constant fraction of outages are repaired at any given time. When the number of outages is small, the response is elastic but
when the system experiences a large number of outages it can become increasingly inelastic. Red and blue indicate the deviation from elastic response in
the downward and upward direction, respectively. d The elastic residual is the difference between the observed repair and the predicted repair based on an
elastic response. Comparing the 30 utilities with the most outages, we find a universal downward deviation, (more red points). e The number of outages
observed at each moment for DTE Energy and Consumers Energy. Because the deviation from elasticity can be quantified for each time window, we can
use the color map of panels (b, c) to indicate system elasticity over time. Measurements of elastic and inelastic recovery for more utilities can be found in
Supplementary Figs. 3 and 4.
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Methods
Data. Outage data were collected by taking regular snapshots (several per hour) of
the outage maps published by electric utilities around the United States. Each
snapshot contains a geotagged list of all outages active at that time, including
transmission and distribution outages. A single outage is reported for each inci-
dent, even if many customers are affected. By comparing snapshots from moment
to moment, and noting the first and last time that the outage appeared, we can

identify the outage’s location and duration. For more detail about the data col-
lection, see supplementary note 4 and Supplementary Table 1. To download the
data used in this analysis, visit https://github.com/mmdanziger/recovery-coupling.

Simulation. We performed discrete-time simulations where at each time point we
scan all nodes in each node. For every operational node, we switch it to inopera-
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tional with probability ~ γd and for each inoperational node, we switch it to
operational with probability ~ γr. The value of γr is calculated as

γrX;iðtÞ ¼ γr;0ð1� αð1� hyiðt � 1ÞiÞÞ
where yiðt � 1Þ�

is defined as #(operational nodes among yi and its neighbors at
previous iteration) / #(neighbors of yi + 1). In Fig. 4c, for every value of γr,0/γd, we
simulate the networks until they converge to a fixed point. We simulate transient
behavior in the same manner as shown in Supp. Fig. 2.

Data availability
The datasets generated during and/or analyzed during the current study are available on
GitHub at https://github.com/mmdanziger/recovery-coupling.

Code availability
The code used for this manuscript is freely available at https://github.com/mmdanziger/
recovery-coupling.
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