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Abstract

To deepen our understanding of graph neural networks, we investigate the repre-
sentation power of Graph Convolutional Networks (GCN) through the looking
glass of graph moments, a key property of graph topology encoding path of vari-
ous lengths. We find that GCNs are rather restrictive in learning graph moments.
Without careful design, GCNs can fail miserably even with multiple layers and
nonlinear activation functions. We analyze theoretically the expressiveness of
GCNs, concluding that a modular GCN design, using different propagation rules
with residual connections could significantly improve the performance of GCN.
We demonstrate that such modular designs are capable of distinguishing graphs
from different graph generation models for surprisingly small graphs, a notoriously
difficult problem in network science. Our investigation suggests that, depth is much
more influential than width, with deeper GCNs being more capable of learning
higher order graph moments. Additionally, combining GCN modules with different
propagation rules is critical to the representation power of GCNGs.

1 Introduction

The surprising effectiveness of graph neural networks [17] has led to an explosion of interests in
graph representation learning, leading to applications from particle physics [12], to molecular biology
[37] to robotics [4]. We refer readers to several recent surveys [7, 38, 33, 14] and the references
therein for a non-exhaustive list of the research. Graph convolution networks (GCNs) are among the
most popular graph neural network models. In contrast to existing deep learning architectures, GCNs
are known to contain fewer number of parameters, can handle irregular grids with non-Euclidean
geometry, and introduce relational inductive bias into data-driven systems. It is therefore commonly
believed that graph neural networks can learn arbitrary representations of graph data.

Despite their practical success, most GCNs are deployed as black boxes feature extractors for graph
data. It is not yet clear to what extent can these models capture different graph features. One
prominent feature of graph data is node permutation invariance: many graph structures stay the same
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under relabelling or permutations of the nodes. For instance, people in a friendship network may be
following a similar pattern for making friends, in similar cultures. To satisfy permutation invariance,
GCNs assign global parameters to all the nodes by which significantly simplifies learning. But such
efficiency comes at the cost of expressiveness: GCNs are not universal function approximators [34].
We use GCN in a broader sense than in [20], allowing different propagation rules (see below (4)).

To obtain deeper understanding of graph neural networks, a few recent work have investigated the
behavior of GCNs including expressiveness and generalizations. For example, [28] showed that
message passing GCNs can approximate measurable functions in probability. [34, 24, 25] defined
expressiveness as the capability of learning multi-set functions and proved that GCNs are at most as
powerful as the Weisfeiler-Lehman test for graph isomorphism, but assuming GCNs with infinite
number of hidden units and layers. [32] analyzed the generalization and stability of GCNs, which
suggests that the generalization gap of GCNs depends on the eigenvalues of the graph filters. However,
their analysis is limited to a single layer GCN for semi-supervised learning tasks. Up until now, the
representation power of multi-layer GCNs for learning graph topology remains elusive.

In this work, we analyze the representation power of GCNs in learning graph topology using graph
moments, capturing key features of the underlying random process from which a graph is produced.
We argue that enforcing node permutation invariance is restricting the representation power of GCNs.
We discover pathological cases for learning graph moments with GCNs. We derive the representation
power in terms of number of hidden units (width), number of layers (depths), and propagation rules.
We show how a modular design for GCNs with different propagation rules significantly improves
the representation power of GCN-based architectures. We apply our modular GCNs to distinguish
different graph topology from small graphs. Our experiments show that depth is much more influential
than width in learning graph moments and combining different GCN modules can greatly improve
the representation power of GCNs. 3

In summary, our contributions in this work include:

e We reveal the limitations of graph convolutional networks in learning graph topology. For
learning graph moments, certain designs GCN completely fails, even with multiple layers
and non-linear activation functions.

e we provide theoretical guarantees for the representation power of GCN for learning graph
moments, which suggests a strict dependence on the depth whereas the width plays a weaker
role in many cases.

e We take a modular approach in designing GCNs that can learn a large class of node
permutation invariant function of of the graph, including non-smooth functions. We find
that having different graph propagation rules with residual connections can dramatically
increase the representation power of GCNGs.

e We apply our approach to build a “graph stethoscope”: given a graph, classify its generating
process or topology. We provide experimental evidence to validate our theoretical analysis
and the benefits of a modular approach.

Notation and Definitions A graph is a set of [V nodes connected via a set of edges. The adjacency
matrix of a graph A encodes graph topology, where each element A;; represents an edge from node
i tonode j. We use AB and A - B (if more than two indices may be present) to denote the matrix
product of matrices A and B. All multiplications and exponentiations are matrix products, unless
explicitly stated. Lower indices A;; denote i, jth elements of A, and A; means the ith row. AP

denotes the pth matrix power of A. We use a(™) to denote a parameter of the mth layer.

2 Learning Graph Moments

Given a collection of graphs, produced by an unknown random graph generation process, learning
from graphs requires us to accurately infer the characteristics of the underlying generation process.
Similar to how moments E[X?] of a random variable X characterize its probability distribution,
graph moments [5, 23] characterize the random process from which the graph is generated.

3 All code and hyperparameters are available at https://github.com/nimadehmamy/
Understanding-GCN



2.1 Graph moments

In general, a pth order graph moment M, is the ensemble average of an order p polynomial of A
H (A-W,+ B,) (1)

with W, and B, being N x N matrices. Under the constraint of node permutation invariance, W,
must be either proportional to the identity matrix, or a uniform aggregation matrix. Formally,

M(A)=A-W + B, Node Permutation Invariance = W, B =cI, or W,B=cl11? (2)

where 1 is a vector of ones. Graph moments encode topological information of a graph and are useful
for graph coloring and Hamiltonicity. For instance, graph power A? ; counts the number of paths
from node i to j of length p. For a graph of size NV, A has N eigenvalues. Applying eigenvalue
decomposition to graph moments, we have E[AP] = E[(VTAU)P]) = VTE[AP]U. Graphs moments
correspond to the distribution of the eigenvalues A, which are random variables that characterize the
graph generation process. Graph moments are node permutation invariant, meaning that relabelling
of the nodes will not change the distribution of degrees, the paths of a given length, or the number of
triangles, to name a few. The problem of learning graph moments is to learn a functional approximator
F such that F : A — M, (A), while preserving node permutation invariance.

Different graph generation processes can depend on different orders of graph moments. For example,
in Barabdsi-Albert (BA) model [1], the probability of adding a new edge is proportional to the degree,
which is a first order graph moment. In diffusion processes, however, the stationary distribution
depends on the normalized adjacency matrix A as well as its symmetrized version A,, defined as
follows:

Dij = by ZAik A=D"'A A, =D YV2AD"1/2 3)
k

which are not smooth functions of A and have no Taylor expansion in A, because of the inverse D~.
Processes involving D! and A are common and per (2) D and Tr[A] are the only node permutation
invariant first order moments of A. Thus, in order to approximate more general node permutation
invariant F'(A), it is crucial for a graph neural network to be able to learn moments of A, Aand A,
simultaneously. In general, non-smooth functions of A can depend on A~!, which may be important
for inverting a diffusion process. We will only focus on using A, A and A, here, but all argument
hold also if we include A=, A~ and A;! as well.

2.2 Learning with Fully Connected Networks

Consider a toy example of learning the first order moment. Given a collection of graphs with
N = 20 nodes, the inputs are their adjacency matrices A, and the outputs are the node degrees
D, = Zj\;l A;;. For a fully connected (FC) neural network, it is a rather simple task given its
universal approximation power [19]. However, a FC network treats the adjacency matrices as vector
inputs and ignores the underlying graph structures, it needs a large amount of training samples and
many parameters to learn properly.

Fig. 1 shows the mean squared error (MSE) of a single layer FC network in learning the first order
moments. Each curve corresponds to different number of training samples, ranging from 500-10,000.
The horizontal axis shows the number of hidden units. We can see that even though the network can
learn the moments properly reaching an MSE of =~ 10~4, it requires the same order of magnitude
of hidden units as the number of nodes in the graph, and at least 1,000 samples. Therefore, FC
networks are quite inefficient for learning graph moments, which motivates us to look into more
power alternatives: graph convolution networks.

2.3 Learning with Graph Convolutional Networks

We consider the following class of graph convolutional networks. A single layer GCN propagates the
node attributes h using a function f(A) of the adjacency matrix and has an output given by

F(Ah) =0 (f(A)-h-W+b) G))
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Figure 1: Learning graph Figure 2: Learning the degree of nodes in a graph with a single
moments (ErdGs-Rényi graph)  layer of GCN. When the GCN layer is designed as o(A - h - W)
with a single fully-connected  with linear activation function o (x) = z, the network easily learns
layer. Best validation MSE the degree (a). However, if the network uses the propagation rule
w.r.t number of hidden units as o(D~1A - h - W), it fails to learn degree, with very high MSE
n and the number of samples  loss (b). The training data were instances of Barabasi-Albert
in the training data (curves of  graphs (preferential attachment) with N = 20 nodes and m = 2
different colors). initial edges.

where f is called the propagation rule, h; is the attribute of node ¢, W is the weight matrix and
b is the bias. As we are interested in the graph topology, we ignore the node attributes and set
h; = 1. Note that the weights W are only coupled to the node attributes £ but not to the propagation
rule f(A). The definition in Eqn (4) covers a broad class of GCNs. For example, GCN in [20]
uses f = D~1/2AD~1/2, GraphSAGE [16] mean aggregator is equivalent to f = D~ A. These
architectures are also special cases of Message-Passing Neural Networks [13].

We apply a single layer GCN with different propagation rules to learn the node degrees of BA graphs.
With linear activation o(x) = =z, the solution for learning node degrees is f(A4) = A, W =1 and
b = 0. For high-order graph moments of the form M, = },(AP);;, a single layer GCN has to
learn the function f(A) = AP. As shown in Figure 2, a single layer GCN with f(A) = A can learn
the degrees perfectly even with as few as 50 training samples for a graph of N = 20 nodes (Fig.
2a). Note that GCN only requires 1 hidden unit to learn, which is much more efficient than the FC
networks. However, if we set the learning target as f(A) = D~!A, the same GCN completely fails at
learning the graph moments regardless of the sample size, as shown in Fig. 2b. This demonstrates the
limitation of GCNs due to the permutation invariance constraint. Next we analyze this phenomena
and provide theoretical guarantees for the representation power of GCNs.

3 Theoretical Analysis

To learn graph topology, fully connected layers require a large number of hidden units. The following
theorem characterizes the representation power of fully connected neural network for learning graph
moments in terms of number of nodes IV, order of moments p and number of hidden units n.

Theorem 1. A fully connected neural network with one hidden layer requires n > O(C’}%) ~
O(p* N2%) number of neurons in the best case with 1 < q < 2 to learn a graph moment of order p for

graphs with N nodes. Additionally, it also needs S > O(nd) ~ O (pQN 2‘1“‘2) number of samples to
make the learning tractable.

Clearly, if a FC network fully parameterizes every element in a N x N adjacency matrix A, the
dimensions of the input would have to be d = N?2. If the FC network allows weight sharing among
nodes, the input dimension would be d = N. The Fourier transform of a polynomial function of
order p with O(1) coefficients will have an L, norms of Cy ~ O(p). Using Barron’s result [2] with
d = N9 where 1 < ¢ < 2 and set the Cy ~ O(p), we can obtain the approximation bound.

In contrast to fully connected neural networks, graph convolutional networks are more efficient in
learning graph moments. A graph convolution network layer without bias is of the form:

F(AR) = o(f(A)-h-W) 5)
Permutation invariance restricts the weight matrix W to be either proportional to the identity matrix,

or a uniform aggregation matrix, see Eqn. (2). When W = cI, the resulting graph moment M,(A)
has exactly the form of the output of a p layer GCN with linear activation function.



We first show, via an explicit example, that a n < p layer GCN by stacking layers of the form in Eqn.
(5) cannot learn pth order graph moments.

Lemma 1. A graph convolutional network with n < p layers cannot, in general, learn a graph
moment of order p for a set of random graphs.

We prove this by showing a counterexample. Consider a directed graph of two nodes with adjacency
matrix A = 2 8) . Suppose we want to use a single layer GCN to learn the second order moment

flA); => ; (A2);; = 3", Air, Dy, The node attributes h;; are decoupled from the propagation rule
f(A);. Their values are set to ones h;; = 1, or any values independent of A. The network tries to
learn the weight matrix 1W;,, and has an output R of the form

hgi) =g (A-h- W), =0 | Y AhyWy, |, (6)
il

For brevity, define V;,, = Zl higWi,. Setting the output R to the desired function A - D, with

components h&) = hg} = ab, (hence y can only be 1) and plugging in A, the two components of
the output become

h{l) = o (D1Vi,) = o (aVi,) = ab h)) =0 (DaVo,) = 0 (WVa,) =ab. (7

which must be satisfied Va, b. But it’s impossible to satisfy o (aV1,) = ab for (a,b) € R? with V3,
and o(-) independent of a, b. O

Proposition 1. A graph convolutional network with n layers, and no bias terms, in general, can
learn f(A); = Zj (Ap)ij only if n = p or n > p if the bias is allowed.

If we use a two layer GCN to learn a first order moment f(A); = >_; A;; = D;, for the output of

the second layer hl(-lz,) we have
@ — 52 (A iy (A R W(l)) . W<2>) W2 = 5@ (azam (bv—;ﬁ) W/ﬁ)) —a (8)
w

(2)

Again, since this must hold for any value of a, b and v, we see that h;},

is a function of b through the

output of the first layer hgij Thus hf,) = a can only be satisfied if the first layer output is a constant.
In other words, only if the first layer can be bypassed (e.g. if the bias is large and weights are zero)

can a two-layer GCN learn the first order moment. O

This result also generalizes to multiple layers and higher order moments in a straightforward fashion.
For GCN with linear activation, a similar argument shows that when the node attributes h are not
implicitly a function of A, in order to learn the function j (AP), ;» we need to have exactly n = p
GCN layers, without bias. With bias, a feed-forward GCN with n > p layers can learn single term
order p moments such as > j (AP), ;- However, since it needs to set the some weights of n — p layers

to zero, it can fail in learning mixed order moments such as (A7 + A?);;.

To allow GCNs with very few parameters to learn mixed order moments, we introduce residual
connections [18] by concatenating the output of every layer [h(l), ceey h(m)] to the final output of the
network. This way, by applying an aggregation layer or a FC layer which acts the same way on the
output for every node, we can approximate any polynomial function of graph moments. Specifically,
the final N' x d° output h{/*"%) of the aggregation layer has the form

h = (Z al™ - hfn)) ! ™ = (A RmD W Ly ()
m=1

where - acts on the output channels of each output layers. The above results lead to the following
theorem which guarantees the representation power of multi-layer GCNs with respect to learning
graph moments.
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Figure 4: Test loss over number of epochs for learning first (top), second (middle) and third (bottom)
order graph moments M, (A) = >, (AP),;, with varying number of layers and different activation
functions. A multi-layer GCN with residual connections is capable of learning the graph moments
when the number of layers is at least the target order of the graph moments. The graphs are from our
synthetic graph dataset described in Sec. 6.

Theorem 2. With the number of layers n greater or equal to the order p of a graph moment M,(A),
graph convolutional networks with residual connections can learn a graph moment M, with O(p)
number of neurons, independent of the size of the graph.

Theorem 2 suggests that the representation power of GCN has a strong dependence on the number
of layers (depth) rather than the size of the graph (width). It also highlights the importance of
residual connections. By introducing residual connections into multiple GCN layers, we can learn
any polynomial function of graph moments with linear activation. Interestingly, Graph Isomophism
Network (GIN) proposed in [34] uses the following propagation rule:

FAh) =c([(1+eI+A-h-W) (10)
which is a special case of our GCN with one residual connection between two modules.

a) The Full GCN module  b) Residual Architecture

4 Modular GCN Design

Ah
In order to overcome the limitation of the GCNss in learn- GCN GCN
ing graph moments, we take a modular approach to GCN A DA | DUEADYE
design. We treat different GCN propagation rules as | | | oo
different “modules” and consider three important GCN Concat S
modules (1) f1 =A [22] (2) f2 = DilA [20]’ and (3) Node-wi ‘F lly C \
fs = D™Y/2AD~1/2 [16]. Figure 3a) shows the design e e Coneaty
of a single GCN layer where we combine three different 1 OUfput

GCN modules. The output of the modules are concate-
nated and fed into a node-wise FC layer. Note that our ; 3: GCN 1 ino three dif-
design is different from the multi-head attention mech- e o ayer (a), using three di
anism in Graph Attention Network [31] which uses the
same propagation rule for all the modules.

ferent propagation rules and a node-wise
FC layer. Using residual connections (b)
allows a n-layer modular GCN to learn
However, simply stacking GCN layers on top of each other ~any polynomial function of order n of its
in a feed-forward fashion is quite restrictive, as shown by ~constituent operators.

our theoretical analysis for multi-layer GCNs. Different



propagation rules cannot be written as Taylor expansions of each other, while all of them are important
in modeling the graph generation process. Hence, no matter how many layers or how non-linear
the activation function gets, multi-layer GCN stacked in a feed-forward way cannot learn network
moments whose order is not precisely the number of layers. If we add residual connections from the
output of every layer to the final aggregation layer, we would be able to approximate any polynomial
functions of graph moments. Figure 3b) shows the design of a muli-layer GCN with residual
connections. We stack the modular GCN layer on top of each other and concatenate the residual
connections from every layer. The final layer aggregates the output from all previous layers, including
residual connections.

We measure the representation power of GCN design in learning different orders of graph moments
My(A) = 2, (AP),; with p = 1,2,3. Figure 4 shows the test loss over number of epochs for
learning first (top), second (middle) and third (bottom) order graph moments. We vary the number of
layers from 1 to 4 and test with different activation functions including linear, ReLU, sigmoid and
tanh. Consistent with the theoretical analysis, we observe that whenever the number of layers is at
least the target order of the graph moments, a multi-layer GCN with residual connections is capable of
learning the graph moments. Interestingly, Jumping Knowledge (JK) Networks [35] showed similar
effects of adding residual connections for Message Passing Graph Neural Networks.

Our modular approach demonstrates the importance of architectural design when using specialized
neural networks. Due to permutation invariance, feed-forward GCNs are quite limited in their
representation power and can fail at learning graph topology. However, with careful design including
different propagation rules and residual connections, it is possible to improve the representation power
of GCNs in order to capture higher order graph moments while preserving permutation invariance.

5 Related Work

Graph Representation Learning There has been increasing interest in deep learning on graphs,
see e.g. many recent surveys of the field [7, 38, 33]. Graph neural networks [22, 20, 17] can learn
complex representations of graph data. For example, Hopfield networks [28, 22] propagate the
hidden states to a fixed point and use the steady state representation as the embedding for a graph;
Graph convolution networks [8, 20] generalize the convolutional operation from convolutional neural
networks to learn from geometric objects beyond regular grids. [21] proposes a deep architecture
for long-term forecasting of spatiotemporal graphs. [37] learns the representations for generating
random graphs sequentially using an adversarial loss at each step. Despite practical success, deep
understanding and theoretical analysis of graph neural networks is still largely lacking.

Expressiveness of Neural Networks Early results on the expressiveness of neural networks take a
highly theoretical approach, from using functional analysis to show universal approximation results
[19], to studying network VC dimension [3]. While these results provided theoretically general
conclusions, they mostly focus on single layer shallow networks. For deep fully connected networks,
several recent papers have focused on understanding the benefits of depth for neural networks
[11, 29, 28, 27]) with specific choice of weights. For graph neural networks, [34, 24, 25] prove
the equivalence of a graph neural network with Weisfeiler-Lehman graph isomorphism test with
infinite number of hidden layers. [32] analyzes the generalization and stability of GCNs, which
depends on eigenvalues of the graph filters. However, their analysis is limited to a single layer GCN
in the semi-supervised learning setting. Most recently, [10] demonstrates the equivalence between
infinitely wide multi-layer GNNs and Graph Neural Tangent Kernels, which enjoy polynomial sample
complexity guarantees.

Distinguishing Graph Generation Models Understanding random graph generation processes
has been a long lasting interest of network analysis. Characterizing the similarities and differences of
generation models has applications in, for example, graph classification: categorizing a collections of
graphs based on either node attributes or graph topology. Traditional graph classification approaches
rely heavily on feature engineering and hand designed similarity measures [30, 15]. Several recent
work propose to leverage deep architecture [6, 36, 9] and learn graph similarities at the representation
level. In this work, instead of proposing yet another deep architecture for graph classification, we
provide insights for the representation power of GCNs using well-known generation models. Our
insights can provide guidance for choosing similarity measures in graph classification.



6 Graph Stethoscope: Distinguishing Graph Generation Models

An important application of learning graph moments is to distinguish different random graph genera-
tion models. For random graph generation processes like the BA model, the asymptotic behavior
(N — o0) is known, such as scale-free. However, when the number of nodes is small, it is generally
difficult to distinguish collections of graphs with different graph topology if the generation process is
random. Thus, building an efficient tool that can probe the structure of small graphs of N < 50 like a
stethoscope can be highly challenging, especially when all the graphs have the same number of nodes
and edges.

BA vs. ER. We consider two tasks for graph stethoscope. In the first setting, we generate 5, 000
graphs with the same number of nodes and vary the number of edges, half of which are from the
Barabasi-Albert (BA) model and the other half from the Erdos-Renyi (ER) model. In the BA model,
a new node attaches to m existing nodes with a likelihood proportional to the degree of the existing
nodes. The 2,500 BA graphs are evenly split with m = 1, N/8, N/4,3N/8, N/2. To avoid the bias
from the order of appearance of nodes caused by preferential attachment, we shuffle the node labels.
ER graphs are random undirected graphs with a probability p for generating every edge. We choose
four values for p uniformly between 1/N and N/2. All graphs have similar number of edges.

BA vs. Configuration Model One might argue that distinguishing BA from ER for small graphs
is easy as BA graphs are known to have a power-law distribution for the node degrees [1], and
ER graphs have a Poisson degree distribution. Hence, we create a much harder task where
we compare BA graphs with “fake” BA graphs where the nodes have the same degree but all
edges are rewired using the Configuration Model [26] (Config.). The resulting graphs share ex-
actly the same degree distribution. We also find that higher graph moments of the Config BA
are difficult to distinguish from real BA, despite the Config. model not fixing these moments.
Distinguishing BA and Config BA is very difficult using stan-
dard methods such as a Kolmogorov-Smirnov (KS) test. KS test
measures the distributional differences of a statistical measure e
between two graphs and uses hypothesis testing to identify the BA-ER. f 3 /;L f 27T/QD A,
graph generation model. Figure 5 shows the KS test values for and f3 =D AD—/=.

pairs of real-real BA (blue) and pairs of real-fake BA (orange) Modules Accuracy
w.r.t different graph moments. The dashed black lines show the

Table 1: Test accuracy with dif-
ferent modules combinations for

mean of the KS test values for real-real pairs. We observe that the h 33.5 %
distributions of differences in real-real pairs are almost the same f3 76.9 %
as those of real-fake pairs, meaning the variability in different WE 89.4 %
graph moments among real BA graphs is almost the same as that fis far 13 98.8 %

between real and Config BA graphs.

Classification Using our GCN Module We evaluate the classification accuracy for these two
settings using the modular GCN design, and analyze the trends of representation power w.r.t network
depth and width, as well as the number of nodes in the graph. Our architecture consists of layers
of our GCN module (Fig. 3, linear activation). The output is passed to a fully connected layer
with softmax activation, yielding and N X ¢ matrix (/N nodes in graph, c label classes). The final
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Figure 5: Distribution of Kolmogorov-Smirnov (KS) test values for differences between graph the
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created using the configuration model.
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Figure 6: Classify graphs of Barabasi-Albert model vs. Erdos-Renyi model (top) and Barabasi-
Albert model vs. configuration model (bottom). Left: test accuracy with respect to network depth
for different number of nodes (N) and number of units (U). Right: test accuracy with respect to graph
size for different number of layers (L) and number of units (U).

classification is found by mean-pooling over the N outputs. We used mean-pooling to aggregate
node-level representations, after which a single number is passed to a classification layer. Figure 6
left column shows the accuracy with increasing number of layers for different number of layers and
hidden units. We find that depth is more influential than width: increasing one layer can improve the
test accuracy by at least 5%, whereas increasing the width has very little effect. The right column is
an alternative view with increasing size of the graphs. It is clear that smaller networks are harder to
learn, while for N > 50 nodes is enough for 100% accuracy in BA-ER case. BA-Config is a much
harder task, with the highest accuracy of 90%.

We also conduct ablation study for our modular GCN design. Table 1 shows the change of test
accuracy when we use different combinations of modules. Note that the number of parameters are
kept the same for all different design. We can see that a single module is not enough to distinguish
graph generation models with an accuracy close to random guessing. Having all three modules with
different propagation rules leads to almost perfect discrimination between BA and ER graphs. This
demonstrates the benefits of combining GCN modules to improve its representation power.

7 Conclusion

We conduct a thorough investigation in understanding what can/cannot be learned by GCNs. We
focus on graph moments, a key characteristic of graph topology. We found that GCNs are rather
restrictive in learning graph moments, and multi-layer GCNs cannot learn graph moments even with
nonlinear activation. Theoretical analysis suggests a modular approach in designing graph neural
networks while preserving permutation invariance. Modular GCNs are capable of distinguishing
different graph generative models for surprisingly small graphs. Our investigation suggests that, for
learning graph moments, depth is much more influential than width. Deeper GCNs are more capable
of learning higher order graph moments. Our experiments also highlight the importance of combining
GCN modules with residual connections in improving the representation power of GCNs.
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