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GRAPHICAL ABSTRACT

PUBLIC SUMMARY
◼ SNVs accumulate linearly during passaging in mismatch-repair-deficient and control cells.

◼ In contrast, small insertions and deletions (INDELs) reach a plateau after passaging in both genotypes.

◼ Negative selection acts in vitro to prevent mutations with deleterious effects from accumulating.
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Somatic mutations accumulate with age in human tissues. Clonal amplifi-
cation of some mutations causes cancers and other diseases. However, it
is unclear if random mutation accumulation affects cellular function
without clonal amplification. We tested this in cell culture, avoiding the lim-
itation that mutation accumulation in vivo leads to cancer. We performed
single-cell whole-genome sequencing of fibroblasts from DNA-mismatch-
repair-deficient Msh2− /− mice and controls after long-term passaging.
While maintaining the same growth rates, in the Msh2− /− fibroblasts, sin-
gle-nucleotide variants increased up until >50,000 per cell, with small inser-
tions and deletions plateauing at∼16,000 per cell. We provide evidence for
genome-wide negative selection and large-scale mutation-driven popula-
tion changes, including significant clonal expansion of preexisting muta-
tions andwidespread cell-strain-specific hotspots, likely caused by positive
selection of mutations in specific genes. Since negative selection to pre-
vent mutations with adverse effects in vivo during aging is difficult to envi-
sion, these results suggest a causal role of somatic mutations in age-
related cell functional decline.

INTRODUCTION
Accumulation of somatic mutations has been proposed as a cause of aging

and cancer since the 1950s1,2 DNAmutations occur spontaneously in every cell
of an organismdue to errors during repair or replication of a damagedDNA tem-
plate.3However, apart from the very small fraction ofmutations that are clonally
amplified, typically the cause of cancer, most mutations cannot be detected by
bulk sequencing and require single-cell or single-molecule approaches. Using
accurate single-cell whole-genome sequencing (scWGS),4,5 somatic single-
nucleotide variants (SNVs) have recently been found to accumulate with age
in every human tissue or cell type analyzed, including lymphocytes,6 hepato-
cytes,7 epithelial cells,8 neurons,9,10 and cardiomyocytes.11 Somatic SNV
burden ranges from a few hundred to a few thousand mutations depending
on cell type and age. While confirming the original hypotheses of somatic mu-
tation accumulation with age, it remains unclear if an increased burden of so-
matic mutations, in the absence of clonal amplification, has functional conse-
quences for cells and tissues at old age.
Ifmutation accumulation is indeed a cause of aging, onewould expect an up-

per limit of mutations that cells can tolerate. Here, we tested this using primary
fibroblasts from a DNA-mismatch-repair (MMR)-deficient mouse model, i.e.,
Msh2− /− mice. TheMsh2 (MutS homolog 2) gene encodes a protein that dimer-
izeswithMsh6 andMsh3 proteins tomakeMutSα andMutSβMMRcomplexes,
respectively, and is critical for correcting base mismatches and insertion or
deletionmispairs during DNA replication.12 Suchmice are known to have highly
increased somatic mutation frequencies and a greatly increased risk of can-
cer.13,14 The lifespanof anMsh2− /− mouse, 50%ofwhich diewithin 6months,15

is significantly less than that of a wild-type mouse in captivity, which typically
lives to about 2–2.5 years, and the expression of Msh2 is positively correlated
with the maximum lifespan across different rodent species.16 The MMR defi-
ciency would continually drive the generation of SNVs and small insertions
and deletions (INDELs) during passaging of these cells, allowing us to test a
possible limit of tolerance in vitro (schematically depicted in Figure 1). The re-
sults show no such limit for SNVs up until at least ∼50,000 SNVs per cell,
i.e., far exceeding the number of SNVs observed in most tissues upon normal
aging. INDEL accumulation, however, reached a limit at ∼600 and ∼16,000
INDELs per cell in control andMsh2− /− cells, respectively. Our results also indi-
cate a strong negative selection against deleterious SNVs and INDELs, suggest-
ing that somatic mutations can adversely affect cell function in vivo where se-
lection for a fitness advantage is rarely possible.

MATERIALS AND METHODS
Transgenic mice

Mice nullizygous for the Msh2 gene were generated and backcrossed into C57BL/6 as
described previously.17 In this study, threeMsh2− /− mice (4–5 months of age) and two of
their wild-type littermates (4–5 months of age) were used. Two additional wild-type nonlit-
termates were included for cell passaging and apoptosis assay. All procedures involving
animals were approved by the Institutional Animal Care and Use Committee (IACUC) of Al-
bert Einstein College ofMedicine and performed in accordancewith relevant guidelines and
regulations.

Bulk DNA extraction and genotyping
Genomic DNAwas extracted from the tail of eachmouse using the DNeasy Blood & Tis-

sue Kit (Qiagen) following the manufacturer’s specifications. The concentrations of DNA
were quantified using the Qubit High Sensitivity dsDNA Kit (Invitrogen Life Science), and
the quality of the DNA was evaluated with 1% agarose gel electrophoresis.

We validated the genotypes of the mouse strains by polymerase chain reaction (PCR)
genotyping using the genomic DNA as template. Each reaction contained 1 μL of genomic
DNA (10 ng/μL), 1.5 μL of 10× PCRbuffer II (Roche), 1.5 μL ofMgCl2 (25mM, Roche), 0.1 μL
of Taq Gold (5 U/μL), and Primers A, B, and C (the sequences of the primers are listed in
Figure S1). The total reaction volume for PCR was 12.5 μL. PCR conditions were 94◦C
for 5 min; 40 cycles of 94◦C for 45 s, 55◦C for 1 min, and 72◦C for 1 min; and 72◦C for
5 min. The PCR results are shown in the picture of 1% agarose gel electrophoresis
(Figure S1).

Lung fibroblast isolation and passaging
Primary lung fibroblasts were isolated following a cell isolation protocol adapted from

Seluanov et al.18 In brief, mouse lung was minced and incubated in DMEM F-12 medium
with 0.13 unit/mL Liberase Blendzyme 3 and 1× penicillin/streptomycin at 37◦C for
40 min. Dissociated cells were washed, plated in cell culture dishes with complete
DMEM F-12 medium and 15% fetal bovine serum (FBS), and cultured at 37◦C, 5% CO2,
and 3% O2. Upon reaching confluence, the cells were split and replated in Eagle’s minimal

ll The Innovation 6(10): 101008, October 6, 2025 1

REPORT

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:zhan8273@umn.edu
mailto:jan.vijg@einsteinmed.edu
mailto:dong0265@umn.edu
https://doi.org/10.1016/j.xinn.2025.101008
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xinn.2025.101008&domain=pdf


essential medium (EMEM) supplemented with 15% FBS and 100 units/mL penicillin and
streptomycin. Lung fibroblasts were purified by further passaging in the same medium.

From each animal, we passaged one cell strain. Cells from each cell strain were cultured
and passaged in two 10-cmplateswith EMEMsupplementedwith 15%FBS and 100 units/
mL penicillin and streptomycin. The initial cell number was 0.5 million or 1 million for each
plate each passage.We counted cell numbers during passaging by applying the Cellometer
Auto T4 cell counter (Nexcelom), calculated cell population doublings based on the cell
number of each cell strain, and plotted the cell proliferation curve.

Apoptosis assay
Apoptosis was assessed using the Guava Annexin Red Kit (FCCH100108, Luminex) and

Guava easyCyte flow cytometer (Millipore) following the manufacturer’s instructions. Data
analysis was performed using GuavaSoft software. Briefly, wild-type and Msh2− /− cells
were harvested at passages 15 and 25 during cell passaging. Cells were counted and re-
suspended at a concentration of approximately 2× 105 to 5× 105 cells/mL. For each sam-
ple, 100 μL of the cell suspensionwas transferred to awell of a 96-well plate andmixedwith
100 μL of Annexin reagent. The mixture was incubated at room temperature for 20 min in
the dark. After incubation, the plate was loaded into the flow cytometer, and the “Nexin
Assay Plus” program was run. All Annexin V-positive cells were considered apoptotic.
The percentage of apoptotic cells in each strain at both passage 15 and passage 25 is pre-
sented in Figure S2. A comparison between wild-type and Msh2− /− cells is shown in Fig-
ure 2. The Nexin program settings and analysis parameters were kept consistent across
all species, experimental conditions, and time points.

Single-cell isolation, whole-genome amplification, library preparation,
and sequencing

Single lung fibroblasts were isolated using the CellRaft AIR system (Cell Microsystems)
according to themanufacturer’s instructions. Isolated single fibroblasts in 2.5 μL PBSwere
frozen immediately on dry ice and kept at − 80◦C until amplification.

The isolated single fibroblasts were amplified using single-cell multiple displacement
amplification (SCMDA) as described.5 The amplicons were subjected to quality control us-
ing a locus dropout test.19 Of those passing the quality control, three amplicons per mouse
were subjected to library preparation and sequencing with 150-bp paired-end reads on an
Illumina HiSeq X Ten sequencer (Novogene, Inc.). Bulk DNA extracted from tails of the

same mice was sequenced without amplification and used for filtering out germline poly-
morphisms during variant calling as described.5

Sequence alignment and mutation calling
Raw sequence reads were subjected to quality control using FastQC (https://www.

bioinformatics.babraham.ac.uk/projects/fastqc/), adaptor and quality trimmed using
Trim Galore (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/), and
aligned to mouse reference genome mm10 using bwa mem.20 PCR duplicates were
removed using samtools.21 The aligned reads were then INDEL realigned and base-pair
score quality was recalibrated using GATK.22 SNVs and INDELs observed in a cell but
not present in the corresponding bulk DNA of the tail were called by comparing the aligned
sequences of the cell to the bulk using SCcaller (version 2.0)23: (1) from genomic regions
covered with aminimum depth of 20× in both the cell and the bulk, (2) with default param-
eters for SNVs, and (3) requiring a variant calling quality ≥30 for INDELs. Mutations from
the autosomes were included for analysis. Mutation burden per cell was estimated based
on the number of observedmutations adjusting coverage of the genomeand variant calling
sensitivity. The variant calling sensitivity was estimated using the fraction of germline het-
erozygous mutations observed in the same single cells.24

Bulk RNA sequencing and data analysis
For each cell strain of different passages, total RNAwas extracted using the RNeasyMi-

cro Kit (Qiagen) according to themanufacturer’s specifications. The concentrations of RNA
were quantifiedwith the Qubit RNAHSAssayKit (Invitrogen Life Science), and the quality of
the RNA was evaluated using a bioanalyzer with the Agilent RNA 6000 Pico Kit (Agilent
Technologies). The qualified RNA samples (RIN [RNA Integrity Number] ≥7.0, OD260/
280 >2.0, concentration ≥20 ng/μL, and volume ≥20 μL) were submitted to Novogene
for library preparation and sequencing. The insert size of the double-strand cDNA library
is 250–300 bp. The libraries of the RNA samples were sequenced on the Illumina
NovaSeq 6000, with 2× 150-bp paired-end reads. The average sequencing amount of
raw data of each library was 9.24 Gbp.

Raw sequence reads were subjected to quality control using FastQC (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/), adaptor and quality trimmed using
Trim Galore (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/), and
aligned to themouse reference transcriptomemm10usingSTAR.25Gene expression levels

Figure 1. Study design Schematic illustration of the study design. We isolated lung fibroblasts of Msh2− /− and wild-type mice and cultured them for 25 passages. De novo mu-
tations in fibroblasts in passages 5, 15, and 25 of the cell strains obtained fromdifferent animal subjectswere analyzed using single-cell whole-genome sequencing and compared to
bulk whole-genome sequencing of the tails of the corresponding animals.
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were quantified using RSEM.26 Expressed protein-coding genes were determined as those
with an average transcripts per million (TPM) value ≥1 across all samples.

Single-cell RNA sequencing and data analysis
Weperformed single-cell RNA sequencing (scRNA-seq) targeting 3,000 cells per sample

of passages 5 and 25 of both cell strains E andMsh2A using the 10× Chromium system at
the Genomics Core at the Albert Einstein College of Medicine, and sequencing was per-
formed using the Illumina NovaSeq 6000, with 2× 150-bp paired-end reads, by Novogene.

Raw sequencing data were aligned to the mouse reference genome (mm10) using
CellRanger. DropletQC (v.0.9) was used to remove empty droplets containing ambient
RNA from the gene expressionmatrices.27 Scrublet (v.0.2.3) was applied to identify and re-
move doublets with default settings.28 The expression matrices were merged and pro-
cessed in Seurat (v.5.0.3).29 Cells with fewer than 20,000 or more than 250,000
nCount_RNA, fewer than 4,500 nFeature_RNA, or more than 5% of reads mapping to the
mitochondrial genome were further excluded.

Somaticmutations found in scWGSdataweremapped to scRNA-seq data by examining
sequencing reads that cover the corresponding bases in the scRNA-seq data. Mutated
sites detected in fewer than 500 cells were discarded. By integrating cluster and sample
labels, we defined five groups: Cluster1_Msh2A_p25, Cluster2_E_p25, Cluster3_
Msh2A_p25, Cluster4_E_p5, and C4_Msh2A_p5. The mutant ratio was calculated as the
number of cells with a detected mutation divided by the total number of cells exhibiting
any signal (mutant or nonmutant). We retained only those positions where a single group
had a mutant ratio >0.1, while all others remained <0.05. Thirty-three potential mutations
remained. Among them, nine were found to locate in genes that are widely expressed
across most cells. Here are the genes affected: in Cluster1_Msh2A_p25, Pigu and
Med27, and in Cluster3_Msh2A_p25, Med29, Ppp2r1a, Exosc8, Gnb1, Ncapd2, Sec24c,
and Luzp1.

RESULTS
Somatic mutation burden in Msh2− /− mouse fibroblasts
Mice nullizygous for the Msh2 gene were generated and backcrossed into

C57BL/6 as described previously.17 Their genotypes were validated using
PCR of the DNA extracted from their tails (Figure S1). Lung fibroblasts isolated
from threeMsh2− /− mice (4–5months of age) and four wild-typemice, i.e., two

Figure 2. Cell growth and mutation burden (A) Cell
growth during passaging. Error bars present SD. (B)
Fractions of apoptotic cells. The p values were esti-
mated using Student’s t test, one-tailed. Individual
data points of the two passages are presented in
Figure S2. (C and D) (C) SNV burden and (D) INDEL
burden per cell on log scales. Each data point repre-
sents a cell. The p values were estimated using linear
mixed-effects models, two-tailed, using the “nlme”
package of R. Boxplot elements are defined as fol-
lows: center line indicates median, box limits indicate
upper and lower quartiles, and whiskers indicate 1.5×
interquartile range.

wild-type littermates (4–5 months of age) and
two additional, nonlittermate wild-type mice
(C57BL/6, 6 months of age), were cultured for
25 passages up to a total of 62 population dou-
blings. As shown in Figure 2A, growth rates of
the three Msh2− /− and four wild-type fibroblast
strains were almost identical, with no morpho-
logic evidence for neoplastic transformation.
We next assessed the level of apoptosis by An-
nexin V and observed a significant increase in
the percentage of apoptotic cells from passage
15 to passage 25 in both genotypes. At passage
25, the proportion of apoptotic cells wasmargin-
ally but significantly higher in Msh2− /− cells
compared to wild-type cells (Figures 2B and
S2). These results indicate that Msh2− /− cells
are more prone to growth defects than wild-
type cells; however, this is compensated for
by enhanced growth of the surviving cell
population.

To quantitively analyze somatic mutation burden, we performed scWGS on
55 single cells at passages 5, 15, and 25 (denoted as P5, P15, and P25, respec-
tively) of the three Msh2− /− cell strains and the two wild-type littermate cell
strains (Figure 1). Of note, the SCMDA and variant calling procedure (SCcaller)
have been designed to avoid artificial mutations, previously themain problem in
somatic mutation analysis.5,23 For each cell strain, we also performed whole-
genome sequencing of tail DNA from the same mice to identify germline poly-
morphisms, which were filtered out in calling de novo somatic mutations from
the single cells. Depth of sequencing reached on average 27.5× and 21.4× per
sample for single cells and bulk DNAs, respectively (Table S1), to ensure that
mutations could be identified accurately. One potential challenge is the
coverage uniformity of scWGS across the genome. The scWGS protocol that
we employed provides whole-genome coverage for all cells (Table S1). While
the sequencing depth distribution is uneven across the genome and varies
among individual cells, the average coverage among single cells provides
coverage comparable to that of bulk WGS (Figure S3A). While this still limits
the ability to discover all mutations from each cell, sequencing multiple cells
from the same cell population compensates for that.
From the scWGS data on the five cell strains, we identified a total of 192,933

de novomutations, including 147,955 SNVs and 44,978 INDELs, which was suf-
ficient for analyzing mutation burden, spectrum, and distribution across the
genome, especially for theMsh2− /− strains because of their high mutation fre-
quencies (below). We also plotted the variant allele fraction (VAF; i.e., the num-
ber of reads reporting the mutation compared to the total read number at
the same loci in the same cell) distribution for all somatic mutations (Fig-
ure S3B). The average VAFcenters around 50%, indicating overall high accuracy
in variant calling. However, we observed a small subset ofmutations with lower
VAFs (∼30%), which could result from either (1) false-positive calls, which
cannot be entirely excluded without significantly sacrificing sensitivity, or (2)
some true variants, particularly INDELs, that differ from the reference genome
and thus align less efficiently.
After correcting for the sensitivity of variant calling and genome coverage

(Table S2), we found that, as expected, Msh2− /− cells had a significantly
higher SNV burden than wild-type cells across all passages (p < 0.0001, linear
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mixed-effects model, two-tailed). In wild-type cells, SNV burden increased with
passage number in fibroblasts from3,618± 1,185 per cell (average± SD; P5) to
5,817 ± 1,623 per cell (P25) in the wild-type cells (p = 0.0109, linear mixed-ef-
fects model, two-tailed) (Figure 2C), which corresponds to a mutation rate of
∼8.2× 10− 9 per base pair permitosis, almost the same aswe estimated earlier
for mouse primary fibroblasts (8.1 × 10− 9 per base pair per mitosis).19 In the
Msh2− /− cells, SNV burden increased from 16,080 ± 5,381 per cell (P5) to
53,146 ± 24,701 per cell (P25) (p < 0.0001, linear mixed-effects model, two-
tailed). There was no sign of a plateau between P5 and P25, not even in the
Msh2− /− cells after acquiring tens of thousands of SNVs per cell. At P5, SNV
burden inMsh2− /− cells wasmore than 4-fold higher than in the cells from their
littermate controls. Since we did not compare cells at different stages of embry-
onic development, we do not know how many more somatic mutations were
present in the Msh2− /− mice from embryogenesis to early adulthood as
compared to control mice, but it is safe to say that the original estimates based
on reporter genes have been seriously overstated, i.e., 35–550 mutations per
105 bp, corresponding to 1–15 × 106 mutations per cell.14

INDELs showed a different pattern of accumulation during passaging
comparedwith SNVs (Figure 2D). As expected,Msh2− /− cells had a significantly
higher INDEL burden than the wild-type cells across all passages (p = 0.0026,
linear mixed-effects model, two-tailed). INDEL burden during passaging only
increased by 1.6-fold in the Msh2− /− cells between P5 and P15 (10,172 ±
1,506 and 16,150± 4,995 INDELs perMsh2− /− cell for P5 andP15, respectively;
p = 0.0030, linear mixed-effects model, two-tailed), but not between P15 and
P25 (16,150 ± 4,995 and 15,370 ± 5,323 INDELs per Msh2− /− cell for P15
and P25 separately; p = 0.6958, linear mixed-effects model, two-tailed). In cells
from the littermate controls, no significant increase was observed during
passaging (565± 280 and660± 346 INDELs per cell for P5 andP25 separately;
p = 0.4644, linear mixed-effects model, two-tailed). These results suggest that
INDEL tolerance reaches an upper limit in both wild-type and Msh2− /− cells,
but earlier in the control cells. However, INDELs are likely to occur at high fre-
quency inMMR-deficient cells andmostly in repetitive regions,most notablymi-
crosatellites, where they are likely to be less toxic (see the following section for
analyses). Nevertheless, the plateau of INDEL induction in both WT and
Msh2− /− cells, but not SNVs, indicates toxicity of the former, without apparently
adversely affecting growth rate of primary fibroblasts.

Genome-wide selection against damaging mutations
The results thus far appear to suggest that increased burden of somatic mu-

tations per se, i.e., without clonal amplification, cannot cause cellular degener-
ation and death. Indeed, somatic mutation burden in tissues of aged humans
ormice never reaches levels as observed in theMMR-deficient cells.30 However,
while during in vivo aging, whenmost tissues are notmitotically active, selection
against mutations that adversely affect cellular function is difficult to envision,
primary fibroblasts expanded in vitro offer an immediate mechanism of avoid-
ing adverse somatic mutations by selection against mutations causing growth
inhibition. In this respect, INDELs are generally more damaging than SNVs,
which are often synonymous with no impact at all. To address the different im-

pacts of INDELs and SNVs in Msh2− /− and control cells during passaging we
performed three comparisons as follows.
First, to test if the selection against INDELs is significantly stronger than the

selection against SNVs, we calculated the ratio of INDEL burden to SNV burden
for each single cell. As shown in Figure 3A, there is a trend of decrease in INDEL-
to-SNV ratio in fibroblasts of both genotypes: from 0.17 ± 0.09 (P5) to 0.11 ±
0.03 (P25) in the wild-type cells (p = 0.0968, linear mixed-effects model, two-
tailed) and from 0.69 ± 0.20 (P5) to 0.31 ± 0.11 per cell (P25) in the Msh2− /−

cells (p < 0.0001, linearmixed-effectsmodel, two-tailed), i.e., a 2.2-fold decrease.
These results indicate negative selection against INDELs during passaging in
cells of both genotypes.
Second, to evaluate possible negative selection for both INDELS and SNVs,

separately, we utilized phyloP scores,32,33 with a positive score indicating con-
servation, i.e., slower evolution than expected, and a negative score indicating
acceleration, i.e., faster evolution than expected. We obtained phyloP scores
for all bases of the mouse reference genome from the UCSC genome
browser.34 We then defined mutations at evolutionarily conserved sites as
those with a phyloP score >0, its original p < 0.05, and a percentile of the phyloP
score of the mutated site, as compared to the phyloP scores of its±500 flank-
ing bases, of >95% (to avoid a potential difference in genome coverage). Muta-
tions at evolutionarily accelerated sites were defined by a phyloP score <0, its
original p < 0.05, and a percentile of the phyloP score of the mutated site, as
compared to the phyloP scores of its ±500 flanking bases, of <5%.
For both SNVs and INDELs in both wild-type andMsh2− /− cells, the fraction

of mutations at an evolutionarily conserved site was substantially lower than
that at an accelerated site (Figure 3B). However, compared to mutations
randomly sampled from the genome, we found that the fractions of SNVs at
both conserved and accelerated sites were as expected by chance alone, while
the fractions of INDELs were substantially different from the random sampling.
A significantly smaller fraction of INDELs (1.2% ± 1.3%) was observed at a
conserved site compared with SNVs (2.9% ± 0.8%; p = 3.3 × 10− 8, paired Wil-
coxon signed-rank tests, two-tailed) or expected based on chance alone. By
contrast, a greater fraction of INDELs was found at an accelerated site
compared with SNVs (6.6% ± 4.0% and 4.0% ± 0.9% for INDELs and SNVs
respectively; p = 2.0 × 10− 5, paired Wilcoxon signed-rank tests, two-tailed) or
as expected by chance alone. Of note, in 77% of wild-type cells, we did not
observe any INDELs at a conserved site. During passaging, no significant
changewas observed between SNVs and INDELs at accelerated and conserved
sites in cells of the two genotypes (linear mixed-effects models, two-tailed;
Figures S4A–S4D), with two exceptions. First, we found a marginal increase
in INDELs at conserved sites in Msh2− /− cells during passaging (p = 0.0455,
i.e., no longer significant if adjusting for multiple testing; Figure S4C), while
the fraction of INDELs at conserved sites remained much lower than expected
by chance alone. Second, there was a significant decrease in SNVs at acceler-
ated sites inMsh2− /− cells (p = 0.0011; Figure S4B). Overall, these results indi-
cate negative selection at evolutionarily conserved sites for INDELs during
passaging but not for SNVs.
Finally, we performed bulk RNA sequencing of each fibroblast cell strain

to determine genes that are transcriptionally active. Using mutation

Figure 3. Selection pressure against INDELs (A) The
ratio of the number of INDELs to the number of SNVs
per cell. (B) The fraction of mutations (SNVs and
INDELs combined) at evolutionarily conserved and
accelerated sites out of total mutations (wild type
and Msh2− /− combined). The fractions of SNVs and
INDELs at conserved and accelerated sites by chance
alone were estimated based on randomly generated
mutations using SigProfilerSimulator.31We randomly
generated the same number of SNVs and INDELs as
the observed numbers with also the same mutation
signature, performed the same analysis of their
conservation scores, and repeated the above two
steps 2,000 times to reach stable estimations.
Because there is no difference between the values of
SNVs and INDELs expected by chance alone, we
merged them into two single values as indicated by
the two dashed lines (for conserved and accelerated
sites separately). Boxplot elements are defined as
follows: center line indicates median, box limits indi-
cate upper and lower quartiles, and whiskers indicate
1.5× interquartile range.

REPORT

4 The Innovation 6(10): 101008, October 6, 2025 www.cell.com/the-innovation

w
w
w
.th

e-
in
no
va
tio

n.
or
g

http://www.thennovation.org
http://www.thennovation.org


annotation by ANNOVAR,35,36 we analyzed mutations that alter protein
coding sequences of transcriptionally active genes (Table S3). We calcu-
lated the ratio of nonsynonymous to synonymous SNVs in the two geno-
types during passaging and found that this ratio remains approximately
the same and shows no significant difference from the ratios expected
by chance alone (Figures 4A and 4B), suggesting a lack of negative selec-
tion. This was confirmed by utilizing the SIFT_4G annotation, which as-
sesses if nonsynonymous SNVs are damaging (Figures S5A–S5C).37

However, the trend becomes very different considering the most severe
types of mutations, i.e., loss-of-function mutations, including frameshift-
ing INDELs, and stop-gain and stop-loss SNVs. Significantly fewer frame-
shifting INDELs than expected by chance alone were found in these cells
during passaging (0.05 ± 0.21 per cell and 3.7 ± 2.6 per cell for wild-type
and Msh2− /− cells separately), as well as significantly fewer stop-gain
SNVs (0.14 ± 0.47 per cell and 1.0 ± 1.5 per cell, separately) or stop-
loss SNVs (0 ± 0 per cell and 0.03 ± 0.17 per cell, separately) (Figures 4C,
4D, 4F, 4G, 4I, and 4J). Of note, the ratio of observed frameshifting INDELs
to that expected by chance was substantially smaller in Msh2− /− cells
than in WT cells at passage 5 (Figure 4D), with INDELs no longer accumu-
lating after passage 15 in Msh2− /− cells (Figure 2D). In addition, although
the sensitivity of INDEL calling is slightly lower than that of SNV calling
(Table S2), the observed number of frameshifting INDELs was higher
than the total number of stop-gain and stop-loss SNVs, despite a substan-
tial difference in their accumulation during passaging. We also estimated
the ratio of each type of loss-of-function mutation to synonymous muta-
tions and compared the ratios to those expected by chance alone. As
shown in Figures 4E, 4H, and 4K, most of the ratios were significantly
smaller than expected by chance alone, indicating that the limited
numbers of loss-of-function mutations are a result of negative selection.
This is in keeping with our previous observations that, in human B cells
from aged human subjects, on average less than one loss-of-function mu-
tation (including stop-gain, stop-loss, and splicing alteration) per cell was
observed.6 Hence, these results do indicate that negative selection occurs
in SNVs also, although this is limited to those SNVs expected to be most
severe. This was confirmed by the significantly lower ratio of observed vs.
expected frameshifting INDELs.

Each Msh2− /− cell strain acquires common and unique mutational
signatures during passaging
As shown in studies of human cancers, mutational spectra and signatures

suggest specific factors that drive mutagenesis, e.g., oxidative damage or radi-
ation.38,39 However, connection between mutation signatures and causal fac-
tors are often derived computationally. In this study, we had an opportunity
to test if passaging and DNAMMR deficiency indeed cause the mutational sig-
natures inferred from human cancers.
First, we compared SNV spectra between the cell strains. As expected,

Msh2− /− cells are substantially different from wild-type cells, with more C>T
and T>C mutations (Figure S6A). However, we noticed substantial variation be-
tween the threeMsh2− /− cell strains: the Msh2A cell strain acquired more T>C
mutations, theMsh2C cell strain acquiredmore C>Tmutations, and theMsh2B
cell strain was in between (Figure 5A). Of note, their unique mutational spectra
became more obvious during passaging (Figure S6B).
Then, we performed SNVsignature analyses in twoways, both using the “Mu-

tationalPatterns” package of R.40 First, we performed de novo signature extrac-
tion and identified three signatures (Figure 5B). Using a cosine correlation cutoff
at 0.85 with known mutational signatures of human cancers reported in the
COSMIC database,39 we labeled the three signatures as SBS-A (no similar can-
cer signaturewas found), SBS26-like (positively correlatedwith theCOSMICSin-
gle Base Substitution signature #26), andSBS44-like signatures. TheSBS26-like
signature dominates mutations in the Msh2A cell strain, and its fraction out of
all mutations increases with passaging, while the SBS44-like signature is more
dominant in the Msh2C cell strain (Figure 5C). Of note, both SBS26 and SBS44
signatures in tumors have been suggested to be the result of DNA MMR defi-
ciency.39 TheSBS-A signature, whichwasnot reported in theCOSMICdatabase,
contributes to most mutations in the wild-type cells (Figure 5C) and is likely a
result of replication errors. However, SBS-A (characterized by NTT>NGT or
NCTmutations; Figure 5B) is very different from the SBS1 signature (character-

ized by NCG>NTG mutations)39 in human tumors, which has been associated
with cell division.
Second, we refitted COSMIC signatures to the mutations that we observed.

When doing that, we found another DNA MMR signature, i.e., SBS21, in the
Msh2− /− cell strains, but the differences between the Msh2− /− cell strains re-
mained (Figure S7). Together, despite confirming that MMR deficiency can
indeed cause the corresponding signatures found in human cancers, these re-
sults indicate that a single factor, i.e., Msh2 deficiency, can result in different
mutational signatures.
For INDELs, we also performed signature extraction and identified two signa-

tures: an ID2-like signature (positively correlated with the COSMIC small Inser-
tion and Deletion signature #2), which is characterized as a single-base T dele-
tion in repetitive T sequences, and another new signature, termed IDA, which
does not correlatewith a COSMIC signature (Figure S8A). IDAwasmostly found
in ourwild-type control cells (Figure S8B) and is characterized by either insertion
or deletion at repeat regions ofmultiple homopolymers or repeat units. The ID2-
like signature, mostly single base deletions in a long homopolymer of thymines,
was predominantly found in our Msh2− /− cell strains (Figure S8B). The ID2
signature in human cancers is suggested to be caused by slippage during
DNA replication of the template DNA strand and is often found in DNA MMR-
deficient tumors.39 Of note, in the COSMIC database, another INDEL signature,
ID7, characterized by 1-bp deletions at homopolymers of both cytosines and
thymine and suggested to be a result of MMR deficiency in humans, was not
observed here.

Hotspots, mutational overlap, and positive selection
We then tested formutational hotspots (for SNVs and INDELs together) in the

mouse genome by using the “ClusteredMutations” package in R. A substantial
number of mutational hotspots were observed in both WT and Msh2− /− fibro-
blasts, but significantly more in the Msh2− /− cells (Figure 6A). Surprisingly,
mutational hotspotswere so obvious, even inwild-type cells, thatwe could iden-
tify them for each individual cell, while in our previous study of human lympho-
cytes we had to pool mutations observed in tens of cells to discover significant
mutational hotspots.6We then used a rainfall plot to visualize the distribution of
the mutational hotspots across the genome. Again, different cell strains
showed substantially different patterns (Figure 6B). The Msh2A strain continu-
ously gained additional mutational hotspots at the end of chromosome 17,
while in the Msh2B cell strain, which showed the highest number of mutational
hotspots, these spread across the entire reference genome during passaging.
Two “super-hotspots” are worth noticing. One is at chr17:86,631,535–
90,041,858 bp, found exclusively in the Msh2A cell strain. Interestingly, Msh2
and Msh6 genes are located in this region along with over 20 other
genes, but all mutations in the hotspots at this region are located at intergenic
sequences. The other super-hotspot was found at chr1:170,941,871–
170,943,280 bp and was observed in four of the five cell strains (two WT and
two Msh2− /− ) but not in the Msh2A strain. This region is entirely intergenic
and is part of a long terminal repeat (LTR) element.
Why would eachMsh2− /− cell strain develop its own unique pattern of muta-

tional hotspots? It is possible that substantial clonal expansion occurred during
passaging, and each cell strain was eventually dominated by different clones.
To test this, we calculated for each cell in each cell strain (of both WT and
Msh2− /− ) the ratio of (1) themutations overlappingwithmutations in other cells
of the same passage and cell strain to (2) the mutations found to overlap in all
cells of all cell strains. A higher ratio indicatesmore clonal expansion. As shown
in Figures 6C and S9, ratios increase dramatically during passaging in cell
strains of both genotypes: from 6.0 ± 6.6 (P5) to 27.3 ± 22.1 (P25) in wild-
type cells (p = 0.0192, linear mixed-effects model, two-tailed) and from 1.7 ±
1.9 (P5) to 71.9± 58.7 (P25) inMsh2− /− cells (p < 2.2× 10− 16, linear mixed-ef-
fectsmodel, two-tailed). Although the difference between cells of the two geno-
types was not statistically significant (p = 0.3967, linear mixed-effects model,
two-tailed), likely due to large cell-to-cell variations, the increase inMsh2− /− cells
was substantially higher (a 42-fold increase from P5 to P25) than in the wild-
type cells (a 4.6-fold increase).
We next investigated whether overlapping mutations identified within the

same cell strains occurred in genes known to be cancer drivers in humans,
as derived from the COSMIC Cancer Gene Census.42 Indeed, we found multiple
overlapping mutations affecting known “cancer driver” genes across all three

REPORT

ll The Innovation 6(10): 101008, October 6, 2025 5



Figure 4. Selection pressure against damaging mutations (A) The ratio of the number of nonsynonymous mutations to synonymous mutations. We added 1 to the denominator
values to avoid potential 0. (B, E, H, and K) The observed ratios of the numbers of nonsynonymous, frameshifting, stop-gain, and stop-lossmutations to the numbers of synonymous
mutations vs. their corresponding ratios expected by chance alone. (C, F, and I) The numbers of frameshifting, stop-gain, and stop-lossmutations per cell. (D, G, and J) The numbers
of observed frameshifting, stop-gain, and stop-loss mutations vs. their corresponding numbers expected by chance alone (in log2-transformed ratios). To estimate the number of
mutations expected by chance alone, we first used SigProfilerSimulator31 to randomly generate the same number of SNVs and INDELs as the observed numbers with also the same
mutation signature, then annotated the artificial mutations with ANNOVAR36 to determine the number of mutations in each functional category, and finally repeated the above two
steps 2,000 times to reach stable estimations. Each dot represents a cell. The p values in (A), (B), (C), (D), (F), and (H) were estimated using linearmixed-effectsmodels, two-tailed. In
(E), (G), and (I), ns represents p > 0.05 and *p < 0.05, **p < 0.01, and ***p < 0.001, separately, which were estimated using binomial tests, two-tailed. Boxplot elements are defined as
follows: center line indicates median, box limits indicate upper and lower quartiles, and whiskers indicate 1.5× interquartile range.
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Msh2− /− cell strains, whereas no such mutations were detected in wild-type
cells (Table S4). Two observations are noteworthy. First, most mutated genes,
including Plcg1, Mtor, and Ccnd1, are involved in cell growth regulation. These
mutationsmay potentially compensate for growth deficiencies caused by other
deleterious genomic mutations in the same and/or different cells of the same
cell population, thereby resulting in comparable overall growth rates between
wild-type and Msh2− /− cells. Second, we identified an overlapping mutation in
the Ercc2 gene exclusively in the Msh2A strain. Ercc2 plays a crucial role in
nucleotide excision repair (NER), a critical pathway for repairing DNA damage.
In contrast, an Ercc2 mutation was found in only one cell of the Msh2B strain,
and no Ercc2 mutations were detected in the Msh2C strain. Interestingly,
Msh2A and Msh2C strains displayed the greatest differences in mutational
signature,whileMsh2Bexhibited intermediate characteristics (Figure 5C).While
the mutational signatures observed here differed from previously reported
Ercc2-associated signatures found in human cancers,43 the Ercc2 deficiency
in our study arose specifically within an Msh2− /− genetic background, poten-
tially differing from genetic contexts typically found in human cancers. These
results collectively suggest that the distinct mutation signatures and hotspot
variations we observed may reflect consequences of secondary mutations.

To further validate the clonal expansion, we performed scRNA-seq on
wild-type (E strain) and Msh2− /− (Msh2A strain) cells at passages 5
and 25 using the 10× Genomics platform, analyzing a total of 10,277 sin-
gle cells that passed quality control. Based on UMAP (Uniform Manifold
Approximation and Projection) clustering of the transcriptomic profiles
(Figure 6D), we observed that at passage 5, both wild-type and Msh2− /−

cells grouped together within a single cluster. However, by passage 25,
while wild-type cells continued to form a single cohesive cluster, Msh2− /−

cells separated into two distinct clusters. Several mutations identified by
scWGS were found almost exclusively in one of the Msh2− /− cell clusters
at passage 25. These mutations occurred in genes such as Med29,
Ppp2r1a, Gnb1, and Med27, which are associated with transcription regu-
lation and cell growth (Figure 6E).
These results confirm the occurrence of substantial clonal expansion during

passaging of cells of both genotypes, especially in the Msh2− /− , with different
cell strains taken over by different clones. This process is a likely cause of
the different mutational signatures and hotspots observed in different cell
strains and very likely has already started during development of these mice
before cell isolation. These results also suggest strong positive selection of

Figure 5. SNV spectra and signatures (A) SNV spectra of each cell strain. Error bars present SD. (B) Three SNV signatures of the fibroblasts identified by de novo signature
extraction using the “MutationalPatterns” package of R.40 (C) Contribution of each SNV signature to the total SNVs per cell.
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Figure 6. Mutational hotspots and overlap (A) The number of mutational hotspots (SNV and INDELs combined) per cell. (B) A rainfall plot of the distribution of mutational hotspots
across the genome. The plot was generated using the “karyoploteR” package of R.41 Each data point represents amutational hotspot observedwithin a single cell. (C) The ratio of the
number of overlappingmutations among cells of the same passage and same cell strain (i.e., animal) to the number of overlappingmutations among all cells of all strains.We added
1 to the denominator values to avoid potential 0. Each data point represents a cell. The p values were estimated using linear mixed-effects models, two-tailed. Boxplot elements are
defined as follows: center line indicates median, box limits indicate upper and lower quartiles, and whiskers indicate 1.5× interquartile range. (D) UMAP plot of the scRNA-seq data.
(E) Somatic mutations found in both scWGS and scRNA-seq data of the same cell strains. The top four genes that are found almost exclusively associated with one-cell clusters
are shown.
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specific cell lineages in the different cell strains, which is frequently observed in
tumor cells.44

DISCUSSION
With the emergence of advanced high-throughput sequencing methods,

including high-accuracy single-cell and single-molecule methods, increased in-
sights are now being obtained in somatic rather than germline mutations as a
possible cause of human genetic disease and aging.3,45 Mutation frequency in
somatic cells and tissues appeared to be 1–2 orders of magnitude higher than
germlinemutation frequency.19 This is in keepingwith the disposable soma the-
ory of aging, which states that reproduction is prioritized over somatic mainte-
nance.46 This idea is in line with the observed correlation of somatic mainte-
nance and species-specific lifespan.47 Indeed, we and others recently showed
that somatic mutation rate is inversely correlated with species-specific
lifespan.24,48

Recent findings that somatic mutation burden increases with age in different
human tissues30 support a possible causal role of somaticmutations in the ag-
ing process. Indeed, clonally amplified somatic mutations, which are relatively
easy to detect by high-depth sequencing, have now been shown to be a cause
of a large number of human diseases other than cancer.45,49 However, what re-
mains unclear is if increased somaticmutation burden per se can cause cellular
degeneration and death. In this respect, a key question is if randomsomaticmu-
tations can rise to a level high enough to infringe on the integrity of the gene reg-
ulatory pathways that provide function to the specialized somatic cells in the
human body. Here, we present mutation accumulation data for a simplified
cell culture model in the form of mouse primary fibroblasts with mutations
continuously generated through a defect in DNA MMR.
The first conclusion that can be drawn from our data is that somatic SNVs

can accumulate to levels at least six times as high as observed in human post-
mitotic tissues from aged subjects.7,9 Our finding that these high numbers of
random mutations have no significant effect on growth rate seems to rule
out a causal role of somatic mutations in aging. However, in contrast to the sit-
uation during normal aging, cell culture systems are subject to selection against
deleterious mutations affecting growth. We found ample evidence for such se-
lection in all fibroblast strains studied, including the control, wild-type strains.
First, among SNVs we found significant negative selection against stop-loss
and stop-gain mutations. Second, while SNV burden never reached plateau
levels up until a population doubling level (PDL) of 50–60 (i.e., P25, Figure 2C),
INDEL burden did not increase in controls and no longer increased after 20–30
PDL (i.e., P15) in theMsh2-deficient cells. These observations are different from
mutations in human tumors, in which positive selection has been shown to
outweigh negative selection.44 However, others have reported evidence for
negative selection also during cancer evolution.50,51

Of note, in mitotically active human B lymphocytes, we previously found the
rate of age-related SNV accumulation in the∼10% functionally active part of the
genome to be only half of the genome-wide average.6 Yet, except for loss-of-
function SNVs,which do not increasewith age in human lymphocytes, the num-
ber of potentially functional SNVs still accumulatedwith age, even in subjects in
their 80s or 90s.6

In addition to the evidence for direct selection against deleterious muta-
tions, most notably INDELS, we also found evidence for widespread muta-
tional hotspots and significant clonal expansion. Both differed between the
cell strains studied, gradually leading to unique populations in each strain.
Together with direct selection against deleterious mutations, such muta-
tional evolution could be responsible for maintaining normal growth rate
even after acquiring tens of thousands of SNVs and over 10,000 INDELs
in the Msh2-deficient cells.
The fact that somatic mutations, either spontaneous or driven by the MMR

defect, show such dramatic evolutionary dynamism in culture strongly sug-
gests they have functional consequences. If they were completely neutral,
none of these effectswould be expected to occur. However, with some possible
exceptions (e.g., the lymphoid and intestinal systems), adult tissues have limited
options for negative selection based on growth since most are not mitotically
active. Moreover, negative selection against mutations not related to growth
rate but adversely affecting critical functions of the host is difficult to imagine.
By contrast, positive selection, as seen in clonal amplification of somatic muta-
tions due to a growth or survival advantage, occurs inmost if not all tissues dur-

ing humanaging. The best example is clonal hematopoiesis,52 but such positive
selection hasbeen seen inmanyother tissues andwas, as expected, associated
with both age and tissue-specific cell proliferation rate.53

Regarding mutational signatures, in human cancer studies, the discovery of
mutational signatures has typically involved decomposing mutation patterns
observed across different samples.54 The relationship between each signature
and its causal factor(s) was predominantly established through correlation an-
alyses. Multiple signatures found in human tumors, including SBS6, SBS14,
SBS15, SBS20, SBS21, SBS26, and SBS44, have been associated with MMR
deficiency, and it has remained unclear whether these signatures result from
mutations in different genes or even from the samemutation. Our results clarify
this causal relationship and demonstrate that distinct mutational signatures
can indeed arise from the same initial mutation, i.e., inactivation ofMsh2, while
the differences observed between signatures may be attributable to variations
in secondary mutations acting as modifiers.
Some limitations of our current study should be mentioned. One limitation is

the driver of the high level of somatic mutagenesis itself. MMR deficiency does
not elevate all categories of mutations equally, and it can be argued that the
most impactful mutations, including genome structural variation, are not signif-
icantly elevated at all, while less damaging mutations, such as regulatory and
nonsynonymous SNVs, may be compensated for by concurrent fitness-
enhancingmutations. Indeed, this could be one of the reasons for a lack of pre-
mature aging inMMR-deficientmice or humans.55 Another reason could simply
be the lack of detailed analysis of premature aging inMMR-deficientmice or hu-
mans (who usually die from cancer well before old age), which is not trivial.56

Another limitation involves our use of mouse fibroblasts. Due to the absence
of recent tools capable of fully annotating mutation impact in the mouse
genome, our analysis was constrained primarily to clearly deleterious muta-
tions, such as frameshift, stop-gain, and stop-loss mutations, or depended on
conservation scores. To address these limitations, our collaborators have
treated human fibroblasts with multiple low doses of N-ethyl-N-nitrosourea
(ENU), a chemical compound known primarily for inducing point mutations.57

Their findings demonstrated that individual cells could accumulate approxi-
mately 60,000 SNVswith onlyminor negative effects on cell growth rates. Their
data also indicate that cells manage these high mutation loads through selec-
tive elimination of variants within gene-coding regions and critical biological
pathways involved in cell growth and survival. Finally, our study utilized an
in vitromodel, which does not allow our conclusions to extend to the in vivo sit-
uation. Indeed, our approach was primarily geared toward exploring the possi-
bility of an upper limit to the number of de novomutations a typical mammalian
cell can tolerate.
In summary, our present data uncover the comprehensive landscape of so-

matic mutations in MMR-deficient mouse primary fibroblasts as compared to
wild-type control cells passaged in vitro. The results show that the MMR-defi-
cient cell populations maintain high growth rates despite an SNV burden of
at least 50,000 mutations per cell, while INDEL burden reaches a plateau of
about 16,000 per cell. Further analysis showed extensive somatic evolution,
including negative selection to maintain growth rate, possibly by eliminating
deleterious mutations. We conclude that in the absence of such selection op-
tions, deleterious effects of accumulating somatic mutations to the levels
that have been observed in vivo is inevitable. Further research on cell popula-
tions that can be directly interrogated for a functional relationship between so-
maticmutation burden and specific cellular functions known to declinewith age
will provide amore definitive test of a causal relationship between somatic mu-
tations and aging.
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