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While the structural characteristics of a network are uniquely 
determined by its adjacency matrix1–3, in physical networks, 
such as the brain or the vascular system, the network’s 
three-dimensional layout also affects the system’s structure 
and function. We lack, however, the tools to distinguish physi-
cal networks with identical wiring but different geometrical 
layouts. To address this need, here we introduce the concept of 
network isotopy, representing different network layouts that 
can be transformed into one another without link crossings, 
and show that a single quantity, the graph linking number, 
captures the entangledness of a layout, defining distinct iso-
topy classes. We find that a network’s elastic energy depends 
linearly on the graph linking number, indicating that each local 
tangle offers an independent contribution to the total energy. 
This finding allows us to formulate a statistical model for the 
formation of tangles in physical networks. We apply the devel-
oped framework to a diverse set of real physical networks, 
finding that the mouse connectome is more entangled than 
expected based on optimal wiring.

Physical exclusion imposes severe limitations on most real 
systems, from granular media4 to networks5,6. For example, if the 
links of a spatial network are physical objects and are unable to 
cross one another, in two dimensions only planar networks can 
exist. While in three dimensions any network can be embedded 
without link overlap7, for a given adjacency matrix a network can 
have an infinite number of layouts, differing in the positions of 
its nodes and the precise wiring of its links. Yet, many of these 
layouts are isotopic8, meaning that they can be transformed into 
one another through continuous topological deformations, with-
out the need to cut a link (Fig. 1b). At the same time, a network 
can also have multiple non-isotopic embeddings, each defining a 
distinct isotopy class8.

To determine whether two network embeddings are 
non-isotopic, we start from the linking number, a knot invari-
ant9,10, that measures the number of times two closed curves 
(cycles) wind around each other, capturing the number of tangles 
(Fig. 1c and Supplementary Fig. 1). We generalize it to define the 
graph linking number (GLN), which for a network with embed-
ding E represents the sum of the linking numbers of all pairs of 
cycles in the graph

GðEÞ ¼
X

c;c02fCgjLðE; c; c
0Þj; ð1Þ

where {C} is the set of cycles in the network, determined only 
by the adjacency matrix, and LðE; c; c0Þ

I
 is the linking number 

between cycle c and c′, determined only by the embedding E. Note 
that LðE; c; c0Þ

I
 can be either positive or negative, depending on 

the orientation we select for c and c′, and LðE; c; c0Þ ¼ 0
I

 if cycles 
c and c′ share nodes (Supplementary Information section SI.1 and 

Supplementary Fig. 2). One can show that embeddings with differ-
ent GðEÞ

I
 belong to different isotopy classes (Fig. 1d,f). If, however, 

two embeddings have the same GðEÞ
I

, they can still be non-isotopic 
(Fig. 1d,e).

Usually, larger networks have more cycles11; hence, we expect 
more potential tangles between them, which would lead to higher G 
values. To compare the layouts of networks with different sizes, we 
use the normalized graph linking number (nGLN)

GnðEÞ ¼
GðEÞ
Np

; ð2Þ

where Np is the number of disjoint cycle-pairs in {C} (determined 
only by the adjacency matrix, Fig. 1a). Note, however, that identify-
ing all loops in equations (1) and (2) is computationally expensive, 
and as many loops are parts of larger loops, equations (1) and (2) 
count the same tangles multiple times. Therefore, going forward, 
we limit equations (1) and (2) to the minimal loop set, represent-
ing all shortest loops from which any loop in the network can be 
constructed (Supplementary Information section SI.1). Finding all 
minimal loops is still a computationally expensive problem, which 
prompts us to develop a heuristic method that utilizes spanning 
trees to sample the minimal loops. We find that the resulting heu-
ristic nGLN eGn

I
 converges to a linear function of Gn

I
, a monotonicity 

that allows us to consistently compare the tangledness of networks 
with different sizes (Supplementary Information section SI.1 and 
Supplementary Figs. 4, 6, 7 and 10).

We collected data on the topology and the physical layout of sev-
eral real-world physical networks, finding that their different GnðEÞ

I
 

reflect differences in their function and structure (Fig. 1g). For exam-
ple, the London tube network (number of nodes N = 75, number of 
links M = 118) has a near-planar structure, ensuring the absence of 
entanglements and resulting in Gn ¼ 0

I
. Interestingly, the mitochon-

drial network12 (N = 26, M = 27), despite its full three-dimensional 
(3D) layout, also has Gn ¼ 0

I
, due to the fact that it is embedded on 

a near-spherical surface, turning it into an effectively planar net-
work. The vascular system network’s13 (N = 1,544, M = 2,345) need 
to transport oxygen and nutrients to tissues results in a space-filling 
network with low Gn ¼ 0:0012

I
, reflecting its grid-like structure in 

three dimensions. The Caenorhabditis elegans anterior neuronal 
network14 (N = 31,346, M = 36,216) and the BL(L) region of the fruit 
fly brain network15 (N = 7,841, M = 9,497) are connectomes mapped 
at the single-neuron resolution, whose elongated neuron branches 
result in tangled layouts with higher Gn

I
 equal to 0.0056 and 0.017, 

respectively. The mouse brain network16 (J. A. Brum et al., manu-
script in preparation) (N = 26, M = 472) connects brain regions 
with axon bundles that represent thousands to millions of neurons,  
resulting in a highly entangled wiring with Gn ¼ 0:15

I
. The 

three orders of magnitude spanned by Gn
I

 reflect the diversity  
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of processes that influence the entangledness of physical networks, 
challenging us to develop a theoretical framework that can explain 
the observed differences.

In physical networks, the links (for example, axons) do not 
have arbitrary lengths, as they are costly to build and to main-
tain. We therefore measured the total elastic energy of the  
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Fig. 1 | Graph linking number. a,b, A network with the adjacency matrix A (a) can have multiple physical layouts (b). b, The first two layouts are isotopic, 
meaning that we can transform one into the other without cutting links. The third layout is non-isotopic to the first two, as to transform into the previous 
ones, we need to cut and re-attach the red link. c, Linking number in knot theory9 measures the number of tangles between two loops. The figures show 
three pairs of loops with GLN = 0, 1 and 2. d–f, Non-isotopic layouts of the same 2D lattice with G = 1 (d), 1 (e) and 2 (f). Layout (d) and layout (e) both 
have one loop pair that has linking number 1, therefore they both have G ¼ 1

I
. However, since the location of the tangle in (d) and (e) are different, they 

are non-isotopic. g, Examples of several real-world physical networks we analysed, including the London tube network, the mitochondrial network12, the 
mouse brain vascular network13, the C. elegans anterior neuron network14, the fruit fly brain BL(L) network15 and the mouse brain network16 (J. A. Brum et al., 
manuscript in preparation). Note that for the fruit fly, the ‘missing’ part on the right is not included in the dataset for BL(L), possibly because it belongs 
to another brain region. The plot shows the Gn

I
 value for each network. h, Feynman diagram representation of loop tangles. Each loop is like the trajectory 

of a particle that enters from far away, interacts with other loops and then leaves again. The interactions of two loops are like four-point interactions. 
Analogously, interactions of three loops are like six-point interactions, and n loops, like 2n-point interactions. i, Three pairwise interactions between three 
loops. j, Pairwise interaction between two loops can include multiple windings.
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layout, representing the sum of the elastic energies of all links l,  
defined as

Vel½fγlg ¼
X

l

Z

γl

dxl
ds



2

ds; ð3Þ

where the integral is over the path γl for link l. Here s 2 ½0; 1
I

 param-
etetrizes the length of a link l and xlðsÞ

I
 is the location of the seg-

ment of link l from length parameter value s to sþ ds
I

. To avoid the 
crossing of links and nodes, we add a short-range node–node repul-
sion VNN  AN

P
ij exp½�ðjXi � Xjj=2rNÞp

I
 and link–link repul-

sion VLL  AL
P

lm∬ dsldsm exp½�ðjxl � xmj=2rLÞp
I

 with p ≥ 2 (ref. 
17), where AN, AL are amplitudes for the potentials, Xi, Xj are loca-
tion for node i, j, xl, xm are directed segments on link l, m, rN, rL are 
parameters for node and link interaction ranges, and the exponent 
p determines how hard or soft the potanitals are. As the total elas-
tic energy increases monotonically with the total link length17,18, the 
energy minima of the energy landscape corresponds approximately 
to the shortest wiring length embedding17. Given the numerous 
local minima of the energy landscape19,20, finding the global energy 
minimum is a problem of complexity similar to protein folding, an 
NP-complete (non-deterministic polynomial-time complete) prob-
lem21,22. Yet, as we show next, a direct relationship between isotopy 
and energy offers us unique insights about the energy landscape. 
Indeed, all isotopic layouts can be continuously transformed into 
one another without link crossings, implying that they belong to the 
same energy well. As the energy cost of a link crossing is infinite, 
the energy landscape consists of distinct wells, one for each isotopy 
class, separated by infinite energy barriers (Fig. 2a).

To unveil the relation between Gn
I

 and the elastic energy Vel, we 
model a statistical ensemble of layouts, assuming a stochastic com-
ponent characterized by temperature T in a canonical ensemble. 
The partition function for this ensemble sums over all possible 
paths for all links with a fixed set of node locations {Xi}, integrated 
over all possible node locations

Z ¼ P
fLink paths γg

P
fNode pos:g exp �βVel½ 

¼
R QN

i¼1 d
3Xi

QNL
l¼1 dγl½  exp �βVelh i

ð4Þ

¼
Z YN

i¼1
d3XiZL½fXig; ð5Þ

where β = 1/T; dγl are variations in the path of link l; N and NL are 
the number of nodes and links, respectively; and ZL[{Xi}] denotes 
the partition function for all link configurations for fixed node posi-
tions {Xi}.

We can rewrite equation (5) in terms of loop interactions within 
a network. When the link thickness rL is much smaller than the 
node–node repulsion range rN, loop interactions can be formally 
represented as Feynman diagrams (Fig. 1h–j and Supplementary 
Information section SI.3). Tangles between a pair of loops are cap-
tured by V2 (interaction energy between a pair of loops, Fig. 1i,j), 
but irreducible Vn (interaction energy between n loops) interactions 
with n > 2 also exist (Fig. 1i). For example, a three-loop interaction 
(that is, a Borromean ring) contributes to the partition function 
with a Boltzmann factor exp½�βðk l1k2þ k l2k2þ k l3k2 þ V3Þ

I
, 

that is, exp½�βðk l3k2 þ V3 � V2Þ
I

 smaller than a pairwise inter-
action (Supplementary Information section SI.3), indicating that 
higher interactions offer exponentially diminished contributions to 
the layout’s expected energy Eh i

I
, compared with pairwise interac-

tions (Supplementary Information section SI.3).
We further simplify the partition function using a mean-field 

approach, where εn  mean Vn þ
Pn

i δ k lik2
� 

I
 captures the 

energy contribution from an n-loop irreducible interaction Vn 
and the extra elastic energies δ∥li∥2 needed to stretch loop i  

relative to its ground state. Note that there is an infinite number 
of energy states for n-loop interactions: pairwise loop interactions 
include the untangled state (linking number 0, elastic energy ε0), 
simple tangle (linking number 1, energy ε0 + εt, εt is the energy 
contribution of a tangle), tangled with L windings around each 
other (linking number L, energy ε0 + εt + (L − 1)εw, εw is the energy 
contribution of extra windings), as well as more complex knotted 
states. Similarly, irreducible higher-order interactions Vn include 
infinite numbers of interactions Vμ

n
I

, where μ represents the distinct 
topological ways n loops can get tangled irreducibly, with average 
energy εμn

I
. Therefore, for each set of n loops, the partition function 

zn ¼
P

μ exp �βεμn
 

I
 gives expected energy εnh i ¼ � 1

zn
∂zn
∂β

I
. The par-

tition function for all irreducible Vn interactions is the product of 
zn over all Cn � number of loops

n

� �

I
 possible choices of n loops out of all 

loops in the layout (Zn ¼
Q

Cn
zn ¼ znð ÞCn

I
), and the full partition 

function is the product of Zn

Z ¼ e�βE0
Y

n
Zn ¼ e�βE0

Y
n

X
μ
exp �βεμn

  Cn

: ð6Þ

Taken together, the average of the energy of the ensemble can be 
expressed as (Supplementary Information section SI.3.5)

Eh i ¼ � 1
Z
∂Z
∂β

¼ E0 þ
X

n
Cn εnh i; ð7Þ

which we can expand to the n = 2 term with the expected number of 
type-μ pairwise interactions Nμ

2h i
I

Eh i ¼ E0 þ Gh iεw þ Nt
2

 
ðεt � εwÞ þ

P
μ≠t;ft;wg Nμ

2h iεμ2
þP

n≥ 3Cn εnh i:
ð8Þ

This indicates that the average graph linking number Gh i
I

 deter-
mines the lowest-level contribution to the energy. Note, however, 
that the higher-order contributions decreases greatly the correlation 
between energy and G, and together with the difficulty in detect-
ing irreducible high-order interactions, it is impossible to esti-
mate the minimal energy for an isotopy class of layouts. To move 
forward, we simulated various network topologies, starting from 
random layouts, and performing gradient descent to settle into a 
local minimum, measuring the total energy of the obtained layouts. 
Surprisingly, as Fig. 2b–f shows, we find that there is a statistically 
significant approximately linear correlation between the minimum 
elastic energy and Gn

I
, indicating that the higher-order interactions 

offer diminishing contributions to the total energy ( ε2h i  εnh i
I

), 
and for pairwise interactions εt ≈ εw ≈ ε, and Nμ

2h i  Gh i
I

 for μ ≠ t, 
{t,w}. Therefore, the total elastic energy of a network layout with G 
is well approximated by

EðGÞ  E0 þ Gε; ð9Þ

a finding allowing us to continue the analytical treatment by map-
ping the network layout into a system of non-interacting particles, 
where the effective degrees of freedom are loop pairs with infinitely 
many evenly spaced, discrete energy states. A physical network 
behaves like a canonical ensemble, whose energy fluctuations are 
determined by the temperature T of the ‘heat bath’. For T → 0, the 
system converges to the ground-state layout, with close-to-straight 
links and minimal tangles, whereas at higher T the links are curved, 
which leads to additional tangles and higher elastic energy. The like-
lihood that a network has elastic energy E follows the Boltzmann 
distribution

P EðGÞð Þ ¼ nðGÞe�βEðGÞ

Z
; ð10Þ
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where Z ¼ e�βE0 1� e�βε
� �Np

I
, β ¼ 1

T
I

 and nðGÞ ¼ NpþG�1
G

� �

I

 is the 
degeneracy of energy state EðGÞ

I
 (Supplementary Information sec-

tion SI.3.6), allowing us to derive the expected energy of the layout

hEi ¼ Npε

eβε � 1
þ E0; ð11Þ

the expected nGLN

hGni ¼
1

eβε � 1
; ð12Þ

and the expected entropy

S ¼ �Nplog ð1� e�βεÞ þ Npβε

eβε � 1
; ð13Þ

the latter capturing the variability in the layout. Note that the energy 
cost of a tangle ϵ is a function of the network structure, link thick-
ness and elastic constants, resulting in different tangledness hGni

I
 at 

the same T for different kinds of network. To ensure that the tem-
perature is independent of such system-specific parameters, we use 
the rescaled temperature eT ¼ T

ε
I

 (β to eβ ¼ βε
I

), which guarantees 
that networks at the same eT

I
 have the same degree of entangledness 

hGni ¼ 1= eeβ � 1
 

I

. Variations in the layout energy are typically 
caused by geometric deviations (δli(s)) from the paths of the zero 
temperature layout (∫dl0i = l0i), resulting in new link paths parame-
terized as dli ¼ dl0i þ δliðsÞ

I
. We can explicitly relate the layout tem-

perature eT
I
 to the deviation δ of a link trajectory from straight lines 

(Fig. 3a and Supplementary Information section SI.4),
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Fig. 2 | Energy and GLN. a, Each isotopy class of a network corresponds to a different energy well, as illustrated for a 2D lattice network. The walls of 
the energy well go to infinity, as due to the prohibition of link crossings, a network cannot be transformed from one isotopy class to another.  
Next to the wells, we show three isotopic layouts of the same network for each well, together with their linking number (shown as numbers) and 
total layout energy (left axis). b, The relation between the elastic energy and G for a 2D lattice. Each tangle stretches the links, increasing the elastic 
energy by ϵ relative to that of their shortest-length states. We find that each loop crossing induces a comparable link length increase, implying a 
proportionality between energy and Gn

I
. c–f, The elastic energy versus Gn

I
 for networks generated by the Erdös–Rényi30 (c) and the Barabási–Albert31  

(d) models, for N = 100 and average degree kh i ¼ 6
I

, a 3D square lattice (N = 100) (e) and the flavour network (N = 184, kh i ¼ 7:8
I

) (f)32. For each 
network, the energy grows linearly with Gn

I
. The shaded areas indicate the 95% confidence region of the linear fit. g, Four pairs of loops highlighted  

in a 2D lattice, with linking number 0, 1, 2 and 3, respectively. Each loop pair can be mapped into a particle with a different discrete energy.  
The first loop pair has no tangle, corresponding to a particle at the ground state e0; the second has one tangle, corresponding to a particle  
at the first excited energy state e1 = e0 + ϵ; while the last two correspond to particles at the second and third excited energy states, e2 = e0 + 2ϵ  
and e3 = e0 + 3ϵ.
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eTðδÞ � eTmin ¼
1

2 arcsinh
ffiffiffiffiffiffiffi
Npε2

8kE0

q
1
δ

  ¼ δ

ε
ffiffiffiffiffiffiffi
Np

8kE0

q þ O
1
δ

 
; ð14Þ

connecting the statistical formalism to a physical network’s measur-
able geometric characteristics. To test the validity of the statistical 
formalism, we generated layouts of 3D lattices with varying tem-
peratures, by varying the deviation δ used in simulations (Fig. 3a,b), 
and extracted eT

I
 from the network geometry using equation (14). 

The higher the temperature, the larger is the deviation δ from the 
straight link trajectories, and the more tangles are observed. Figure 
3c,d shows the analytic results for Gnh i

I
 (equation (12)) and entropy 

(equation (13)), and the numerical values extracted from the simu-
lations (Fig. 3b). The excellent agreement between the analytic and 
the simulation results confirms that the statistical mechanical model 
of entangledness (equations (9)–(13)) offers an accurate description 
of the geometrical layouts of physical networks. Next, we show that 
this statistical model can offer insights on the layout of a real physi-
cal network, which we illustrate in the case of the mouse brain.

Given the high metabolic cost of each neuron, brain wiring is 
often hypothesized to be minimizing the wiring cost23. To quantify 
the degree of optimality of the mouse connectome, we extracted 
the 3D map of the axon bundles (links) connecting different brain 
regions from the Allen Mouse Brain Atlas16 (J. A. Brum et al., manu-
script in preparation). At the highest level of hierarchy, we study a 
network of N = 24 brain regions16 (J. A. Brum et al., manuscript in 

preparation) connected by L = 472 axon bundles. This natural lay-
out is highly entangled, with Gn ¼ 0:148

I
 (Fig. 4a), but the number 

itself does not tell us whether it represents an optimal wiring. To 
unveil the optimal layout, we fixed the anatomically predetermined 
node locations (brain regions) and generated the most economical 
layout with no link crossings, corresponding to the lowest possible 
temperature eT ¼ eTmin

I
 in the statistical formalism. This optimal 

layout has Gn ¼ 0:08
I

, roughly half of the real brain’s Gn
I

 (Fig. 4b), 
suggesting that the layout (red) of the brain substantially deviates 
from the optimal one. Using the relation (12) between Gn

I
 and eT

I
, 

we calculated the true temperature of the brain layout, obtaining 
eTB ¼ 0:49
I

 (we also estimated the maximum temperature of the 
mouse brain, limiting the total link length by the limits imposed by 
the brain size, obtaining eTmax � 0:66

I
). To see whether the tempera-

ture eTB
I

 alone determines the observed structural characteristics of 
the real brain, we generated artificial mouse brain layouts at differ-
ent temperatures, measuring for each layout nGLN and the energy 
(Fig. 4c,d). We find that nGLN and energy, as well as the width of 
their distributions, increase with temperature, consistent with the 
predictions of the canonical ensemble (Supplementary Information 
section SI.4). Fixing the temperature at eTB

I
 by setting the link devia-

tion δ using equation (14), we created 1,000 alternative layouts of 
the mouse brain with the same adjacency matrix and node loca-
tions but different link geometries. We find that the observed nGLN 
and energy of the synthetic brain ensemble at eT ¼ eTB

I
 are consistent 

with the values observed for the mouse brain (Fig. 4c,d). The fact 
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that the expected GLN characterizing the ensemble at eT ¼ eTB
I

 is 
largely indistinguishable from the actual brain’s nGLN suggests that 
solely controlling the level of fluctuations results in layouts similar 
to the brain. These results indicate that the real mouse brain is more 
tangled than expected for the most economical layout. Most impor-
tantly, a single parameter, eT

I
, extracted from the wiring through the 

developed statistical framework, captures the inherent layout vari-
ability of a real brain.

In summary, the introduced GLN allows us to systematically 
compare different network layouts, and determines the elastic 
energy of a physical network. While the optimization landscape 
of the layout problem is similar to glassy polymer-like systems, the 
existence of independent energy wells for each isotopy class allowed 
us to build a self-consistent statistical mechanical model of the sys-
tem, which helped us derive the layout characteristics from a single 
parameter, the layout temperature. Although our algorithm mea-
suring Gn

I
 for a given network layout can be computationally taxing, 

we find that our algorithm generally scales similar to a polynomial 
with the number of nodes (N) (Supplementary Information section 
SI.6), and at least quadratically with the number of links, which lim-
its our ability to explore very large networks.

Our results also show that normal brains do display a predict-
able degree of layout variability, which could be experimentally 
confirmed once data on multiple brains become available. Diseases 
such as schizophrenia have been associated with abnormalities in 
the axon bundles24,25, suggesting that quantifying layout changes in 
specific brain regions may offer avenues to identify structural dif-
ferences between healthy and diseased brain tissues, helping diag-
nosis26, and allowing us to quantify the underlying resilience of a 
physical network27.

Lastly, our results indicate that certain difficult network opti-
mization problems simplify if we map them to dual problems in 
topology and vice versa. Force-directed network layouts using gra-
dient descent are analogous to perturbed diffusion processes on the 
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Fig. 4 | Modelling brain layout. a, The mouse brain is a tangled network, with Gn ¼ 0:148
I

. To illustrate the roots of its tangledness, we highlighted the 
tangles between one specific loop (orange) and four other loops (green to black). b, Gn

I
 and eT for several different layouts of the brain network. All layouts 

have the same node positions as the real layout shown in a, but different link curvatures. The first corresponds to straight links with temperature eT ¼ 0:38
I

 
and Gn ¼ 0:08

I
. The second layout is at eT ¼ 0:43

I
, obtained by adding link deviations from straight paths, and resulting in Gn ¼ 0:107

I
. The third layout is 

obtained by raising the temperature until it matches the brain temperature eTB ¼ 0:49
I

 as the real mouse brain, and has Gn ¼ 0:148
I

. The fifth layout is at 
eT ¼ 0:59
I

 with Gn ¼ 0:225
I

. c, Probability distributions for Gn
I

 of the brain network at different temperatures, with the Gn
I

 of the real mouse brain indicated 
with a dashed line. d, Probability distributions for the elastic energy of the mouse brain network at different temperatures, with the energy of the real 
mouse brain indicated with a dashed line.
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network, helping us explore the relationship between optimization 
processes on networks and further topological invariants, or char-
acterize dynamical and control processes on networks28,29.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41567-020-1029-z.
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