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Network-based prediction of protein interactions
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Despite exceptional experimental efforts to map out the human interactome, the continued
data incompleteness limits our ability to understand the molecular roots of human disease.
Computational tools offer a promising alternative, helping identify biologically significant, yet
unmapped protein-protein interactions (PPIs). While link prediction methods connect pro-
teins on the basis of biological or network-based similarity, interacting proteins are not
necessarily similar and similar proteins do not necessarily interact. Here, we offer structural
and evolutionary evidence that proteins interact not if they are similar to each other, but if
one of them is similar to the other's partners. This approach, that mathematically relies on
network paths of length three (L3), significantly outperforms all existing link prediction
methods. Given its high accuracy, we show that L3 can offer mechanistic insights into disease
mechanisms and can complement future experimental efforts to complete the human
interactome.
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s Dbiological function emerges through interactions
between a cell's molecular constituents, understanding
cellular mechanisms requires a reasonably complete cat-
alogue of all physical interactions between proteins!~%. Despite
major efforts in high-throughput mapping>~/, the number of
missing human protein-protein interactions (PPIs) exceeds the
experimentally documented interactions®. Consequently, com-
putational tools are increasingly used to predict undetected, yet
potentially biologically relevant interactions!-12. For proteins
with well-described 3D structure, molecular dynamics simula-
tions and machine learning techniques can predict de novo
PPIs!01L13,14 byt novel interactions are also inferred from co-
expression profiles and other measures of functional similarity!.
As a prominent example, PrePPI combines structural, sequence
and additional biological evidences to predict PPIs at a genome-
wide scale!®. Yet, retest rates of high confidence PrePPI PPIs in
experimental pairwise tests are several folds lower than the retest
rates of curated interactions from the literature>.
Alternatively, the increasing coverage of the interactome has
inspired the development of network-based algorithms, which
exploit the patterns characterizing already mapped interactions to

identify missing interactions!®-18. Such state-of-the-art network-
based link prediction algorithms rely on the triadic closure
principle (TCP)!? (Supplementary Table 1), rooted in social
network analysis, namely the observation that the more common
friends two individuals have, the more likely that they know each
other (neighborhood based similarity)!9-21. Therefore, TCP-
based algorithms assign a higher prediction score to protein pairs
that share more of their interaction partners (Fig. 1a). As shown
below, despite the plausibility of TCP for social networks, it fails
to capture the structural and evolutionary forces that govern PPI
networks. Our results in this paper suggest that the failure of TCP
is not algorithmic, but fundamental: the hypothesis that protein
pairs with similar interaction partners should interact fails for
most protein pairs.

Results

The TCP Paradox. To investigate the validity of the TCP
hypothesis, we measured the relative number of shared interac-
tion partners of proteins X and Y using the Jaccard similarity J =
INx N Ny|/|Nx U Ny|, where Nx and Ny are the interaction
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Fig. 1 Network similarity does not imply connectivity. a In social networks, a large number of common friends implies a higher chance to become friends
(red link between nodes X and Y), known as the Triadic Closure Principle (TCP). TCP predicts (P) links based on node similarity (S), quantifying the
number of shared neighbors between each node pair (A2). b A basic mathematical formulation of TCP implies that protein pairs of high Jaccard similarity
are more likely to interact. ¢ We do not observe the expected trend in Protein-Protein Interaction (PPI) datasets, as illustrated here for a binary human PPI
network (HI-11-14)°: high Jaccard similarity indicates a lower chance for the proteins to interact (see Supplementary Fig. 3 for further networks). The data
are binned logarithmically based on the Jaccard similarity values. d PPIs often require complementary interfaces'®!, hence, two proteins, X and Y, with
similar interfaces share many of their neighbors. Yet, a shared interface does not typically guarantee that X and Y directly interact with each other (see
Supplementary Fig. 1 for an illustration with known 3D structures). Instead, an additional interaction partner of X (protein D) might be also shared with
protein Y (blue link). Such a link can be predicted by using paths of length 3 (L3). L3 identifies similar nodes to the known partners (P = AS), going one step
beyond the similarity-based argument of TCP. e Even without using any structural information, two proteins, such as Y and D are expected to interact if
they are linked by multiple ¢ = 3 paths in the network (L3). f As opposed to ¢, we observe a strong positive trend in HI-lI-14 between the probability of two
proteins interacting and the number of ¢ = 3 paths between them, supporting the validity of the L3 principle
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partners of X and Y. According to TCP, the higher the Jaccard
similarity, the higher is the expected probability that X and Y
interact (Fig. 1b). However, we find the opposite trend in all PPI
networks, across several organisms (human, mouse, yeast, C.
elegans, D. melanogaster, A. thaliana, S. pombe) and experimental
mapping methods (binary interactions, pull-down, literature
curation, see Supplementary Note 1 and Supplementary Table 2):
The larger the Jaccard similarity between two proteins, the lower
the chance that they interact with each other (Fig. 1c, Supple-
mentary Fig. 3). In other words, the starting hypothesis of
network-based PPI prediction tools cannot be validated. While
the problem could lie with the limitations of existing network
similarity measures?!, next we show that the failure of TCP is not
rooted in the similarity measure we used, but it fails because it
does not capture the biological principles that govern PPIs.

TCP reflects a long-standing tradition in link prediction,
aiming to connect similar nodes!®2. Undeniably, interacting
proteins do need to meet in the cell, both being present at least
one cellular location and expressed together at least in one
cellular state. Yet, beyond these basic factors, displaying similar
co-localization and co-expression profiles is generally neither
sufficient nor necessary. First, proteins can be highly similar in
their sequence (e.g. certain paralogs) and still unable to interact,
as they carry the same interfaces, instead of complementary ones
(Fig. 1d). Second, highly similar proteins will likely share multiple
additional partners. According to the TCP hypothesis, if proteins
X and Y share multiple interaction partners (A, B, C), they likely
interact with each other (Fig. 1a). From a structural perspective,
the common partners simply reflect the fact that proteins X and Y
have a similar or identical interaction interface, that recognizes
the same binding sites in proteins A, B, and C (Fig. 1d). Yet, a
common interaction interface of X and Y does not guarantee an
interaction between X and Y. Instead, if protein X interacts with
protein D, the network-based similarity of X and Y suggests that
protein Y can also bind to protein D (Fig. 1d). We arrive to the
same conclusion if we follow gene duplication events (Supple-
mentary Fig. 2), that generate protein pairs V and V’ that initially
have an identical set of interaction partners, but do not imply that
V and V' must interact with each other?2-24,

Here we propose that instead of finding similar candidates to a
node, as done by TCP, to successfully predict PPIs, we must
identify candidates that are similar to the known partners of a
node. The simplest mathematical implementation of TCP relies
on counting the shared neighbors of a pair of nodes, known as the
Common Neighbors (CN) algorithm?3. CN is quantified by A%,
where A is the adjacency matrix (Fig. 1d), representing the
hypothesis that proteins of multiple shared partners, i.e. those
connected by paths of length two (¢ =2), interact more
frequently than unrelated proteins. Yet, the simplest implementa-
tion of the proposed paradigm is A°, utilizing paths of length
three. Indeed, both structural and gene duplication arguments
indicate that proteins linked by multiple paths of length ¢ = 3,
like proteins D and Y in Fig. le, are more likely to have a direct
link (L3 principle). As a first test of the L3 principle, we measured
the correlation between the number of ¢ = 3 paths between a
given protein pair, and the likelihood that they interact with each
other (Fig. 1f). In contrast with Fig. lc, that shows an anti-
correlation between the paths of £ = 2, documenting the failure
of TCP for PPI networks, here we find a strict correlation
(Fig. 1f), confirming the validity of the L3 principle. Next, we turn
the L3 principle into a predictive tool, allowing us to
experimentally test its predictive power.

Degree-normalized L3 predictions. High-degree nodes (hubs)
induce multiple, unspecific shortcuts in the network, resulting in

biased predictions that can only be avoided by proper degree
normalization. Such degree normalization is particularly impor-
tant for L3, as it needs to choose candidates from nodes at £ = 3
steps, an exponentially larger pool than the ¢ = 2 distance pool
utilized by TCP. To eliminate potential degree biases caused by
intermediate hubs, we assign a degree-normalized L3 score to
each node pair, X and Y

AxAya
Py = > Doy )

uyv vV kUkV 7

where ky; is the degree of node U and axy; =1 if proteins X and U
interact, and zero otherwise.

Computational cross-validation. To test the predictive power of
L3, we need reliable network information. In the case of PPI
networks, each data source comes with its limitations, prompting
us to test L3 on multiple types of input networks. Literature
curated interactomes of PPIs with multiple evidences have
excellent replicability, but are impacted by selection biases®. We,
therefore also consider interactomes emerging from systematic
screens, that lack such biases®7. Both approaches can be further
split into binary or non-binary datasets, depending on the
inclusion of co-complex membership annotations. We use these
four classes of data, collected for humans, to compare L3 with the
Common Neighbors algorithm?’, a common implementation of
TCP (Fig. 2) that outperforms predictions based on the Jaccard
similarity measure (Supplementary Fig. 5). For a Monte Carlo
computational cross-validation we randomly split each network
into a set of training PPIs and a test dataset, selecting 50% of the
PPIs as the input network and measuring our ability to predict
the remaining 50% (other fractions offer similar results and so
does the leave-one-out cross-validation shown in Supplementary
Fig. 10). Figure 2 shows the precision (fraction of validated
protein pairs of the predictions) as a function of the recall
(fraction of interactions covered from the test dataset), indicating
that the predictive performance of L3 is about 2-3-times higher
than TCP/CN for all datasets.

Starting from an input dataset of a binary interactome, the L3
algorithm allows us to predict more binary interactions (Fig. 2
and Supplementary Fig. 10A, C). On the other hand, starting
from co-complex associations, L3 predicts further co-complex
associations (Fig. 2 and Supplementary Fig. 10B, D). In principle,
the input data can mix interactions from both sources, still
leading to reliable predictions, without differentiating which
category a specific prediction belongs to.

For completeness, we checked the performance of paths up to
¢ = 8, finding that the best predictive power is indeed provided
by ¢=3 paths (Fig. 3a), supporting our structural and
evolutionary arguments. Higher-order paths of odd length also
do well, as they incorporate the strongly predictive £ = 3 paths,
taking additional steps back and forth along the same paths.

High-throughput experimental validation. To experimentally
test the performance of L3, we started from the systematic binary
interactome, HI-II-14°. We then tested the predicted interactions
against a new systematic, binary, human PPI map, HI-III%6,
resulting from an independent, high-throughput (HT) screen
over the search space of ~18,000 x 18,000 human protein pairs. In
Fig. 3b, we also compared L3 to the Preferential Attachment
principle (PA)?>%7, a method not based on TCP. PA mimics
unspecific binding between “sticky” proteins by placing a link
between two nodes with a score given by the product of their
degrees. PA is the simplest of the numerous alternative approa-
ches to find a random benchmark with the observed node degrees
as constraints28, Besides the computational cross-validation
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Fig. 2 L3 outperforms Common Neighbors (CN) on PPl networks. Monte Carlo cross-validation of CN (a TCP implementation) and L3 on the four possible
PPI data sources, arising from literature curation with multiple evidences (a, b®) or systematic screens (c>, d®). We randomly select 50% of the PPls and
use it as the input network to predict the rest of the PPIs. Precision is the fraction of interacting proteins vs. all predicted pairs, while recall stands for the
fraction of predicted PPls compared to the number of test PPIs. We use all predictions until a 10% recall value is reached in each network. We find that L3
outperforms CN in all cases. We find qualitatively very similar results in a k-fold cross-validation scenario, as shown in the limit of an exhaustive leave-one-
out cross-validation in Supplementary Fig. 10. In addition, we show the performance of both methods on randomized networks, where only the node

degrees are preserved. L3 outperforms both these random benchmarks, irrespectively of the data source. In the case of the systematic binary network, HI-
I1-14, CN performs worse than in the randomized network, indicating a fundamental failure of TCP to capture the patterns shaping the underlying network
structure. The shading around each curve indicates the standard deviation over 10 different random selections of the input PPIs. For additional datasets and

validation see Supplementary Fig. 4

(Fig. 3b), we find that L3 also significantly outperforms CN and
PA experimentally (Fig. 3c), along with 20 other published
network-based link prediction methods (Supplementary Fig. 5).
The substantial improvement of L3 holds for all tested organisms
and data sources (Supplementary Figs. 4, 5 and Supplementary
Table 3). Overall, the precision of L3 is seven fold higher than
either CN or PA and more than twice the precision of the best
performing literature method, Cannistraci Resource Allocation
(CRA)? (Fig. 3c, d). CRA outperforms other TCP-based methods
because it counts network motifs, that happen to contain both
¢ = 2 and ¢ = 3 paths (Fig. 3¢), hence, it incorporates a subset of
the L3 predictions. Yet, CRA’s poorer performance compared to
L3 is rooted in its reliance on ¢ =2 connectivity as well, that
contributes false positives.

As negative control for the experiments, we randomly selected
100 non-interacting pairs, involving at least one of the proteins in
the top 500 L3 predictions (RND). We did not experimentally
recover any of these pairs in HI-III (Fig. 3d, Supplementary
Note 1). Since HI-III is still incomplete, it is inherently unable to
validate all protein pairs predicted by L3. We do want to know,
however, what fraction of the L3 predicted pairs are potentially
real. We therefore selected as positive control 100 interactions
from HI-II-14, each involving at least one of the proteins in the
top 500 L3 predictions (for details see Supplementary Note 1).

We find that 35% of these established interactions are recovered
in the HT test. For the top 100 L3 predictions we find the same,
35% recovery rate in the HT test, indicating that the L3
predictions are recovered at the same rate as the already
established PPIs. This can only happen if the vast majority (if
not all) of the top L3 predicted interactions are true interactions, a
conclusion supported by the pairwise testing described next.

Finally, to explore the robustness of L3, we tested if our results
are tolerant against data incompleteness or noise (Fig. 3e, f). We
find a stable precision up to removal of even 60-70% of the
known interactions (false negatives, Fig. 3e). Furthermore, the
predictive power of L3 persists even when the number of
randomly added links exceeds the number of original links (false
positives, Fig. 3f).

Pairwise tests. The HI-III-based experimental validation under-
estimates the performance of L3, as only a fraction of PPIs is
found in a dataset from a HT screen®. To accurately assess the
performance of L3, we also performed yeast-two-hybrid pairwise
tests (PT) for the top 500 predicted links, utilizing—amongst
others—the same positive and negative controls as above (Fig. 3g,
Supplementary Note 1). Altogether, we performed ~3,000 pair-
wise tests, allowing us to classify each pair as either positive,
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Fig. 3 L3 is a precise and robust tool to find missing PPls. a Connection probability in the top 1,000 HI-11-14° protein pairs ranked by different powers of the
adjacency matrix, ¢, counting all paths of length £ = 2, ... , 8. £ = 3 paths are the most informative on direct connectivity. b In a 2-fold computational cross-
validation on HI-tested (see the Methods section for details) L3 outperforms CN and PA at least three-fold. ¢ In a high-throughput (HT) setting, we tested
the L3 predictions on HI-tested, against the human interactome, HI-1112. L3 outperforms all other methods several fold, including the best performing
literature method, CRA29, out of 23 different methods tested (Supplementary Figures 5 and 6). d As a positive benchmark, we selected 100 known
interactions (Known) and as a negative benchmark, 100 random pairs (RND), to set the expected window of precision values. For details see the Methods
section. The recovery rate (precision) of L3 is significantly higher than that of CRA and comparable to the one of Known interactions (one-sided Fisher's
exact test). e Robustness analyses of the L3 predictions with HT validation against data incompleteness, evaluated at the top 100, 500 and 2000
predictions, respectively. L3 is robust even when less then half of the PPIs are kept. f L3 is also robust against adding random links to the network, even
when less then half of the links are PPIs. g Pairwise testing the top 500 predictions of L3 and CRA. We indicate the pairs where the experiments were
conclusive (positive or negative) (Supplementary Note 1). h L3 not only outperforms CRA (one-sided Fisher's exact test), but the L3 predictions test
positively with about the same rate as known interactions, indicating an optimal performance. Error bars indicate the expected standard deviation in

a, d and h. The shading around each curve indicates the standard deviation over 10 realizations for e and f

negative or undetermined. We find that the recovery rate precision of the best performing literature method, CRA (Fig. 3h).
of ‘Known’ interactions—i.e. the fraction of positives over posi- In contrast, 90% of the L3 predictions tested successfully by
tives and negatives—has now increased to 91%, while none of pairwise tests, in the same league as the best HT experimental
the ‘RND’ control pairs scored positive (Fig. 3h). We also find a  pipelines. Yet, L3 requires high quality screening data as an input
90% recovery rate of the top 500 L3 predictions, which is once to achieve this remarkable performance. Taken together, the
again 3-fold higher than that of CRA and it is comparable to the exceptional predictive power of L3 suggests that computational
experimental recovery rate of the positive control (Fig. 3h). predictions have matured to the point that they can successfully
To put these results into perspective, the primary high- augment HT screening in the search for new interactions.
throughput screens behind HI-II-14 resulted in ~35,500 PPI Current quantitative link prediction methods are hard to put
candidates, out of which ~14,700, or 41%, tested positively in the into practice, as it is up to the user to choose an acceptable
pairwise tests>. Current HT screens have an even higher compromise between precision and recall based on the ranked list
validation rate, at least two-fold higher than the 34% predictive provided. Here we go beyond this practice, as we not only provide
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Fig. 4 L3 provides mechanistic insights into protein function and complex diseases. For two proteins involved in retinitis pigmentosa (RP), FAM161A and
PRPF31, we show all known interacting partners in Hi-tested (gray), together with those predicted by the L3 algorithm and confirmed by pairwise tests
(blue). The top L3 predicted interaction is connecting FAM161A to GOLGAZ2, two proteins without any shared interaction partners. The node size and color
illustrates the degree of the proteins in HI-tested. In light of our experiments, GOLGA2, TRIM23, and TRIM54 are now amongst several shared interaction
partners between FAM161A and PRPF31, a pre-mRNA splicing factor, whose mutations are causal for another form of RP30. This illustrates the key principle
behind L3 (Fig. 1d), that two proteins, like FAM161A and PRPF31, despite sharing multiple interacting partners, do not necesseraly interact with each other,

but share additional, previously unrecognized interaction partners

precision-recall curves, but also calculate the probability that each
predicted interaction exists. This probability is obtained through a
leave-one-out framework and we find that it is in excellent
agreement with the experimental results (see the Methods section
and Supplementary Fig. 8). Such reliable estimates help to select
the number of predictions for downstream analyses and tests for
the applications. For example, we estimate that starting from
three existing screens of HI-III to predict new PPIs, at least
another ~6,000 of the top 10,000 L3 predictions are true PPIs.

Retinitis Pigmentosa. Previously undetected PPIs can offer novel
insights into disease mechanisms. Indeed, our top L3 prediction
(Supplementary Fig. 9A) is an interaction between FAM161A and
GOLGA?2 (Fig. 4), which was found by HI-III and tested posi-
tively in our pairwise experiment as well. Family-based studies
and homozygosity mapping have linked coding mutations in the
gene FAM161A to a hereditary form of Retinitis Pigmentosa
(RP), a retinal ciliopathy leading to progressive degeneration of
photoreceptors. Yet, the cellular functions of FAM161A as well as

the molecular mechanisms leading to RP upon loss of FAM161A
are largely unknown’. FAM161A localizes at the ciliary basal
body and the connecting cilium of human photoreceptors3!-32,
binds to microtubules®? and has recently been found to interact
with proteins of the Golgi apparatus (GA)33. The predicted and
confirmed interaction between FAM161A and GOLGA2, a core
member of the GA, offers a novel mechanistic insight for the role
of FAM161A in GA function. Remarkably, FAM161A and
GOLGA2 do not share any interaction partners, hence TCP-
based algorithms are unlikely to predict this interaction. Within
the top 500 L3 predictions we find five additional experimentally
confirmed interaction partners of FAM161A: TRIM23, VPS52,
KIFC3, TRAF2, and REL (Fig. 4), each of them offering insights
into the function of FAM161A. TRIM23 and VPS52 both show
GA localization and have been implicated in regulating vesicle
trafficking between the GA and other cellular compartments.
KIFC3, a recently identified interactor of FAM161A33, is well
known for its function as a microtubule motor protein. Our
findings can also indicate novel directions, such as a potential link
of FAM161A to NF-«B signaling. Indeed, TRIM23, TRAF2 and
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REL have demonstrated roles in NF-«B activation, which is
particularly interesting in light of the activation of cell death
pathways in RP-affected photoreceptors. Altogether, these newly
identified interactions position FAM161A within a molecular
network that connects GA function with cilium organization and
intracellular transport, providing detailed insights into potential
molecular mechanisms that underlie RP.

Discussion

The exceptional success of the L3 framework is rooted in its
ability to capture the structural and evolutionary principles that
drive PPIs. Yet, it is also rooted in the fact that the already
detected interactions, while offering an incomplete coverage of
the full interactome, have reached a critical coverage and accu-
racy>* to make future accurate predictions possible. Yet, in con-
trary of the current network paradigm, interacting proteins are
not necessarily similar and similar proteins do not necessarily
interact, questioning the traditional validation strategy based on
biological similarity of the predicted protein pairs (Supplemen-
tary Fig. 7). Our systematic high-throughput validations show
that the L3 principle significantly outperforms all existing link
prediction methods, as well as state-of-the-art bioinformatics
tools, PrePPI'4 and STRING?>, that rely on additional biological
information. For example, we calculate the validation rate of
PrePPI by checking the fraction of positives in the same predic-
tion space of protein pairs. The top 500 PrePPI predictions test
positively in only 2.8% of the cases. We also evaluated protein
interactions from the STRING database, leading to a recovery rate
of 1.8% for the top 500 pairs. On the contrary, our results suggest
that most (if not all) of the top L3 predictions are true PPIs,
amenable to further detailed studies, such as interface
prediction3®.

Despite its exceptional predictive power, the L3 framework is
not without limitations. First, like all network-based methods, it
cannot find interacting partners for proteins without known links.
For such proteins, we can, however, seamlessly, integrate into the
L3 framework information on sequence, evolutionary history or
3D structure, used by some PPI prediction algorithms!0:11:13:14,37,
Second, L3 is most probably only the first step in our journey to
further improve the performance of PPI predictions. Deriving
better degree normalizations, or combining ¢ = 3 with additional
information provided by longer paths (Fig. 3a) can potentially
offer further improvements®®-3°. Finally, the high retest rate of L3
predictions indicates that network-based predictive algorithms
are poised to complement future mapping efforts. Taken together,
L3, coupled with experimental validation, offers a powerful and
necessary tool for the completion of the human interactome,
allowing us to exploit network effects as we aim to uncover the
mechanistic roots of human disease”>34-38.

Methods

Pairwise testing experiments. We tested experimentally the top 500 predictions
of L3 against the top 500 predictions of CRA2? on the human network, HI-tested.
HI-tested is a subset of the human interaction dataset HI-II-14, restricted to a
single ORF for each gene, present in HI-III?, and leaving out keratins (KRT*). To
test the overall efficiency of the experiment, we included 94 literature curated
interactions with multiple evidence (Lit-BM-13°), as well as a set of 88 positive
reference interactions from the literature (PRS). In principle, the proteins of our
top predictions might have special characteristics, which locally modify the
recovery rate of their interactions. To have a more specific assessment, our selected
positive set (“Known” PPIs) contains 100 randomly selected known links in HI-
tested, connected to at least one of the nodes in the top 500 L3 predictions. To
control the false positive rate, we selected a set of 144 random node pairs in the
random reference set (RRS) and a more specific set of 100 random pairs involving
the proteins in the top 500 L3 predictions (RND). Altogether, we pairwise tested
1,485 non-redundant pairs, in two orientations, classifying each pair as either
positive, negative or undetermined. Details of the experimental protocol are
summarized in Supplementary Note 1.

Statistical analysis. All statistical analyses were performed using the R package
(v3.2.3, http://www.r-project.org/). Details of the quantitative performance eva-
luation are listed in Supplementary Note 2.

Assigning probabilities to the L3 predictions. To estimate the probability of each
predicted link to test positively in a pairwise testing experiment, we first calculated
a prediction score for each existing link in HI-tested in a leave-one-out scenario
and ranked these known PPIs together with the newly predicted links based on
their prediction scores. Assuming that around a given rank pairs are more likely to
be real if surrounded by already known links, we estimate the validation probability
at a given rank by calculating the ratio of known interactions to all pairs in a
window of +50 known interactions around the studied rank. We then sum up these
probabilities until a given rank, providing the expected number of validated
interactions up to that rank.

Code availability. The L3 prediction code, together with example datasets, input
data files and predictions, is available at [https://doi.org/10.5281/zenod0.2008592].
Further codes written for and used in this study are available from the corre-
sponding author upon reasonable request.

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

Current version of the human interactome, HI-III, is available at Ref. 26. The version
used in this study (screens 1-3) and additional datasets are available at [https://doi.org/
10.5281/zenodo.2008592] and at the original references. The protein interactions from
this publication have been submitted to the IMEx (http://www.imexconsortium.org)
consortium through IntAct** and assigned the identifier IM-26274 [https://www.ebi.ac.
uk/intact/search/do/search?searchString=pubid:IM-26274].
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