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Abbreviations: AD, Alzheimer’s disease;  CHO, carbohydrate;  CVD, cardiovascular 
diseases;  DHA, docosahexaenoic acid;  EPA, eicosapentaenoic acid;  FAIR, Findable, 
Accessible, Interoperable, and Reusable (data principles);  MedDiet, Mediterranean-
style dietary pattern;  mQTLs, methylation quantitative trait loci;  MTT, meal tolerance 
test;  NLRP3, NOD-like receptor family pyrin domain containing 3;  OGTT, oral glucose 
tolerance test;  PHI, protected health information; PII,  personally identifiable 
information;  PPGR, postprandial glycemic response;  T2D, type 2 diabetes 
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ABSTRACT 

Precision nutrition is an emerging concept that aims to develop nutrition recommendations tailored to 

different people’s circumstances and biological characteristics.  Responses to dietary change and the 

resulting health outcomes from consuming different diets may vary significantly between people based on 

interactions between their genetic backgrounds, physiology, microbiome, underlying health status, 

behaviors, social influences, and environmental exposures.  On January 11-12, 2021, the National 

Institutes of Health convened a workshop entitled “Precision Nutrition: Research Gaps and Opportunities” 

to bring together experts to discuss the issues involved in better understanding and addressing precision 

nutrition.  The Workshop proceeded in three parts:  Part I covered many aspects of genetics and 

physiology that mediate the links between nutrient intake and health conditions such as cardiovascular 

disease, Alzheimer’s disease, and cancer.  Part II reviewed potential contributors to interindividual 

variability in dietary exposures and responses such as baseline nutritional status, circadian rhythm/sleep, 

environmental exposures, sensory properties of food, stress, inflammation, and the social determinants of 

health.  Part III presented the need for systems approaches, with new methods and technologies that can 

facilitate the study and implementation of precision nutrition, and workforce development needed to 

create a new generation of researchers. The workshop concluded that much research will be needed 

before more precise nutrition recommendations can be achieved.  This includes better understanding and 

accounting for variables such as age, sex, ethnicity, medical history, genetics, and social and 

environmental factors.  The advent of new methods and technologies and the availability of considerably 

more data bring tremendous opportunity.  However, the field must proceed with appropriate levels of 

caution and make sure the factors listed above are all considered, and systems approaches, and 

methods are incorporated. It will be important to develop and train an expanded workforce with the goal of 

reducing health disparities and improving precision nutritional advice for all Americans. 

 

 

Keywords 

Precision nutrition, data science, food, genomics, nutrigenomics  
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INTRODUCTION 

The importance of nutrition for health and disease prevention is well established (1), 

and global Dietary Guidelines are established to guide impactful public health policy (2).  

However, the practical question of what, when, and how to eat to stay healthy and aid 

individuals in their quest to optimize health is much more complex.  As shown in Figure 

1, many factors require consideration, including individual differences in disease risk, 

socio-environmental and cultural factors, and biological, behavioral, physiological, and 

psychosocial responses to dietary interventions.  As defined by Maruvada et al. (3), 

“Precision nutrition is defined as nutrition or dietary guidance designed to optimize 

health, facilitate disease prevention, and enhance therapeutic benefit through molecular 

(metabolomic, genomic, proteomic, metagenomic) profiling at the level of the individual.”  

Precision nutrition aims to understand these complex interrelationships to optimize 

metabolic responses to diet and ultimately make sustainable and targeted individual 

nutritional recommendations to prevent and treat diseases and improve overall health 

and wellbeing.  This paper is not intended to be a comprehensive or systematic review 

of the current status of precision nutrition research.  Rather, its objective is to 

summarize the specific topics, concepts, and issues raised during presentations and 

discussions during the NIH sponsored “Research gaps and opportunities in precision 

nutrition” workshop on January 11-12, 2021.  Given the many recent developments in 

this field, definitions of nutritional genomics, nutrigenomics / nutrigenetics, personalized, 

and precision nutrition are evolving, and different definitions have been presented 

(Supplementary Table 1).   
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1.  PRECISION NUTRITION IN DIET-RELATED CHRONIC DISEASES 

Chronic diseases (e.g., cardiovascular diseases (CVD), cancers, diabetes, chronic 

respiratory diseases, and neurological diseases), also known as non-communicable 

diseases, result from genetic, physiological, environmental, and behavioral factors.  In 

the words of Richard Lewontin (4), “There are no genetic factors that can be studied 

independently of the environment, and there are no environmental factors that function 

independently of the genome."  Among the environmental risk factors, unhealthy diets 

and sedentary lifestyles are associated with several metabolic risk factors, such as 

increased blood glucose and lipids and increased risk of hypertension and obesity, 

leading to CVD.  These cardiometabolic risk factors can lead to cardiovascular disease, 

the most burdensome global non-communicable disease. 

 

A fundamental approach to controlling the increasing prevalence of non-communicable 

diseases is to reduce their risk factors.  While the Dietary Guidelines for Americans 

(DGA) are intended as a foundation for a healthy population and guide government food 

and agricultural policy, the National Academies of Science, Engineering and Medicine 

(NASEM) report from 2017 entitled Redesigning the Process for Establishing the 

Dietary Guidelines for Americans did indicate that, “Diet constitutes an extremely 

complex system of exposure that is known to influence health, and these modeling 

exercises can help make sense of that complex system,” and the following about the 

food pattern modeling used to inform the DGA: “the heterogeneity of the population is 

largely not accounted for, such as the distribution of requirements for energy and all 
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nutrients, widely varying food choices by numerous demographic factors, and some 

food groups not being consumed by all Americans(5).” During the first session of the 

Workshop, participants discussed precision nutrition concerning major chronic diseases, 

including cardiometabolic diseases (e.g., type 2 diabetes (T2D) and impaired glucose 

regulation) and CVD; cognitive decline; and diet-related cancers.  These topics were 

presented as examples of the many areas of disease that are impacted by nutrition. 

 

1.1.  Nutrition and CVD phenotypes 

1.1.1.  Gene–diet interactions and CVD 

Nutrigenetics, or gene-diet interactions, are the forerunners to precision nutrition initially 

defined for CVD-related traits.  Many studies have been reported showing gene-diet 

interactions for intermediate conditions (e.g., hyperlipidemia, diabetes, obesity, and 

hypertension) and CVD events.  These studies have been summarized in several 

reviews for different types of experimental designs (observation and intervention) and 

outcomes (intermediate CVD phenotypes and CVD outcomes) (6).  Hundreds of gene-

diet studies support (7) the notion that diet can modify genetic susceptibility to CVD.  

However, the level of specific scientific evidence required for the precision desired 

remains too low to apply it in practice to individualize the dietary recommendations 

needed to prevent CVD.  Limitations in the existing body of evidence include the small 

number of studies that replicate the evidence in different populations, and the paucity of 

large phase III dietary intervention trials testing gene-diet interactions, specifically those 

having CVD incidence as the outcome.  For those RCTs focusing on cardiometabolic 

traits (e.g., weight loss) no evidence was found that genotype-diet interaction is a main 
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determinant of obesity treatment success (8, 9).  There is some evidence from the 

Food4Me trial conducted in Europe that personalized dietary interventions using 

biomarkers could improve overall diet quality (10, 11).  Several RCTs and other 

experimental approaches have tested whether genetic testing or other personalized 

dietary intervention approaches are useful in improving compliance and improving diet 

quality (12-21).  However, the results are inconsistent even at the level of systematic 

reviews and meta-analysis (22-24).  Therefore, beyond the need to conduct further such 

interventions, additional meta-analyses of gene-diet interactions of existing randomized 

intervention trials and prospective cohorts involving similar dietary interventions and 

genetic markers are needed.   

 

1.1.2.  Epigenetics, dietary response, and CVD-related traits 

Epigenetic responses (DNA methylation, histone modifications, and non-protein coding 

RNAs) to dietary factors and environmental conditions complement genetic variability in 

contributing to health and to the development and progression of chronic diseases.  Diet 

and lifestyle influence the epigenetic regulation of key products of energy metabolism.  

The role of genes such as leptin (LEP), insulin receptor (INSR), TNFα (TNF), and fatty 

acid synthase (FAS) (25) in the development of several chronic disorders can be traced 

back to epigenetic mechanisms during fetal development.  This concept is further 

supported by various non-Mendelian features of metabolic diseases and cancer and the 

clinical differences between men and women or monozygotic twins.  Unlike genetic 

factors that remain constant throughout life, epigenetics is malleable.  Thus, epigenetic 

signals regulate genes of nutrient metabolism, but nutrient metabolism modifies 
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epigenetic signaling (26).  Moreover, DNA methylation at specific loci can be influenced 

by sequence variations, such that individual genotypes at a given locus may result in 

different patterns of DNA methylation due to allele-specific methylation.  These 

methylation quantitative trait loci (mQTLs) can influence the methylation pattern across 

an extended genomic region. 

 

Few studies have examined the contribution of epigenetic markers to variability in 

dietary response.  As an illustrative example and using data from the Genetics of Lipid-

Lowering Drugs and Diet Network Study (GOLDN) study, Lai et al. conducted an 

epigenome-wide association study (EWAS) on 979 subjects challenged with a high-fat 

diet (27).  DNA methylation was measured in CD4+ T cells.  Eight methylation sites 

encompassing five genes, LPP, CPT1A, APOA5, SREBF1, and ABCG1, were 

significantly associated with postprandial lipemia (PPL).  Higher methylation at LPP, 

APOA5, SREBF1, and ABCG1 and lower methylation at CPT1A methylation were 

correlated with increased plasma triacylglycerols (TAG) concentrations that contributed 

to the PPL response.  These PPL-associated methylation sites also correlated with 

fasting TAG and accounted for a substantially more phenotypic variance (~15%) in PPL 

and fasting TAG (~16%) when compared with the genetic contribution of loci identified 

by a previous genome-wide association study (GWAS) (4.5%) in the same participants 

(28).  However, such findings must be validated by larger studies, and similar 

approaches applied to studies of other nutrients.  The crosstalk between epigenetic 

markers and genetic variability in relation to dietary response has been demonstrated in 

several studies (29).  Thus, the epigenetic status of the APOA2 regulatory region was 
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associated with saturated fat intake and the APOA2 −265T>C genotype promoted an 

APOA2 expression difference between APOA2 genotypes on a high-saturated fatty acid 

diet (30).  Along those lines, Ma et al. demonstrated that higher n-3 PUFAs were 

associated with lower methylation at the IL6 promoter, but SNPs modified this 

association at the IL6 locus (31). 

 

An important caveat related to measuring epigenetic changes in humans is that 

epigenetic markers are usually tissue specific.  Therefore, the usual epigenetic analyses 

in human lymphocytes may not be representative of the changes in liver, muscle, and 

brain DNA.  New methodological developments, such as the use of circulating cell-free 

DNA released from such tissues, may more precisely assess epigenetic markers within 

those tissues (32). 

 

1.1.3.  Dietary response, microbiome, and cardiometabolic traits 

Research targeting precision nutrition approaches to prevent and treat cardiometabolic 

diseases have increasingly implicated a complex interactive role for the host 

microbiome (33-35).  Some investigations have contrasted a Western and a 

Mediterranean-style dietary pattern (MedDiet) (36) with evidence of associated changes 

in the gut microbiome structure and function (37).  The Health Professionals Follow-up 

Study findings further supported protective associations between adherence to the 

MedDiet and cardiometabolic disease risk.  This study demonstrated that such 

cardiometabolic disease as determined by measurements of blood biomarkers of 

glucose homeostasis, lipid metabolism and inflammation was significantly stronger 
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among participants with decreased abundance of Prevotella copri (38) bacteria.  

However, most existing studies are observational and cross-sectional, while 

mechanisms and causal factors remain largely unexplored.  In this regard, studies both 

published and underway take a multi-omic approach and demonstrate relationships 

between diet, the microbiome, and the circulating metabolome.  The PREDICT-1 study 

(34) reported many significant associations between microbes and specific nutrients, 

foods, food groups and general dietary indices, which were driven especially by the 

presence and diversity of healthy and plant-based foods.  Moreover, microbial 

biomarkers of obesity were reproducible across external publicly available cohorts and 

in agreement with circulating blood metabolites that are indicators of cardiovascular 

disease risk.  While some specific microbes, (e.g., Prevotella copri reported by Asnicar 

et al. and Blastocystis spp.,) were indicators of favorable postprandial glucose 

metabolism, a microbiome fingerprint was predictive of cardiometabolic biomarkers 

(e.g., fasting and postprandial glycemic, lipemic and inflammatory indices) and was also 

associated with healthy dietary habits.  However, in acute experiments, measures of 

colonic fermentation, and abiotic factors were not shown to be significantly associated 

with variability in postprandial responses maybe because of resilience in healthy 

adults(39). 

 

It has been suggested that the habitual long-term diet can benefit the gut microbiome 

and the metabolome synergistically.  For example, consistent intake of a predominately 

plant-based diet appears to favorably influence circulating metabolites, especially bile 

acids.  Thus, it is likely that such studies will increasingly identify dietary compounds 
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and phytochemicals that may modulate bacterial abundance and quality within the gut 

that interact with the microbiome composition and thereby influence host metabolism 

(40, 41).  It is important to emphasize that most of the current studies are still using a 

'global' population approach and we need to evolve towards more 

'personalized'/individual studies. 

 

1.2.  Type 2 Diabetes 

1.2.1.  Predicting and controlling glycemic response to diet in T2D 

The dysglycemia observed in T2D can be thought of as having three separate 

components:  glycemic variability, ambient hyperglycemia, and hypoglycemic episodes 

(42).  Glycemic variability refers to glucose fluctuations from peaks to nadirs, with 

hyperglycemic peaks reflecting postprandial glycemic response (PPGR).  Ambient  

hyperglycemia is elevated glycemia that results from the loss of insulin-secreting β-cells 

and their replacement by glucagon-secreting alpha cells.  Hypoglycemic episodes are 

adverse consequences generally driven by medication management.  Glycemic control 

is an important management target and PPGR appears to be more damaging than 

ambient hyperglycemia (43).  Glycemic variability increases oxidative stress and 

epidemiologic studies have shown postprandial hyperglycemic peaks to be a powerful 

predictor of cardiovascular risk (44).  Further, some clinical trials have shown that 

lowering postprandial hyperglycemic peaks with medication reduces the risk of 

progression to diabetes, hypertension, and cardiovascular events in those with impaired 

glucose tolerance (45, 46).  There is universal recognition that dietary management is 

key to successful T2D treatment.  To date, most studies have employed one-size-fits-all 
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dietary interventions (47-57) with mixed results.  Uniform dietary interventions may fail 

to manage postprandial hyperglycemia because individuals vary greatly in their 

glycemic response to the same food (58).  Given the importance of interindividual 

variability of dietary response, new approaches are being used to investigate the range 

of responses and the variability in response due to measurement error or the 

consequence of behavior compensation, with the goal of understanding how dietary 

macronutrient manipulation may be optimized for individuals. 

 

1.2.2.  T2D and the microbiome 

Recent studies have shown that the composition and function of the intestinal 

microbiota are critical factors in glucose homeostasis (59).  In a series of mouse gut 

microbiota studies, Turnbaugh et al. (60) demonstrated that the obese microbiome has 

an increased capacity to harvest energy from the diet.  Others have shown the 

composition and function of gut microbiota to be associated with glucose intolerance 

(61, 62), insulin resistance (63), and T2D (64, 65).  Vrieze et al. showed that transferring 

intestinal microbiota from lean humans to those with metabolic syndrome increased 

insulin sensitivity (66).  In 2015, Segal reported on the development of a machine 

learning algorithm for predicting PPGR to specific foods consumed by the participant 

(35).  In the model discovery phase, a glycemic profiling training data set was compiled 

on 800 Israeli participants, with data including the gut microbiome, various blood tests, 

questionnaires, a date- and time-stamped food record, sleep, physical activity, and 

interstitial glucose measured with continuous glucose monitoring.  The model 

demonstrated high between-subject variability in PPGR to the same foods, suggesting 
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that universal dietary recommendations are of limited utility for limiting PPGR.  The 

derived model was validated in a new cohort of 100 participants, with model predictions 

for meals being highly correlated with the measured glycemic response (R=0.6) and 

substantially higher than naïve predictions based only on the meal’s carbohydrate 

(CHO) content (R=0.28) (35).  The model was recently validated in a large US sample 

(58, 67) but, to date, has not been evaluated for limiting PPGR in patients with T2D.  

Validation is important as computer algorithms have not been usually demonstrated to 

be effective in improving health outcomes in different populations, and different 

computer algorithms may offer inconsistent or even contradictory nutrition 

recommendations. 

 

1.3.  Cancer 

Nutrients, non-nutrient bioactives, energy balance, and dietary patterns are key 

determinants of cancer risk (68) and established guidelines for prevention can 

significantly impact the global burden of cancer (69).  Such efforts also highlight the 

potential for personalized interventions to serve as important and cost-effective, non-

pharmaceutical strategies for primary cancer prevention and suppressing cancer 

progression.  In the past, diet and cancer interactions have traditionally focused on 

primary prevention.  Despite solid preclinical evidence, nutrition intervention studies with 

specific dietary patterns, foods, or nutrients, and the impact on cancer outcomes are 

extremely limited.  Studies such as the Selenium and Vitamin E Cancer Prevention Trial 

(SELECT) for prostate cancer  (70) and the ATBC with-carotene focusing on lung 

cancer (71) have shown limited success, and were perhaps sub optimally designed 
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(72), and reduced enthusiasm for additional studies.  A major gap in these studies was 

a lack of understanding of the duration of intervention that may be necessary, as well as 

the form, bioavailability, and mechanistic targets, coupled with knowledge of the 

baseline nutrient status of the host, and an understanding of the significant individual 

variability in responses.  One challenge in the field of cancer research relates to the 

limited number of intermediate biomarkers for risk, compared to those that are available 

for CVD risk.  Definitive phase III trials should be designed based upon knowledge 

derived from phase I/II data that clearly defines the pharmacodynamics of the 

intervention and the relevant factors impacting human heterogeneity. 

 

Personalized medicine and targeted therapy approaches are the foundation of oncology 

therapeutics.  Gene profiling of the cancer, to define relevant mutations and targets has 

allowed for the development of “gene prognosis signatures”; knowledge that can 

improve the selection of higher risk individuals for novel adjuvant/neoadjuvant therapy 

trials.  In addition, molecular signatures of individual cancers increasingly can define 

responders and non-responding subgroups for specific treatments while also providing 

a specific target for defining mutation specific agents (73, 74).  In parallel, host genetics 

may define pharmacokinetic and pharmacodynamic responses in an individual, thereby 

impacting response to therapy and toxicity.  Few studies address how dietary variables 

interact to impact these processes and improve individual outcomes. 

 

Finally, early detection and improved therapy is greatly increasing the number of cancer 

survivors, including many with long term cures.  Providing evidence-based guidelines, 
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specific for individuals experiencing unique combinations of therapeutics are needed to 

improve long-term outcomes.  Opportunities for precision nutrition trails are abundant 

and much needed.  Critically, clinical trials in cancer must address issues of dose of an 

exposure and the duration of intervention necessary to achieve an optimal impact.  

Greater mechanistic insight into how genetic, epigenetic, microbiome, and other factors 

contribute to individual variability in response to dietary patterns, nutrients, and bioactive 

phytochemicals will enhance the design of impactful intervention studies for cancer 

prevention, therapy, and survivorship. 

 

1.3.1.  Gene-diet interactions and cancer 

Precision nutrition research related to cancer started with the study of gene-diet 

interactions, similar to cardiometabolic traits and CVD risk, Theodoratou et al.(75) 

critically and comprehensively evaluated the evidence across 13 meta-analyses of 

observational studies of gene-diet interactions for the five most common cancers 

(breast, lung, prostate, colorectal, and stomach).  The authors focused on gene-diet 

interactions for food and nutrient associations that were classified as convincing (class 

I), highly suggestive (class II), or suggestive (class III) and classified them as strong, 

moderate, weak, or no evidence.  Among all the evaluated gene-diet interactions with 

prior weak, moderate, or high scores, only the interaction between the 10p14 locus near 

GATA3 and processed meat in relation to colorectal cancer risk (76) was classified as 

moderate.  The following interactions were classified as weak; interactions between 

rs17468277 (CASP8) and alcohol and in relation to breast cancer risk as well as 

interactions between rs1805087 (MTR) and alcohol (77), rs16892766 (8q23.3) and 
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vegetables (78), and GSTT1 deletion polymorphism and cruciferous vegetables and 

(79) in relation to colorectal cancer risk were classified as weak.  The remaining studied 

associations did not show any evidence of an interaction.  A more recent review 

focused on gene-diet interactions related only to breast cancer (80).  The authors listed 

18 genes investigated in 25 studies, and most of them reported significant gene-diet 

interactions.  However, the strength of the evidence was not assessed.  Additional 

strategies, perhaps in carefully controlled clinical trials of specific nutrients, 

phytochemicals, or dietary patterns examining the specific gene variants relevant to the 

intervention can provide greater insight (81).  Genetically engineered animal models can 

also provide critical preclinical evidence for relevant gene-nutrient interactions (82, 83) 

 

1.3.2.  Diet response, epigenetics, and cancer 

Animal models support associations between diet and epigenetic alterations and 

between epigenetic alterations and cancer (84-87).  However, data in human 

populations are sparse and inconsistent, both for observation studies and randomized 

clinical trials.  These studies have failed to show clear, consistent, and predictable 

effects of diet or supplements on cancer risk because of high phenotypic variability in 

response.  Therefore, the conclusion that diet is linked directly to epigenetic alterations 

and that these epigenetic alterations directly increase or decrease the risk of human 

cancer remained speculative based on the current evidence (88), suggesting 

opportunities for future research. 
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1.3.3.  Dietary response, microbiome, and cancer 

Rapidly emerging data implicate the gut microbiome’s responsiveness to diet, in terms 

of both structure and function, impacting many bioprocesses related to carcinogenesis.  

We are learning that dietary patterns characterized by ultra-processed foods, refined 

sugar and grains, and meat compared to intake patterns rich in whole grains, legumes, 

vegetables, fruits, and fiber can significantly alter the microbial composition in 

association with improved host metabolism and health outcomes (89-92).  There is a 

critical need to appreciate the potential of the overall dietary pattern, defined by multiple 

components of a healthy diet, to define a healthy and stable microbiome that is also 

optimized for cancer prevention. 

 

The diet may impact the colonic microbiome in ways that alter the propensity for 

developing obesity and conversely obesity may subsequently lead to changes in colonic 

composition and function impacting the host and perhaps risk of cancer (60, 93-98).  

Bacteria in various sites may alter the host response to bioactive phytochemicals 

through their metabolic conversion to metabolites that are subsequently absorbed and 

may have more or less bioactivity as modulators of carcinogenesis (99-103).  For 

example, thioglucosidase myrosinase activity, which releases the bioactive 

sulforaphane from glucosinolates found in cruciferous vegetables, often depends upon 

gut bacterial thioglycosinodases (104), indicating that the gut microbiome influences 

sulforaphane bioavailability (105).  However, at the present time there is a large gap in 

knowledge regarding our understanding of the interplay between the gut microbial flora 
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at various sites and the host in regard to the metabolism and anti-cancer activity of the 

diverse array of dietary bioactives.  Studies that examine this interplay are needed to 

ultimately aid with personalized stratification-based prevention strategies to improve 

anti-cancer efficacy. 

 

The growing evidence that the host microbiome influences the therapeutic response to 

cancer immunotherapy is driving new initiatives that may have significant impact.  The 

recondition that the microbiome is a modifiable target for dietary interventions and can 

influence efficacy and safety of novel immunotherapeutics, such as immune checkpoint 

blockade, raises the question of defining the optimal dietary interventions that are 

specific for the rapidly emerging array of treatment regimens (106, 107). 

 

Thus, research is rapidly expanding regarding how dietary patterns, nutrients, and 

phytochemicals impact the microbiome at various sites as a central mediator of the diet 

and cancer relationship. 

 

1.4.  Alzheimer’s disease 

Optimal brain function results from highly complex interactions between genetic and 

environmental factors, including food intake, physical activity, age, and stress.  

Specifically, nutrition affects the brain throughout life, with profound implications for 

cognitive decline and dementia.  These cognitive effects are mediated by changes in 

the expression of multiple genes, and responses to nutrition are, in turn, affected by 

individual genetic variability.  Alzheimer’s disease (AD), the most common cause of 
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dementia, develops decades before any clinical symptoms manifest.  Lifestyle and 

genetic factors contribute to AD risk.  The best-known genetic risk factor is the presence 

of the apolipoprotein E (ApoE4) allele at the APOE gene (108).  The ApoE4 allele codes 

for an alternative form of ApoE, which can disrupt its ability to perform essential 

functions in lipid transport and metabolism in the brain.  ApoE4 allele frequency in the 

general US population is about 20%; however, carriers of this allele account for ~40-

65% of AD cases.  Still, most people with the apoE4 allele will not express the disease.  

Therefore, gene-environment interactions are thought to play a mediating role (109). 

 

1.4.1.  Gene-diet interactions, Alzheimer's, and cognitive decline 

Migration studies provide a clear example of the importance of gene-environment 

interactions in disease expression (110).  For example, the ApoE4 allele at the APOE 

gene is common in persons of West African ancestry but does not meaningfully 

contribute to AD risk in those living in West Africa (111, 112).  However, incidence of AD 

is much higher in Africans living in the United States (113).  Likewise, Southern Italians 

carrying ApoE4 and live in Italy can reach old age, apparently unaffected by the genetic 

risk.  However, Southern Italians living in the United States carrying ApoE4 exhibit a 

highly reduced chance of living into late old age (114).  Findings suggest environment 

and lifestyle, including diet, may mediate ApoE4 effects on development of AD. 

 

Longitudinal observational studies further demonstrate the potential interaction between 

dietary factors, cognitive decline and the APOE locus. These studies highlight the 

importance of dietary components, as well as timing, duration, and “dose” of dietary and 
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nutrient changes along the spectrum of preclinical AD, MCI due to AD, and AD 

dementia (110, 115).  Trials of docosahexaenoic acid (DHA) supplements for AD 

dementia treatment failed, possibly due to starting supplementation too late in the 

disease process.  Other trials that have focused on AD prevention only, were largely 

negative possibly due to a low-dose supplementation.  However, recent studies have 

shown that larger DHA doses are necessary for adequate brain bioavailability and that 

ApoE4 is associated with reduced DHA and eicosapentaenoic acid (EPA) delivery to the 

brain prior to the onset of cognitive decline (116).  Further long-term randomized studies 

are warranted at the earliest phases of the AD pathophysiological process to inform 

more definitive conclusions. 

 

1.4.2.  Dietary response, epigenetics and Alzheimer’s, cognitive function 

Epigenetic mechanisms are central to brain development, structure, and function.  

Studies linking nutrition with advances in neuroscience, genomics, and epigenomics 

should provide novel approaches to preventing cognitive decline, as well as treating 

dementia and AD.  For example, curcumin consumption has been associated with 

better cognitive performance and lower prevalence of AD.  These associations may be 

explained by curcumin’s ability to downregulate DNA acetylation expression in specific 

cell lineages (117, 118).  Similarly, flavonoids, which are polyphenolic compounds found 

in fruits, vegetables, and other natural sources, have been shown to reduce the 

expression of pro-inflammatory cytokines and prevent neural damage through 

epigenetic modulation (119). 
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Overall, recent studies have shown that personalized clinical recommendations based 

on genetics, in combination with modifiable risk factors (e.g., nutrition, physical activity, 

stress management), can help improve cognition and reduce calculated AD risk in 

patients at risk for AD (108, 120). 

 

1.4.3.  Dietary response, microbiome and Alzheimer’s, cognitive function 

The action of the gut microbiome on the central nervous system (CNS) has been of 

increasing interest.  A bi-directional relationship has been reported between the gut 

microbiome and the CNS and has been referred to as the “brain-gut-microbiota axis”.  

Briefly, the brain-gut-microbiota axis means that the CNS can regulate the digestive 

tract by acting upon the enteric system and, vice versa, the intestinal microbiome can 

influence the CNS via afferent signaling pathways and secretion of active substances.  

Studies have implicated the role of the brain-gut-microbiota axis in AD pathology (121).  

Preclinical animal studies have shown that microbiota obtained from the intestines of 

AD mice possessing the human APP gene can increase amyloid-beta deposition in the 

intestines of normal mice (122-124).  Furthermore, studies in older populations suggest 

an association between increased levels of pro-inflammatory bacteria in gut microbiota 

and amyloid deposition in the brain and cognitive deficits (125). 

 

The “Western diet” has been shown to contribute to changes in gut microbiota and the 

development of dementia.  This higher-fat diet may change the bacterial composition in 

both the colon and caecum, resulting in a higher abundance of bacterial species 

associated with cognitive impairment and cerebral hypometabolism.  Conversely, a 
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healthier dietary plan such as a modified Mediterranean-ketogenic diet has been shown 

to improve microbial diversity in subjects with mild cognitive impairment due to AD 

compared to a more conventional Western diet (126).  This suggests that diet may 

modulate the gut microbiota in a way that potentially reduces their risk of developing 

AD. 

 

 

2.  INDIVIDUAL CHARACTERISTICS INFLUENCING RESPONSE TO DIETARY 

INTAKES 

During the second session of the Workshop, participants discussed many potential 

variables that contribute to interindividual variability in dietary response.  Recent 

research has highlighted the importance of the rigorous methodology needed to assess 

nutritional physiology and postprandial metabolism. 

 

2.1.  A past focus on limited subsets of individual nutrients 

The role of diet in health is well documented by decades of research in nutrition (127).  

However, understanding how diet affects human health (128, 129) and the 

methodologies utilized to acquire this knowledge are the subject of constant self-

reflection and occasionally of fierce debate (130, 131).  From a dietary perspective, 

what is known is mostly focused on the role of ~150 dietary components, including most 

of the defined nutrients, systemically tracked by food composition databases (e.g., by 

USDA), which represents only 0.5% of the biochemicals present in food (132).  The 

need to enhance the USDA and other databases with rigorously collated, synthesized, 
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and disseminated food composition data is currently a major roadblock in the scientific 

community’s ability to advance the field and assess the exceptional biochemical 

diversity of food.  Arguably, accurate information on the biochemical composition of 

foods is just as essential to nutrition and health science as the genome project was to 

biology, revolutionizing the understanding of long-ignored environmental factors and 

their impact on the molecular roots of human disease.  Indeed, one can validly argue by 

analogy that current coverage of food composition is where genetics was before the 

Human Genome Project.  Quantifying the full biochemical palette of the diet could offer 

the possibility of linking these patterns to molecular processes with ultimate accuracy, 

leverage high-throughput approaches common in genomics, pave the way to 

personalized dietary recommendations, and improve the understanding of how diet 

modulates the efficacy of drugs and treatments (133).  For example, a better 

understanding of how individuals differ in their absorption of nutrients can lead to the 

discovery of molecular and physiological targets for drug development that may improve 

postprandial handling of nutrients (134).  Therefore, a Big Data strategy is needed to 

create and experimentally validate a high-resolution compendium of the biochemical 

composition of food and to make this new resource widely available in an actionable 

form to the research community.  Deep mining of the chemical and biological literature 

for information on  biochemical composition of food can be complemented with machine 

learning tools to infer missing knowledge, and with systematic experimental validation to 

estimate the precision and the completeness of our current knowledge.  The resulting 

platform would transform health science by catalyzing dramatic leaps in scientific and 
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health insights and opening up novel avenues by which to understand, avoid, and 

control disease. 

 

2.2.  Impact of race, ethnicity and culture on diet-related health outcomes 

It is well established that individual nutritional needs and responses to diets vary across 

populations according to biological, demographic, and environmental features (135, 

136).  Although differences in populations and ethnicities are being increasingly 

acknowledged, these factors are often ignored in nutrition-based studies.  For example, 

diverse groups are combined under the heading of Asian Americans, although there are 

striking social, cultural, and genetic differences among the subgroups within this 

population (137, 138).  Similar criteria are applied to people of African American and 

Hispanic heritage, although genotype and allele frequencies differ within these 

populations/ethnicities.  Changes in diet or epidemiological transition have not equally 

affected all ethnic groups or subgroups (139, 140) and a significant gap exists in the 

understanding of genetic variability on nutrient requirements, as well as how genetics 

impacts responsiveness to nutrient change.  Inclusion of diverse populations and their 

subgroups in studies is critical to understanding the physiological response to diet and 

characterization of responder vs. non-responder phenotypes.  These phenotypes 

should be further evaluated in relation to their exposure to social and environmental 

factors such as physical activity and mobility, socioeconomic status, geography, 

including rural/urban settings, food security/availability, living situation, and exposure to 

pollutants.  Identification of genetic variants that make specific subgroups susceptible to 

diseases and an understanding of dietary response in the context of exposure to the 
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environmental factors will support the development of nutritional interventions targeted 

to these groups, which is a key step towards personalized nutrition. 

 

2.3.  Nutritional status as a source of inter-individual variability 

As described above, participants in nutrition research studies exhibit a large variability in 

response to dietary interventions.  For many years, it was assumed that the variation in 

response was due to incomplete adherence to protocols.  An individual’s ability to 

adhere to dietary change is, in itself, an important factor to understand.  Being able to 

make behavior changes to comply with dietary protocols may be different between 

participants due to factors such as  social support, mental health, stress, financial and 

environmental stability. Data on these outcomes should be collected in precision 

nutrition studies.  Furthermore, in addition to factors that reduce an individual’s ability to 

adhere to a research protocol, participants can have acceptable levels of adherence to 

dietary intervention protocols, particularly in the context of well-designed and highly-

controlled intervention studies, yet, exhibit a wide array of biological responses to a 

specific intervention (34, 141).  Study participants are not uniform in terms of the 

characteristics they bring into a dietary intervention – they differ in age, body habitus, 

microbiome, metabolome, epigenetic characteristics, usual diet prior to the intervention, 

dietary supplement use, medical conditions and other lifestyle habits that influence 

metabolism and intervention response.  Statistical designs that include block 

randomization can help distribute some of these characteristics across intervention 

groups.  However, this strategy is typically only practical for a limited number of 

categorical variables such as age groups, BMI groups, and sex.  Importantly, 
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stratification across more groups requires larger sample sizes to fill the blocks.  

Moreover, it is not feasible to block the randomization scheme to include complex, multi-

dimensional exposures such as baseline microbiome and metabolome features.  It is 

also important to recognize that the diet itself is complex.  Shifting one dietary 

component, whether it is the macronutrient distribution or specific food components 

(e.g., cruciferous vegetables), will often produce changes in the metabolome, proteome, 

and microbiome.  For comparisons of isocaloric diets, an increase in one of the three 

macronutrients (CHO, fat, protein) will necessitate the reduction in another of the 

macronutrients as a percent of total energy and may induce shifts in downstream 

metabolic by-products.  Thus, both larger sample sizes and advanced computational 

strategies are needed to handle high- multi-dimensional pathways to understand the 

metabolic effects of macronutrient change. 

 

2.4.  Measuring physiologic responses to eating 

Fasting blood concentrations of metabolites are used to determine disease risk and 

treatment outcomes in health care.  However, daily excursions of metabolites and 

hormones - exemplified by the rise and fall of blood concentrations of glucose, lipids, 

insulin between meals – are better predictors of disease risk compared to fasting blood 

values.  For example, elevated concentrations of blood triacylglycerols (TAG) after 

meals have the strongest association with CVD risk compared to fasting measurements 

of TAG (142, 143).  Similarly, the use of HbA1c levels - a read-out of plasma glucose 

levels over months - is well-established to predict diabetes risk.  Over the past 40 years, 

studies of meal CHO metabolism have focused on utilizing an oral glucose tolerance 
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test (OGTT) to assess fed-state glucose metabolism.  The use of an OGTT simplifies 

test procedures and multiple indices of insulin sensitivity can be calculated (144).  

However, people rarely consume glucose in isolation and interactions exist between the 

metabolism of many components in mixed meals.  Thus, although the OGTT is an 

important tool to understand metabolism, it should not be referred to as a meal test.  

Similarly, to understand TAG metabolism, tests should contain mixed amounts of fat, 

representing more traditional daily food intake.  New methods have been developed 

recently using metabolomics to track the processing and fate of dietary nutrients (35, 

145). 

 

Currently, state-of-the-art meal tolerance tests (MTT) are performed in the morning after 

a fast of at least 10 hours.  Blood samples are drawn before and after the MTT as well 

as intermittently over 4-9 h.  Longer times are needed to capture the concentrations of 

metabolites as they return to baseline levels.  The total energy of the MTT can vary 

between subjects so that it is scaled to be a set proportion of the subject’s total daily 

energy needs(145).  Several factors have been identified that influence the post-meal 

metabolism of nutrients (Table 1).  These factors should be considered during the 

development of study designs to decide whether to intentionally control for these 

variables or not.  Moving the field of precision nutrition forward will require an 

understanding of the biology of inter-individual variability in response to dietary 

interventions.  Careful planning and execution of metabolic tests will be required to 

accomplish this goal (141). 
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2.5.  The influence of sensory nutrition 

Consumers report that the “taste” of foods drives what they like and choose to 

consume.  “Taste” and flavor are complex chemosensory experiences with multiple 

peripheral inputs (true taste, smell, and chemesthesis) carried centrally for perceptual 

integration and coupling with hedonic, reward, decisional, and satiety responses.  

Multiple factors that drive variation in flavor perception and food preference influence 

dietary behaviors, chronic diet-related diseases, and the compliance with dietary 

interventions.  These factors include conditions that impede chemicals reaching 

chemoreceptors and influence the function of chemosensory-related nerves (including 

COVID-19); genetic variation in chemoreceptors; interactions between internal and 

external environments to influence the plasticity of chemosensory systems; and age-

related changes.  Genetic variation in taste and flavor perception frames the 

development of dietary behaviors in early life, in interaction with food environments.  

Aging, with changing experiences and environmental exposures, can modify flavor 

perception, with or without changes in food preferences and behaviors (146, 147).  

Interdisciplinary research should leverage sensory nutrition as markers of usual dietary 

behaviors and responses to improve understanding of variability in dietary interventions 

(148).  Clinical nutrition research needs to account for chemosensation in measures that 

reflect sensory function and are relevant to food perception, including self-report and 

measures of food preference.  Even the perception of the energy content of food can 

influence research results (149).  Population-based research should incorporate 

feasible and informative measures of sensory nutrition and food preference with new 

study designs to enhance understanding of diet-disease relationships (150).  Lastly, the 
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formulations of the diets and test meals being fed can impact research findings because 

palatability and acceptability can influence the post-ingestive processing of nutrients. 

 

2.6.  Immune system status and inflammatory response to diet 

Optimal immune system status is paramount for health,  as evidenced by the current 

COVID-19 pandemic (151).  In summarizing the current state-of-the-art, there is 

relatively good prospective evidence demonstrating the relationship between diet, 

nutritional status, the immune system, and inflammation (152).  Also, there is well-

developed knowledge with respect to the impact of different dietary elements on various 

aspects of immunity and inflammation, although this knowledge is yet to be fully 

elucidated.  A key area for development is in the translation to human clinical 

prospective interventions and defining the impact on health outcomes mediated by the 

immune system. 

 

Immune system status is determined by factors ranging from age, gender, circadian 

biology, infection history, vaccination status, to diet, alcohol intake, physical fitness, and 

the microbiome.  Recent research relating to the adaptive and innate immune response 

has greatly advanced our knowledge (153).  Firstly, the adaptive immune response has 

memory i.e., prior exposure to a pathogen heightens the future responses to the same 

pathogen. This is critical because the cells of the adaptive immune system such as T 

cells are specific to each pathogen and without the propagation upon exposure, they 

would not be able to mount an effective defense.  On the other hand, the innate immune 

response does not have a memory and can respond to any pathogen. Secondly, the 
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metabolic configuration of an immune cell determines the nature of the immune 

response.  Obesity-induced innate and adaptive immune dysregulation is characterized 

by heightened pro-inflammatory reactivity of myeloid cells and predominant glycolytic 

metabolic reconfiguration supporting a pro-inflammatory phenotype as well as 

suppressed adaptive immune response including ability to produce effective antibody 

response to vaccines.  The profound impact of obesity on innate and adaptive immunity 

plays a crucial role in the severity of COVID-19 disease in this population.  

Nevertheless, knowledge in this field needs to deepen the understanding of the impact 

of different dietary elements on immune modulation beyond obesity (152).  The 

challenge in the future will be to determine if and how different nutrients and non-

nutrient food components train and re-configure immune response.  The real challenge 

will be to understand the extent to which these paradigms, with co-regulation of both 

metabolic and inflammatory processes (154) translate to humans. 

 

A key stumbling block is the lack of sensitive and specific biomarkers that accurately 

reflect the dynamic and circadian rhythm of the immune response.  Meal tolerance tests 

are one potential tool, with the prospect to capture both the metabolic and inflammatory 

dynamics in response to food intake (155, 156).  This response varies substantially with 

age, gender and metabolic phenotype.  Nevertheless, there remains a significant body 

of work required to understand the impact of different dietary constituents on the acute 

postprandial immuno-metabolic response in a temporal, cell-specific manner.  In this 

realm, whilst the adverse effects of some dietary elements are well known, greater 

focus needs to be paid to the extent to which immuno-metabolic responses can be 
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attenuated or resolved with dietary change and how these effects can be robustly 

measured or quantified.  To this end, precise nutrition approaches should add greater 

clarity with respect to optimal opportunities to maximize knowledge concerning the 

interactions between diet-related metabolism, immune function, and health. 

 

2.7.  Circadian rhythm, food intake and sleep 

2.7.1  Food intake 

“When should I eat?” has emerged as a compelling research question.  That food intake 

timing matters is supported by an established body of evidence linking metabolism to 

the circadian system, a system comprised of a network of internal biological clocks 

(141, 157, 158).  As such, when we eat intimates a dimension of time, though there are 

several aspects of time that warrant consideration.  Time may be social and determined 

by clock time (e.g., work time, school time); it may be biological and determined by 

internal body clocks (e.g., chronotype, age), or it may also be environmental and 

determined by sunrise and sunset, which vary by season and geographic latitude (e.g., 

solar time).  Research to date has focused on clock time with regard to eating behavior.  

Early appreciation for the influence of the timing of food intake (159) on total daily 

energy intake has advanced to more sophisticated analyses of eating occasions across 

the 24h day (160).  Earlier versus later eating occasions, as well as intermittent fasting 

and restricted time windows for eating, have been associated with better metabolic 

health outcomes in ecologically valid settings (161-164).  However, some evidence 

suggests that the benefits of earlier versus later eating occasions may be more relevant 
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for the metabolic health of some individuals, such as MTNR1B risk-carriers or sedentary 

individuals, than others (165-167). 

 

Data indicate that eating later in the day, later relative to the sleep episode, and later 

compared to the central circadian clock (using the gold standard dim light melatonin 

onset) are associated with increased body mass, increased adiposity, increased odds 

for being obese or overweight, and decreased success of weight loss during dietary 

weight loss intervention and in the years following bariatric surgery, both in children and 

adults and without apparent differences in energy intake (162, 164, 168-174).  One of 

the possible mechanisms for this effect is if the magnitude of the increase in energy 

expenditure following a meal (known as diet-induced thermogenesis, or the thermic 

effect of food) is dependent on the time at which the meal is consumed.  Diet-induced 

thermogenesis (DIT) is substantially higher when a test meal is consumed in the 

morning as compared to the evening.  This variation in DIT may be primarily driven by 

the circadian timing system (175).  Glucose tolerance also is relatively impaired in the 

evening compared to the morning (176) and the endogenous circadian system plays a 

key role in this modulation via regulation of beta-cell function (177-179).  Regarding 

personalized chrononutrition, it should also be pointed out that the effect of dinner 

timing on glucose control can depend importantly on individual genotype (165, 

180).Progress in this area is stymied by the lack of an accurate and feasible 

assessment for biological time in ecologically valid settings.  The complexity of the 

internal body clock system introduces further challenges.  With clocks existing in every 

tissue, it remains uncertain which tissue would best represent biological time relevant to 
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nutrition.  This is especially important for the important segment of the population 

working night shifts that has been associated with altered circadian rhythms, lifestyle 

habits, and cardiometabolic risks and should be factored in when developing effective 

workplace wellness and precision nutrition programs (181).  This is a promising and 

active area of ongoing research that may have implications for dietary interventions. 

 

2.7.2.  Sleep restriction and timing 

The association between sleep and cardiometabolic function and disease, including the 

interaction with nutrition, has received increasing recognition.  Controlled experimental 

studies have shown reduced insulin sensitivity to a morning OGTT in healthy adults 

during short-sleep, early-waking conditions (182).  Short sleep, poor sleep quality, and 

sleep disorders are associated with increased risk for T2D (183-185), obesity, 

subclinical atherosclerosis, and  cardiovascular disease (186-188).  Sleep deficiency 

affects hunger, appetite, food choice and intake; however, this effect varies across 

individuals.  Sleep loss exerts these effects via alterations in homeostatically-regulated 

pathways, assessed by changes in circulating levels of leptin and ghrelin.  A positive 

correlation has been reported between the increase in ghrelin/leptin ratio and increase 

in hunger following sleep restriction (189).  Interindividual variability can also be 

observed within hedonic systems following sleep loss, as seen within the 

endocannabinoid system, which is known to regulate hedonically driven food intake 

(189).  Sleep loss facilities a robust increase in ratings for sweet, salty, and starchy 

foods as well as an actual increase in snack food intake, specifically (190-193).  There 

is also developing evidence for the reverse relationship: the influence of nutrition on 
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sleep (193, 194).  Finally, the disturbances in daily routines due to the COVID-19 

confinement and remote work have impacted circadian rhythms, energy balance and 

body weight (195).  More research is needed in this burgeoning field. 

 

2.8.  Social determinants influencing food and health 

Social determinants of health refer to the economic and political structures, social and 

physical environments, and access to health services that shape a person’s health and 

wellbeing.  Social factors contribute significantly to health and may account for up to 20-

50% of the disease burden of society (196).  They also expose – and explain – nutrition 

and health disparities, as the social and environmental factors that influence a person’s 

dietary choices are unequally distributed within a population.  For example, structural 

barriers to healthy food choices (including low income, unavailability of food stores that 

sell healthy food, neighborhood characteristics like walkability and crime, lack of 

transportation, literacy, discriminatory practices) exist for susceptible groups, such as 

racial/ethnic minorities.  The concentration of structural barriers within communities can 

also give rise to unhealthy social and cultural food norms, that further reinforce 

unhealthy eating patterns.  As such, diet quality is consistently poorer among 

populations with low incomes, and among some minority populations like African 

Americans (197, 198).  Additionally, exposures to environmental stressors like 

discrimination, social isolation, and pollution affect not only food access and choice, but 

also biological processes including inflammatory responses and gene expression (199).  

A precision nutrition approach should use all relevant information on an individual's 

characteristics, including their social context, to drive implementation strategies to 
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achieve optimal compliance with nutritional guidelines and recommendations for better 

health.  Inequitable social and environmental experiences may explain disparities in 

health outcomes mediated by epigenetics or the microbiome (200, 201).  Unfortunately, 

past work in precision nutrition has often failed to integrate social determinants of health 

and even when it does, investment in research to optimize translation to vulnerable 

communities is scarce.  Current research opportunities to promote a wider integration of 

social determinant data in precision nutrition are presented in Table 2.  To help close 

critical knowledge gaps, researchers may leverage and augment existing cutting-edge 

tools and databases to collect, share, and harmonize data and resources.  Active 

inclusion of social and environmental factors should be done in novel research lines, 

training, diverse and inclusive interventions, and policies for optimal precision nutrition. 

 

2.9.  Differences in body weight as a source of individual response to diet 

One important aspect of precision nutrition is to understand the factors that govern an 

individual’s response to a weight loss intervention.  This is particularly relevant given the 

challenge of overweight and obesity in the U.S.  In addition to genetic and metabolic 

characteristics, tailoring specific dietary patterns to individual needs may help increase 

long-term adherence to weight loss programs.  This will, in turn, produce lasting weight 

management and aid in the prevention and treatment of obesity-related comorbidities, 

such as insulin resistance and dyslipidemia.  Specific characteristics that should be 

considered include genetics, race, ethnicity, sex, gender, menopausal status, level of 

glycemic control, disease history, gut microbial composition, food and taste preferences, 

eating behaviors (e.g., dietary restraint), and level of physical activity.  Well-designed 
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trials, such as the PREDICT-1 study (202), will be needed to clarify individual 

differences in responses to diet.  When sufficient data are available in this area, it may 

be possible to create an online tool to help clinicians quickly identify what diets would 

work for certain individuals based on their unique characteristics.  These tools could 

greatly augment a patient’s success with their prescribed weight loss intervention and 

other health outcomes (203). 

 

Opportunities exist to close these gaps, including utilizing cutting-edge tools for data 

collection and developing databases to collect, share, and harmonize data.  

Recommendations and resources are available from several agencies on how to 

conduct research and intervene on social factors for optimal precision nutrition 

strategies.  It is thus essential for social determinants of health to be prioritized in 

research, education, and policies relevant to precision nutrition. 

 

 

3.  THE NEED FOR NEW TECHNOLOGY AND COMPUTER-AIDED APPROACHES 

TO BETTER UNDERSTAND THE COMPLEX SYSTEMS INVOLVED 

The third session of the Workshop focused on analytical approaches in precision 

nutrition, application of knowledge to benefit individuals, ethical and legal challenges in 

study design, data collection and implementation, and the need to train scientists in 

computational methodology, data science, systems science, machine learning, artificial 

intelligence, and data infrastructure.  As described earlier, achieving precision nutrition 

entails understanding and addressing the complex systems of factors that affect and 
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may be affected by a person’s diet and nutritional health (204).  Progress will depend 

upon the development and integration of novel computational methods, tools, and 

approaches.  While direct cause and effect relationships may be easier to elucidate, 

unaided scientists can struggle with following secondary, tertiary, and other indirect 

effects, especially when time elapses between the initiation of the cause and the 

surfacing of the effects (205, 206).  Often, the impact of a factor may not manifest for 

years, and the specific importance of such factors can differ between individuals.  

Additionally, numerous feedback loops and dynamic factors that change over time can 

make relationships even more challenging to disentangle. 

 

3.1.  Our society is at a key inflection point when it comes to the use of computer-

aided analytics  

Computer-aided methods, approaches, and tools have transformed a number of other 

disciplines, industries, and sectors (207-210).  For example, meteorology relied 

considerably on direct observation and inaccurate conjecture before the advent of such 

methods.  Imagine how difficult it was to anticipate what the weather might be beyond 

the next several hours.  Nowadays, weather maps help bring together very disparate 

data streams that allow decision-makers to understand better and address complex 

weather streams and to prepare better for more tailored responses to the weather. 

These weather maps are essentially visualizations of computer-generated information 

(211).  People across the U.S. don’t all have to remain prepared for rain, tornados, 

hurricanes, snow, and other inclement weather all the time.  Instead, there are more 

precise preparations for and responses to the weather in different parts of the country. 
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Similarly, computer-aided methods, approaches, and tools can transform and advanced 

the field of precision nutrition.  Computer-aided methods include artificial intelligence 

(AI) methods.  The Encyclopedia Britannica (212) defines AI as “the ability of a digital 

computer or computer-controlled robot to perform tasks commonly associated with 

intelligent beings,” and Merriam Webster (213) defines AI as “1) A branch of computer 

science dealing with intelligent behavior in computers and 2) The capability of a 

machine to imitate intelligent human behavior.”  As can be seen by these definitions, AI 

is a very broad umbrella term encompassing any use of computers or computer-driven 

technology to perform tasks that intelligent beings would typically perform.  This can 

range from sorting information in ways that are easier to digest to performing tasks that 

human beings usually do to making decisions based on available information to deriving 

insights from data.  A computer-aided method becomes an AI method when it goes 

beyond the simple, straightforward, “mindless,” and predictable execution of tasks. 

 

Included under AI are a range of different methods such as computer simulation 

modeling and machine learning (214).  A computer simulation model is a computer-

generated representation of a real-world situation.  Machine learning is the use of 

algorithms to get computers to identify patterns in data and “learn” as humans do.  This 

includes both traditional machine learning algorithms that learn patterns and identify 

new relationships from the data and thereby make predictions as well as AI capable of 

learning in new ways that mimic additional aspects of human intelligence. Machine 

learning can proceed with varying degrees of guidance from humans (215).  Supervised 
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learning is when an initial labelled training data set is shown to the computer algorithm.  

A labeled training data set is one that is organized and labeled in a way that shows the 

algorithm what specifically it should look for and assess, pre-determining both the input 

and the output.  Once the algorithm has learned from the training data set, it can then 

be applied to other data sets.  Unsupervised learning is when the algorithms train on 

unlabeled data, giving the algorithm opportunity to figure things out.  Computer-aided 

methods and technology such as machine learning can also facilitate precision nutrition 

is by further elucidating the key factors and processes involved with precision nutrition.  

Since many of these may not be obvious and have clear, simple, and direct connections 

and the clean and easily analyzable data may not be readily available, computer-aided 

methods such as machine learning can help organize and dig through available data to 

identify both the existence and the contribution of sometimes hidden factors that impact 

precision nutrition and diet-related diseases. 

 

For example, Zeevi et al. (35) monitored glucose levels over the course of a week in a 

cohort of 800 adults after measuring responsiveness to identical meals, and found high 

individual variability in response to the same meal and developed and validated a 

machine-learning algorithm integrating blood parameters, dietary habits, 

anthropometrics, physical activity, and gut microbiota in an attempt to predict individual 

responses to meals.  Lastly, they conducted a dietary intervention to control glucose 

response, based on what they were learning from the algorithm, which resulted in 

significantly lower glucoses responses after the meal as well as consistent changes to 

gut microbiota.  In another study of 1002 healthy UK adults, Berry et al. (141) found that 
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postprandial response to identical meals had large inter-individual variability in both a 

clinical setting and at home.  The research team found that factors such as the gut 

microbiome had a greater influence on postprandial lipidemia than meal macronutrients, 

but not on postprandial glycemia.  Additionally, genetic variation also had a modest 

impact on predictions.  Additional studies have developed simulation models of 

metabolic events such as the glucose-insulin system following a meal which can be 

used to understand and address how the body responds to meals among both healthy 

adults and individuals with diet related health conditions (e.g., type 2 diabetes) (216). 

 

Computers have theoretical advantages over humans.  Computers have the potential of 

performing calculations very quickly, holding, retrieving, and considering large amounts 

of information at a time, and remaining relatively “objective” when completing their 

tasks.  At present, computers cannot do everything humans do, such as come with 

original thoughts.  Moreover, their execution of tasks depends heavily on how humans 

programmed and structured the tasks.  Computer-aided approaches can help with all 

stages of achieving precision nutrition.  This includes the following: 

 Determining what data are needed 

 Designing studies and data collection activities 

 Helping collect and gather data and other information 

 Organizing, managing and making data readily available 

 Analyzing and interpreting data and information 

 Communicating and disseminating insights 

 Implementing policies and interventions 
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Our society is at an inflection point.  The past several decades has seen major growth in 

the capabilities and use of computers.  Computational power has grown to the point 

where calculations can be done very rapidly, and large amount of data can be readily 

stored and processed.  Available infrastructure and platforms allow tools and 

information to be easily shared.  There has been increasing acceptance and use of 

computer-driven approaches in health-related areas (217, 218).  Additionally, the 

amount of data available has grown exponentially, rapidly exceeding the capacity of 

traditional methods to process and analyze the data (204).  

 

3.2.  The need for systems approaches when using computer-aided analytics for 

precision nutrition 

When computer aided analytics don’t account for or represent the actual systems it can 

result in “band aids” rather than sustainable solutions, overlooking indirect (e.g., 

secondary, tertiary, and beyond) effects of any situation or change, skewing choices 

among alternatives, unintended consequences, not collecting needed information 

and/or collecting superfluous or even misleading information, and wasting time, effort, 

and resources that in many cases end up not working, at best, and having negative 

effects at worst.  Traditional approaches can overlook the complexities of the systems 

involved.  For example, large cohort studies that use multivariate regression to identify 

broad associations between a given nutritional factor and health outcomes may 

overlook differences in physiology, behaviors, and social determinants.  Such 

approaches are also insufficient for understanding dietary factors or influences that are 
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dynamic, such as exposures to and use of food environments.  Just employing 

computer-aided approaches to make such calculations faster may not really advance 

precision nutrition but rather deepen the current drawbacks of nutrition research.  This is 

why computer-based approaches need to incorporate system science and more 

systems approaches to nutrition research.  It is important to remember that computer-

aided approaches in and of themselves are neither bad nor good.  Incorporating 

systems approaches means designing and implementing computer-based and other 

technology approaches in ways that account for and help characterize the complex 

systems involved (204).  Figure 2 shows how a systems approach can utilize 

technology to iteratively better understand these complex systems. 

 

Systems oriented computer-aided methods and technology can also facilitate precision 

nutrition by bringing different factors, processes, and components together to better 

understand and address the systems involved.  Computer models can attempt to 

represent all of the key components and processes of a system and serve as virtual 

laboratories to test the effects of different changes in circumstances and interventions 

(219-224).  These virtual laboratories have the ability to represent systems and complex 

interactions between dynamic variables that influence each other in complex ways, 

which can enable deeper understanding into to processes and causal pathways that 

affect diet and related diseases (225).  A "Virtual Infant" agent-based model 

representing infant-caregiver pairs has been developed that exemplifies this type of 

virtual laboratory.  This agent-based model allowed virtual caregivers to feed virtual 

infants each day according to major feeding guidelines.  The model simulated the 
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development of the infants from birth to 6 months.  These simulations identified several 

scenarios where caregivers followed the guidelines, but infants still became 

overweight/with obesity by 6 months even when caregivers adjusted feeding based on 

infant's weight.  This study exemplifies how a one-size-fits-all nutritional guidelines 

might not result in the best health outcomes for all (173). 

 

Similarly, three agent-based models of Baltimore, San Francisco, and Philadelphia were 

developed to evaluate the potential impact of implementing sugar-sweetened beverage 

warning labels in the different cities (223).  Detailed representations of each city’s 

layouts, including household, school, grocery, corner store, and restaurant locations, as 

well as detailed representations for each person, including behaviors, movements, 

clinical status, and physiology, were brought together using agent-based models.  New 

technology can help with the implementation and adoption of prescribed precision 

nutrition behaviors as well.  AI approaches can help identify barriers and facilitators of 

precision nutrition adoption.  Systems modeling can show what adoption may be under 

different circumstances and test various policies and interventions.  And sensors such 

as apps and wearables that monitor eating, movement, and mobility can provide real 

time prompts, deliver “just in time adaptive interventions,” and track the adoption and 

long-term maintenance of dietary changes.  In a longer-term vision, approaches can be 

designed to leverage all these technologies in an end-to-end AI-enabled systems 

approach that facilitates improved adoption of precision nutrition interventions. 
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3.3. The need for a new systems-oriented data ecosystem  

One way that new computer-aided methods and technology can bring the systems 

approaches needed to precision nutrition is by gathering and assessing data on 

different and often neglected parts of the system.  For example, eating is a social 

practice, and what people eat is influenced by the people they eat with, as well as the 

family, friends, and community members who make up their social network (226, 227).  

These social ties influence eating through many socially-influenced mechanisms, such 

as mimicry and normative influence, and by providing social support and social capital 

that can impact food access and consumption.  Such information is rarely captured in 

nutrition research.  New opportunities exist for using wearable devices, ecological 

momentary assessments, and digital traces of social phenomena to more precisely 

monitor social exposures and influences in context, and in real time, and to better 

understand the unique and varied situations that influence a person’s food intake and 

nutritional health.  These insights may inform intervention strategies that leverage, or 

even alter social network phenomena (e.g., group-based interventions, targeting key 

opinion leaders and influencers) as part of efforts that promote the adoption of tailored 

dietary recommendations. 

 

To realize the promise of precision medicine, it is also necessary that the data is AI/ML 

ready.  AL/ML-ready data includes large repositories of patient/human data which are 

privacy protected, available to all and serve as a standard dataset for comparison 

across studies.  They also need to contain data pertaining to a wide variety of health 
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and disease state, from a wide variety of sources (multi-omics, clinical, imaging, 

wearables) over the life course and before during and after episodes of care.  Further, 

data ought to provide linkage across many types of data within the same subjects, 

utilize common data formats and be sourced ethically and with input from communities 

participating in research (i.e., those whose data is being utilized for research purposes).  

Historically, data has been collected in a more ad hoc way without first determining what 

data needs to be collected to account for all aspects of the system.  A systems 

approach to data collection starts by mapping out all components, processes, 

relationships and mechanisms in a system, and using the map to determine where data 

collection is actually needed. 

 

3.4. The need to include and incorporate more diverse populations  

New technology can also facilitate a better understanding of neglected, disadvantaged, 

and vulnerable populations.  For example, exposure to multiple risky social 

determinants of health, such as poverty and food insecurity, can limit peoples’ ability to 

eat recommended healthy foods (228, 229), as well as encompass exposures to 

stressors that have ‘under the skin’ effects, such as increased inflammation, which may 

play an important role in physiological process relevant to nutritional health (230).  

Conducting and implementing precision nutrition science without a central focus on the 

translation of this science, by considering the socio-ecological and economic challenges 

that vulnerable populations face, could further exacerbate health disparities.  

Specifically, people with few barriers to eating well will be better able to adopt new and 

tailored information to improve their diet and health.  On the other hand, people facing 
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social-ecological barriers – including low incomes, food insecurity, and discrimination, 

and community divestment may not be able to change their diet, unless these specific 

barriers are addressed. 

 

For example, recent research has begun to use population-scale mobility data passively 

collected from smartphones and novel data analytic techniques to study the food 

environments that large, diverse urban populations are exposed to throughout their day-

to-day experiences.  Early findings have uncovered that lower-income populations not 

only are more likely to live in areas surrounded by low nutritional quality food 

environments than richer populations, such as those with much more fast food than 

other types of prepared or fresh food but are also more likely to be surrounded by these 

types of low-quality food environments when at work or conducting other daily activities.  

Achievable personalized nutrition interventions will need to take these types of barriers 

to access of food of higher nutritional quality into account. 

 

3.5.  The need to translate precision nutrition and the use of computer-aided 

analytics to the “real world” 

Translating precision nutrition findings and recommendations to the "real world" is 

important yet challenging.  Determining how nutritional recommendations can be better 

tailored to individuals or different groups of people is not the same as implementing 

such recommendations.  Translating scientific findings into policies and practice is not 

trivial.  Historically, even the translation of fairly simple dietary recommendations (e.g., 

consuming a variety of fruits and vegetables) has not been successful, with the majority 
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of the population not following this nutritional guidance, and vulnerable groups having 

even lower adoption.  We present several considerations and approaches that may help 

move precision nutrition from research to practice. 

 

Scalability and sustainability are two closely related concepts that are critical for 

practitioners (231).  Likelihood scenarios need to be translated into practical solutions 

that can be applied to real-world challenges and implemented with scalability and 

sustainability.  Translation of likelihood scenarios into action addresses bridging the gap 

between the availability of systems models and their uses (232).  Bridging research, 

education, policy, and practice can be accomplished using a variety of approaches.  For 

example, awareness and understanding of how systems work can be accomplished 

through training and education or through the use of participatory approaches to model 

building where the users or decision-makers can see the impact of certain strategies on 

outcomes or identify where unintended consequences may surface (217).  From a 

translation perspective, moving evidence into practice demands a framework or model 

that leverages system drivers, deep knowledge and expertise that bridges research and 

practice, and the a priori inclusion of user and stakeholder perspectives (217, 232, 233). 

Computing platforms and tools need to provide access to conducting research on AI/ML 

datasets computing power, analytic tools, algorithms, visualizations, and secure 

electronic storage for data, data derivatives, visualizations, results, and other related 

research products.  The platforms should foster collaborative research among 

interdisciplinary teams through enhanced discovery of one another’s work and through 

direct support for shared pipelines, workflows, shared standards, etc.  Additionally, all 
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tools need to facilitate transparent, reproducible, shareable research practices, such as 

through virtual machines that save workflows and analytic plans as executed.  To foster 

transparent collaboration they should provide access to algorithms for reuse/adaptation, 

reproducibility, transparency and facilitate dissemination of research finding. 

 

Translation and dissemination frameworks need to go beyond publications of research 

findings into initial implementation efforts, include pragmatic evaluation, iterate, and 

adapt to local needs and demands, and scale-up to broader implementations that 

includes scaling-up to different audiences, settings, and population sizes.  To date, 

much of translation, dissemination, and implementation research has focused on initial 

uptake by early adopters of one health intervention at a time.  Efforts to successfully 

scale and sustain must optimize context.  Translation and dissemination of evidence-

based interventions must be able to vary by context because few such efforts can be 

implemented according to identical protocols, resources, or levels of expertise (234-

236).  In fact, the need to recognize that things vary by context is so important that 

explicit efforts have focused on evidence-based principles that can be used in the 

context of evidence-informed decision making (237), a concept that appreciates 

decisions to be made are not only based on research, but also need to consider other 

variables such as political, organizational, or community health factors (237, 238). 

 

Experts are required to interpret, understand, and disseminate the knowledge 

generated by research.  Such expertise comes from multiple disciplines including the 

fields of medicine, health, technology, engineering, and provides deep insights into 

systems science, artificial intelligence, and machine learning, as well as areas critical to 
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successful translation into practice, such as human-centered design and health 

communications.  Stakeholders’ perspectives need to be surfaced, considered, valued, 

and acted-upon for translation to occur so that dissemination and, ultimately, 

implementation may successfully bring evidence-based solutions into practice.  

Stakeholders’ perspectives may at times be similar or vastly different because different 

people perceive and experience the world in different ways.  Furthermore, any given 

stakeholder may hold various perspectives on the same system (239).  Perspectives 

related to the implementation of systems epidemiology models should be gleaned from 

patients, providers, health care providers, care teams, payers, policymakers, caregivers, 

and community agencies.  In addition, points of view should consider the biological, 

social, financial, behavioral, and political context. 

 

The interpretation and translation of systems science approaches to precision nutrition 

call for an appreciation of the physical, social, and economic environments that modify 

the outcomes.  There is a need to observe and summarize the strength of evidence of 

effectiveness and adapt such insights to the marketplace using scalable and 

sustainable solutions, including business plans that allow for sustained implementation.  

Engagement of leadership from across multiple sectors in an ongoing dialogue could 

facilitate the creation of models that reflect an alternative way of thinking designed to 

simultaneously benefit society and business while mobilizing resources and activating 

funding mechanisms from federal and private sources (240-245). 
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Based on the above, and in alignment with previously identified considerations (239), 

several public health related recommendations for moving research findings toward 

practical implementation may be applied to precision nutrition.  First, the ability to 

leverage existing system drivers will provide opportunities to advance translation, 

dissemination, and implementation efforts.  This includes understanding the processes 

of adoption, implementation, and sustainability of new initiatives within organizations 

and institutions.  Second, the application of pragmatic evaluation.  Newly implemented 

programs or interventions should be assessed according to principles of evaluability that 

allow for conclusions to be made about their performance in the field and generate 

options for improvement (246).  Furthermore, it is recommended to use existing 

measures to document performance as a cornerstone of an iterative learning approach.  

Third, the use of an explanatory, process, and outcome framework for translation and 

implementation.  This will allow for moving beyond reporting on effectiveness and 

include descriptions and explanations of why things worked the way they did and how it 

was done.  This approach should include both qualitative and quantitative observations, 

thereby providing insights on outcomes, mechanisms of action, and processes 

deployed. 

 

3.6. The need to address key ethical and legal challenges with new technology 

and precision nutrition 

Precision nutrition presents an opportunity to shift health care from being reactive to 

being proactive by providing insight into the specific dietary needs of individuals and 

populations.  But the field's promise depends on adequate attention to issues of 
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informed consent, representative datasets and socio-culturally sensitive design, and 

equitable access to products.  These considerations must be built into research and 

implementation, as opposed to retrofitted.  Building these considerations into research 

will ensure that personal information is not used for unapproved or malicious purposes, 

that tailored dietary recommendations are accurate and helpful, and that such 

recommendations benefit the people in greatest need. 

 

The capacity to assess risks and benefits and authorize action in accordance with one’s 

values -- is a critical consideration for various aspects of precision nutrition.  Basic 

respect for autonomy requires that we do not impose risk on individuals without their 

understanding and agreement.  The artificial intelligence systems on which precision 

nutrition will increasingly rely must be fed significant amounts of protected health 

information (PHI) and personally identifiable information (PII).  It can be argued on 

privacy grounds that one’s PHI/PII should not be accessed by others without 

permission, regardless of actual harm incurred.  Data providers must also be aware of 

tangible harms -- entities can use PHI/PII to raise insurance premiums, and hackers can 

use it to obtain ransom or steal an identity.  For those receiving precision nutrition 

recommendations, disclosure of limitations and risks is critical for informed decision-

making.  As precision nutrition hangs adjacent to health research and healthcare, there 

will be ambiguity as to when practices fall under the auspices of the federal “Common 

Rule” and HIPAA Privacy rule and are thus subject to legal informed consent and 

security requirements.  There will also be ambiguity as to whether precision nutrition 

applications will be regulated by the US Food and Drug Administration (FDA) through 
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the Software as a Medical Device pathway, meeting the same approval obstacles faced 

by medical AI applications or whether a different regulatory process will be required. 

One challenge will be striking a balance between having enough regulatory procedures 

and oversight in place to protect the population maintain and not unduly impeding the 

adoption of such computational approaches.  Regardless of legal requirements, the 

actual risks should inform the development of measures necessary to protect and 

respect individuals. 

 

Data used to train algorithms for precision nutrition must be adequately representative 

of diverse populations, and recommendations must adequately recognize socio-cultural 

elements of the diet.  Findings of one precision nutrition study using a specific cohort 

may not necessarily be applicable to predict responsiveness in other cohorts.  If training 

datasets are inaccurate or incomplete, regardless of algorithm quality, the output will be 

inapplicable or harmful to populations missing from or inaccurately represented by the 

training set.  Poorly designed algorithm systems and services that conflate race with 

genetics, inappropriately narrow user options, or under or over-account for non-

biological socio-cultural correlations can also lead to bias and harmful 

recommendations.  Research and development teams have begun developing 

strategies and toolkits for assessing and mitigating bias in AI algorithms (247-250).  

Precision nutrition developers should build off these strategies, with significant attention 

to testing before deployment and monitoring after deployment. 
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Precision nutrition has the potential to help address social determinants of health that 

lead to racially and socioeconomically disparate health outcomes. However, without 

subsidization or sponsorship, the whole field risks becoming a “boutique” service 

available only to those able to pay.  To ensure populations in greatest need benefit, 

precision nutrition must be: 1) accurately grounded in scientific research and sound 

algorithm development; 2) actionable based on available resources; and 3) supported 

by appropriately trained experts.  Diverse populations must be involved in development 

and design must keep diverse populations in mind. 

 

3.7. The need to train a new generation familiar with computer-aided analytics and 

precision nutrition 

The precipitous rise in the volume, velocity, and variety of available data and the 

corresponding arrival of big data analytics has created a new landscape for health 

research (251, 252) and makes the vision of precision nutrition possible.  Yet, precision 

nutrition can only be realized if the complex interplay of factors that influence nutrition 

and health outcomes are understood.  These factors are present at multiple levels of 

influence: 1) external context: such as environment (including but not limited to food 

environment and opportunities for physical activity), policy, culture; 2) individual 

behavioral context such as dietary habits, physical activity; 3) clinical context, including 

current health status, treatments, and health history; 4) below the skin contexts, such as 

genetic make-up, microbiome composition, metabolic factors.  Understanding the joint 

impact of these factors is challenging because the sheer number of factors is large (i.e., 

high dimensionality), and compounded by the presence of bidirectional and nonlinear 
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relationships and moderated by the temporality of contexts (critical periods of exposure, 

timing, periodicity, duration, frequency). 

 

Understanding how the entire web of interacting factors would play out over all health 

and disease topics at once is far too ambitious of a goal.  A more feasible approach 

would be assembling teams of interdisciplinary scientists, as indicated by the 

specialized questions within the field.  These teams will require a wide breadth and 

depth of collective domain expertise spanning across nutrition science, biomedical 

science, behavioral science, but also core competencies in computational methodology, 

data science, systems science, machine learning, artificial intelligence, and data 

infrastructure. 

 

To properly examine interdisciplinary questions with complex and voluminous data, the 

members of scientific teams must possess core knowledge and competencies in data 

analytics, data infrastructure, data sharing, Findable, Accessible, Interoperable, and 

Reusable (FAIR) Data Principles (253), algorithmic bias [e.g., detection, mitigation 

(254)], with additional understanding of statistical analysis, database design, technical 

coding skills, data visualization along with relevant biomedical or behavioral science 

domain knowledge.  Moreover, these competencies must be taught through a lens of 

equity, inclusion, and human rights (255), such as the Framework on Integrating health 

equity and racial justice into the artificial intelligence development lifecycle (256). 
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To meet this charge, at least two types of training are needed.  On the one hand, we 

need to retrain the existing investigative workforce not only to work in interdisciplinary 

teams but also to learn core competencies in data science.  On the other hand, we need 

to reimagine how we currently train the next generation of scientists to incorporate 

interdisciplinary and data science competencies into their main disciplinary degree 

programs.  To be successful, this cross-disciplinary training must include experiential, 

project-based learning.  The authors offer two models of training from their own 

experience that incorporate this approach.  The Institute for Systems Science in Health 

(ISSH) was an intensive, week-long summer course sponsored by the NIH Office of 

Behavioral and Social Sciences Research (OBSSR) from 2009 to 2012 (257).  ISSH 

was intentionally designed to provide an incubator space for luminaries in systems 

science to interact with public health researchers with applied research questions which 

could be addressed with systems science methodologies.  Each year, approximately 45 

early career and established investigators received hands-on training in one of three 

methods (agent-based modeling, system dynamics modeling, and network analysis) 

through a week-long in-residence training course.  This type of intensive short-term, 

face-to-face approach could easily be adapted to the training needs of precision 

nutrition. 

 

A second example of experiential project-based training is a predoctoral training 

program established in 2020 by OBSSR, the Training in Advanced Data Analytics for 

Behavioral and Social Sciences Research (TADA-BSSR) Program [National Institutes of 

Health, 2019: RFA-OD-19-011 (258)].  The aim was to create new predoctoral programs 
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to integrate innovative computational and data science analytic approaches directly into 

doctoral training.  The program is offered at eight universities (259).  While this program 

was focused solely for BSSR doctoral students, the principles and approach should be 

readily translatable to other disciplines involved in biomedical and health research. 

 

Providing training in the core competencies in modern data science and opportunities 

for researchers at all career levels to apply their biomedical domain knowledge in the 

context of large interdisciplinary scientific teams will be key for the future precision 

nutrition scientific workforce. 

 

 

4.  SUMMARY 

Table 3 presents the many research opportunities that were identified from the 

Workshop’s presentations, discussions, and participant comments. 

 

Advancements in precision nutrition will mean better tailoring of dietary intervention to 

different people's circumstances and situations.  It is not yet clear how specific this 

tailoring may need to be, as precision nutrition does not necessarily mean personalized 

nutrition when each person should get dietary recommendations specific to himself or 

herself.  As discussed above, much consideration and research will be needed before 

more precise nutrition recommendations can be achieved.  This includes better 

understanding and accounting for variables such as age, sex, ethnicity, medical history, 

genetics, and social and environmental factors.  The advent of new methods and 
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technologies and the availability of considerably more data bring tremendous 

opportunity.  However, we must proceed with appropriate levels of caution and make 

sure that the variables listed above are all appropriately considered, and systems 

approaches, and methods are incorporated.  Lastly, it will be important to develop and 

train an expanded workforce with the goal toward reducing health disparities and 

improving the precision of nutritional advice for all Americans. 
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Tables  
 
Table 1.  Examples of factors that can influence the metabolic response to eating 
Factor Examples of the possible effects 
Age Meal glucose and TG metabolism slows with aging (260) 
Sex Compared to women, men are more susceptible to dietary-

induced hypertriglyceridemia (261) 
Time of day Compared to the first meal of the day, the processing of meal 

CHO from a second meal exhibits a pattern of insulin resistance; 
CHO and fat consumed at night clear from the plasma more 
slowly (262) 

Exercise Exercise the night before, or the morning before a meal test, will 
increase apparent glucose and fat clearance rates (263, 264) 

Alcohol  Alcohol consumed with meals raises post-meal blood TG 
concentrations (265-267) 

Fasting values The fasting level of TG is the strongest predictor of postprandial-
TG excursions and fasting hyperglycemia is associated with 
greater glucose excursions after a CHO bolus. (268) 

Cross macronutrient 
effects 

A high-CHO evening meal raises fasting blood TG the next 
morning and slows post-meal TG clearance.  Conversely, a high-
fat evening meal, slows CHO clearance following the next 
morning’s meal (269).  Fiber slows glucose absorption (270) 

 
Abbreviations:  carbohydrate, CHO;  TG, triacylglycerols  
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Table 2.  Current research limitations to understand the influence of social 
determinants in precision nutrition 
1.  Lack of consensus on the definition of social determinants (271) and their metrics 
2.  Complexity of interactions across social factors requiring advanced analytical 
technologies 
3.  Limited data from diverse and vulnerable populations 
4.  Lack of understanding of mechanistic pathways and of the individual responses or 
embodiment of social factors 
5.  Inattention to protective social factors such as social support, resilience, and 
optimism 
6.  Unknown potential for sustainability, outreach, and implementation of interventions 
that account for social determinants 
7.  Lack of approaches and techniques that fill data gaps and rank the most influential 
measurements in ways that are transparent, fair, and free from errors 
8.  Dearth of technologies and methods that link different scales that affect precision 
nutrition (e.g., biology, behavior, social networks, environment, policy, economics, 
culture) 
9.  Lack of studies that use systems approaches and methods to better elucidate how 
social determinates may affect and be affected by nutrition  
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Table 3.  Research needs and future directions 
Study design needs 

Well-controlled intervention studies are needed to address individual differences in 
response to dietary exposures, food bioactives, and dietary patterns, including 
timing, duration, and dose-response.  Studies specifically designed to target high-
risk populations for prevalent health conditions (obesity, CVD, T2D, cancer, 
cognitive decline, and AD) are needed.  Moreover, it is essential to determine the 
applicability of the findings to real-world settings. 
Develop and test novel intervention strategies to help people change their dietary 
intake patterns over the long term and test if changing one’s diet significantly 
affects disease risk and outcome.  Considerable efforts are needed to help people: 
1) know what their dietary pattern is, 2) effectively modify their dietary pattern and 
be more ‘adherent’ to a healthier diet, and 3) maintain these dietary and behavioral 
changes over time, including over a lifetime. 
Studies that account for factors that cross all the different relevant scales (e.g., 
genetics, physiology, behavior, social networks, environment, economics). 
Studies that utilize systems approaches and methods (e.g., maps and models) that 
can help better elucidate and bring together different components, factors, and 
mechanisms. 
Hybrid approaches that combine different types of study design approaches (e.g., 
integrating systems models with intervention studies) to work synergistically. 

Technologies and methods 
Develop and validate accurate and precise objective measures of dietary intake, 
including real-time monitoring of food intake, postprandial response, and non-
invasive biological responses. 
Develop tools and methods to standardize, harmonize and improve interoperability 
of nutrition and food data. 
Develop robust methods to integrate data from the genome, epigenome, 
microbiome, metabolome, and the exposome (i.e., single or multi-nutrient diet 
components, dose and timing of dietary modulations, and health behaviors (e.g., 
physical activity and sleep) into the precision nutrition framework. 
Develop standardized and harmonized study procedures and data collection to 
control for and/or at least assess factors that can influence precision nutrition 
outcomes, including sleep and circadian biology (272). 
Identify biomarkers for diet-related cancers and CVD is prioritized to more quickly 
elucidate the underlying basis of interindividual variability in diet and disease risks. 
New methods and technologies to extract insights from existing data and sources 
(e.g., natural language processing technics to mine text for information). 
Developing methods to extract and collapse larger data sources, including Big 

D
ow

nloaded from
 https://academ

ic.oup.com
/ajcn/advance-article/doi/10.1093/ajcn/nqac237/6687804 by guest on 05 O

ctober 2022



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

 

Data sources, into more refined datasets in ways that do not introduce bias. 
Develop methods and tools to fill in missing data in ways that do not introduce 
bias. 
Develop new AI/ML algorithms that can draw insights from datasets in ways that 
do not introduce bias. 
Develop systems modeling methods that can better represent the actual 
mechanisms that affect and are affected by nutrition.  
Develop mathematical and computational methods that help cross different scales 
(e.g., genetics, physiology, behavior, social networks, environment, economics). 

Knowledge gaps 
Develop more in-depth and precise knowledge of foods, food composition and 
groups and eating patterns, and related biomarkers. 
Identify individual nutrigenomic/behavioral/lifestyle differences in chronic diet-
related disease (e.g., CVD, neurodegenerative disease, cancer, T2D) and risk 
factors in order to personalize approaches for primary and/or secondary 
prevention of disease over the life course.   
Collect data using objective measures of dietary intake episodically and 
prospectively over longer periods of time to learn if dietary patterns among the 
same individuals are reliable/repeatable and to what extent changes in dietary 
patterns affect disease risk and outcome. 
Determine the predictive role of metabolomics and microbiome data in precision 
nutrition and chronic disease inter-relationships. 
Determine the contribution and mechanisms of sleep and circadian effects in 
precision nutrition research and interventions based on chronobiological insights. 
Quantify the effect of food policy, the food environment, socioeconomic and other 
personal factors, and industry on peoples’ dietary intake.  Identify ways to change 
policy, the food environment, and industry to improve peoples’ diets and 
presumably their health. 
Better understanding how complex systems involved, affect and are affected by 
nutrition. 

Needs related to training in precision nutrition 
Fill gaps in the implementation and dissemination of scientific research for 
evidence-based precision nutrition strategies and medical nutrition to reduce 
chronic diseases. 
Develop a diverse workforce that has training in artificial intelligence/nutrition 
science. 
Develop a new generation of truly interdisciplinary researchers able to cross 
different content areas of nutrition and different new methodological areas such as 
mathematical and computer modeling and other types of AI. 
Train more people well versed in systems, mathematical, and computational 
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methods.  
Train people better recognize and address bias. 
Train people to be better versed in social determinants. 
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Figure 1.  Precision Nutrition – Factors associated with interindividual variability in 
responses to diet 
  

D
ow

nloaded from
 https://academ

ic.oup.com
/ajcn/advance-article/doi/10.1093/ajcn/nqac237/6687804 by guest on 05 O

ctober 2022



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

 

 

 
Figure 2.  How a systems approach can utilize technology to iteratively better 
understand complex systems 
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