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A systematic comprehensive longitudinal
evaluation of dietary factors associated with acute
myocardial infarction and fatal coronary heart
disease
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Environmental factors, and in particular diet, are known to play a key role in the development

of Coronary Heart Disease. Many of these factors were unveiled by detailed nutritional

epidemiology studies, focusing on the role of a single nutrient or food at a time. Here, we

apply an Environment-Wide Association Study approach to Nurses’ Health Study data to

explore comprehensively and agnostically the association of 257 nutrients and 117 foods with

coronary heart disease risk (acute myocardial infarction and fatal coronary heart disease).

After accounting for multiple testing, we identify 16 food items and 37 nutrients that show

statistically significant association – while adjusting for potential confounding and control

variables such as physical activity, smoking, calorie intake, and medication use – among

which 38 associations were validated in Nurses’ Health Study II. Our implementation of

Environment-Wide Association Study successfully reproduces prior knowledge of diet-

coronary heart disease associations in the epidemiological literature, and helps us detect new

associations that were only marginally studied, opening potential avenues for further

extensive experimental validation. We also show that Environment-Wide Association Study

allows us to identify a bipartite food-nutrient network, highlighting which foods drive the

associations of specific nutrients with coronary heart disease risk.
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The prevalence of heart disease, the leading cause of death
throughout the world, is strongly influenced by diet and
eating habits1–4. For example, a recent CDC (Centers for

Disease Control and Prevention) report5, focusing on death rates
caused by heart disease across the United States, documented
substantial regional differences compatible with different eating
patterns. Similarly, while among individuals of Japanese descent,
coronary heart disease (CHD) incidence rates are only 1.6 per
person-years in Japan, it increases to 3.0 in Hawaii, and 3.7 in San
Francisco6, differences that cannot be explained by genetic fac-
tors, documenting the key role dietary and other environmental
factors play in the development of the disease.

Much of our knowledge about the role of food on health comes
from epidemiological association studies in which a single or
limited number of exposure(s) is/are analyzed in relation to a
phenotype, representing a hypothesis-driven path towards
understanding diet–disease relationships. Yet, diet is not a simple
sum of several nutrients, as each food product consists of a
mixture of nutrients associated with multiple compounds of
limited or unknown nutritional value7. Accordingly, the effect of
each dietary compound on human health should not be investi-
gated in isolation, but in the presence of other associated chemical
compounds and relevant food sources. For example, Kolonel
et al.8 initially reported that beta-carotene consumption was
positively associated with the risk of prostate cancer. While this
finding was worrisome, in a subsequent analysis of foods, intake
of carrots, the largest source of beta-carotene, was not related to
the risk of prostate cancer; the observed association was due to
intake of papaya9. Thus, the analysis of foods provided evidence
against the effect of beta-carotene and suggested that some factors
specific to papaya might be responsible for the original finding10.
An alternative approach is dietary pattern analysis that focuses on
the effects of the overall diet11–13, rather than a single or a few
nutrients. While dietary pattern analyses are ideal in the devel-
opment of nutritional guidelines14, they are insufficient for the
agnostic discovery of new signals for further experimental or
mechanistic validation.

As an alternative to the traditional epidemiological studies,
environment-wide association studies (or EWAS) were proposed
to identify new environmental factors in disease and disease-
related phenotypes in an unbiased manner. EWAS is inspired by
the analytical procedures developed in genome-wide association
studies (GWAS)15 in which a panel of “exposures” (genotype
variants) is studied in relation to a phenotype of interest. For
example, using the National Health and Nutrition Examination
Survey dataset, an EWAS study explored the associations of 543
environmental attributes with type 2 diabetes, identifying five
statistically significant associations validated across independent
cohorts15. Wulaningsih et al.16 investigated 182 nutrition and
lifestyle factors in relation to abdominal obesity, finding a sta-
tistically significant association of obesity with five factors in men
and seven factors in women. Merritt et al.17 used European
Prospective Investigation into Cancer and Nutrition (EPIC) data
to evaluate endometrial cancer risk associations for the dietary
intake of 84 foods and nutrients, concluding that only coffee
intake had a statistically significant inverse relationship.

Despite the recent success of the EWAS methodology in
unveiling multiple nutritional factors that together may con-
tribute to our health, its widespread use is undermined by several
factors and limitations18. Indeed, failing to achieve adequate
statistical power in association detection, EWAS studies could not
always recover known environment–disease associations con-
firmed by large, prospective cohort studies and randomized
trials17,19,20. As we show below, these failures are not inherent in
the EWAS methodology, but are mainly rooted in the limited size,
limited variability, and lack of repeated measurements of the

datasets to which EWAS has been applied thus far. While the
statistical power of the EWAS study approach is a legitimate
concern, the magnitude of the statistical power depends on
multiple factors, including the nature and the size of the dataset,
as well as the statistical tools/models used for the analysis. Indeed,
as we show here, if we apply a wide-association study approach to
an adequately sized longitudinal cohort dataset with sufficient
variability, we consistently recover prior knowledge about
diet–disease relationships.

The EWAS methodology may be particularly useful for dis-
eases for which nutritional associations are unknown18. While the
effect of dietary exposures on heart disease has been extensively
studied and the causal effects of many of these associations
confirmed, the diet–disease literature occasionally demonstrates
conflicting findings2,21–23, limiting our understanding of the true
effect of dietary exposures on diseases. We will show that the
wide-association study approach can provide comparable insights
in an efficient manner by applying an unbiased standardized set
of analytical tools.

Here we implement an EWAS methodology, aiming to
identify dietary factors associated with CHD systematically and
comprehensively, focusing on both nutrient intake and food
consumption. To overcome the limited statistical power of
previous studies, we apply our methodology to the Nurses’
Health Study (NHS), a longitudinal prospective study designed
to investigate the longitudinal effects of nutrition on health and
disease development. While there are larger cohorts available
for studying chronic diseases, such as the UK Biobank24 and the
China Kadoorie Biobank25, both with around 500,000 partici-
pants, NHS is unique, owing to comprehensive longitudinal
dietary data collection. Beginning in 1976, NHS gathered
registered female nurses, ages 30–55 years, from across the
United States, initially designed to investigate the use of oral
contraception in relation with risk of breast cancer. Participants
are asked to complete questionnaires every 2 years, and in 1980
a Food Frequency Questionnaire (FFQ) has been included,
designed to capture dietary behaviors. Follow-up dietary
questionnaires were administered in 1984, 1986, and every 4
years since then. Questionnaires used from 1984 and thereafter
included about 130 foods plus detailed information about
brands and types of margarine, breakfast cereals, multiple
vitamins, and types of fat used for cooking and baking. As
health professionals, nurses were chosen for their ability to
complete the health-related questionnaires thoroughly and
accurately26. To date, NHS has been expanded to NHS II and
NHS III to cover a younger population of nurses27. These three
cohorts resulted in an extensive published body of research on
the relationships of environmental and genetic factors to var-
ious diseases28. The dietary drivers of CHD have been exten-
sively studied within NHS data, most analyses primarily
focusing on a single or limited number of exposures, while
controlling for an appropriate set of adjusting variables. Some
of these findings, as those for trans-fats, have inspired experi-
mental studies and were confirmed to have a causal effect on
developing heart diseases29–31.

To have a broad picture of the existing knowledge about
diet–disease associations in the NHS data, we mined the literature
to identify all studies exploring the dietary determinants of heart-
related diseases in original NHS and successive cohorts. The
resulting knowledge graph (Fig. 1) shows that the most exten-
sively studied cardiovascular phenotype using NHS data is CHD.
Here, we use the term negative when a higher level of exposure is
associated with a lower CHD risk. Similarly, we use positive term
when a higher level of an exposure is associated with CHD risk.
We made this choice for simplicity, and it should not be confused
with a causal relationship.
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Excluding studies of biomarkers and tissues, the neighbor-
hood of CHD comprises nutrients, food items, and dietary
scores. Cumulatively, 120 associations were studied, doc-
umenting 63 negative associations and 22 positive relations
with CHD; in the remaining cases, there was no significant
association between dietary exposure and CHD risk, as in the
case of dietary magnesium32. The space of studied exposures is
rather heterogeneous and is often driven by either the
researcher’s interests or evidence from animal or mechanistic
studies.

As illustrated in the knowledge graph, the single-association
studies using NHS data have broadened our understanding of the
dietary determinants of CHD. Some non-significant associations
were found to be significant after the application of new statistical
approaches in larger datasets. For example, while a study using
the original NHS data found no association between fruit fiber
intake and risk of CHD33, a pooled analysis of three NHS cohorts
found that the higher consumption of dietary fiber from fruits
was negatively associated with risk of CHD34.

Here, we show that a wide-association approach allows us to
scan efficiently and systematically the dietary determinants of
CHD, bypassing the problem with missing significant associations
in epidemiological studies. By applying EWAS methodology to
the NHS data, we find that a wide-association approach not only
recovers the existing knowledge on diet–disease association, but
also facilitates the discovery of novel associations, potentially
inspiring future follow-up studies.

Results
Main findings. During the follow-up period, 2774 incident cases
of non-fatal MI or fatal CHD were documented in NHS. The
baseline average of total caloric intake and body mass index
(BMI) among participants who later developed CHD were
slightly higher than in those who did not develop CHD. In
addition, prospective case subjects on average had lower physical
activity compared with the non-case population (Supplementary
Table 1). We examined the effect of 374 exposures on CHD risk,
including 257 nutrients and 117 food items. The descriptive
characteristics of these exposures are shown in Supplementary
Table 2.

For the first phase of EWAS, using Cox regression models we
collected the estimated effect size, the variance of effect size,
hazard ratio (HR) for one standard deviation, P value, the 95%
confidence interval (CI) for the HR, P value regarding the
proportionality assumption, and the variance inflation factor
(VIF). Consider, for example, the results of the long-term effect of
isorhamnetin—an O-methylated flavon-ol from the class of
flavonoids (Fig. 2b). The estimated HR (0.91, 95% CI:
0.87–0.95; P value 1.59 × 10−5) implies that one standard
deviation higher consumption of Box–Cox-transformed isorham-
netin is associated with 91% lower CHD risk. The P value
regarding the proportionality assumption indicates that the use of
the Cox model is appropriate. The VIF equal to 1.27 suggests that
there is no severe multicollinearity among the variables involved
in the isorhamnetin test.
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Fig. 1 The Knowledge Graph of the Dietary Factors Associated with Cardiovascular Disease in the NHS Data. The nodes of the graph are dietary
exposures (circles) and cardiovascular diseases (diamonds) as two sets of nodes. Each studied association is shown by an edge whose color denotes the
“direction” (i.e., positive or negative) of the association. Green and red links indicate negative and positive associations, respectively, between an exposure
and a disease. Grey links denote associations that were studied but not found to be statistically significant. In the context of NHS, CHD refers to non-fatal
MI and fatal coronary heart disease; also, coronary artery disease (CAD) refers to non-fatal MI and fatal coronary artery disease. Cardiovascular disease
(CVD) is defined as a composite of coronary artery disease and non-fatal or fatal stroke. Source data are provided in Source Data - Figure 1.xlsx. The figure
aims to illustrate the body of work derived from NHS data on cardiovascular diseases. A detailed comparison of the result of our analysis with previous
NHS-related work and other findings in the literature is provided in the section “Comparison with the literature”.
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Figure 3a shows the distribution of Cox model P values for all
investigated exposures. Exposures are ordered by the estimated
HR, so that exposures with HR > 1.0 have harmful effects on CHD
risk and exposures with HR < 1.0 are expected to be beneficial.
Insignificant associations are mainly distributed around an HR of
one, and exposures with smaller P values are scattered at the two
ends of the distribution. Using the permutation procedure to
account for multiple testing, we found 53 significant associations,
including 16 food items and 37 nutrients. All significant associ-
ations had VIF < 5. For all significant associations, except for
phytate, the P value regarding the proportionality assumption is

>0.05. The minimum statistical power for detecting the smallest
absolute effect size was 0.59, which is considered to be a moderate
to a high level of power in clinical studies. A list of exposures that
have a statistically significant association with CHD risk, together
with their estimated HRs, is shown in Table 1. A list of both
significant and non-significant associations is provided in
Supplementary Table 3. We analyzed the correlations among the
significant exposures, the result of which is shown in Supplemen-
tary Fig. 3. To help interpret our findings, we calculated the HR of
each quintile of exposure intake compared with the first quintile,
as a reference group (Supplementary Table 6).
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Fig. 2 Ewas Methodology Description and Output. a For each exposure (i), we fit a Cox model to estimate CHD risk, while controlling for a set of adjusting
variables (n exposures, in total). Through this process, we also collect the VIF and the P value regarding the proportionality assumption. After the fitting
phase (yellow), we proceed with the multiple testing protocols (blue). We leverage confounding variables to estimate the likelihood of CHD development
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and dill. EWAS shows that isorhamnetin intake is negatively associated with CHD risk (HR: 0.91; 95% CI: 0.87–0.95; P value 1.59 × 10−5, from two-sided
Wald test, with no adjustment for multiple comparisons). The P value regarding the proportionality assumption indicates the appropriateness of using the
Cox model. The VIF of 1.27 is an indication of the absence of severe multicollinearity.
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Traditional epidemiological studies are limited to the detection
of a single exposure (food or nutrient) in relation to CHD;
however, the developed EWAS methodology allows us to explore
the space of food/nutrient associations related to the disease. That
is, in addition to unveiling which nutrient shows significant
association with CHD, EWAS also helps us understand which
nutrient in connection with which food is responsible for the
effect. To demonstrate this principle, we use the food composition
table of NHS to extract the contribution of each significant food
to the total amount of a significant nutrient in the food supply

(Fig. 3a). Using a force-directed layout algorithm, we represent
this information as a bipartite network, allowing us to explore the
significant inter-dependencies among nutrients and food items.
In Fig. 3b, negatively associated nutrients and foods are color
coded as green and positively associated nutrients and foods are
shown in red. We retrieve two clearly distinct clusters, negatively
associated nutrients and foods on one hand, and positively
associated nutrients and foods on the other. We also find that
several food items, such as white bread and yogurt are connected
to both negatively and positively associated nutrients. As
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expected, foods high in negatively associated nutrients are also
related to lower CHD risk and foods containing positively
associated nutrients are related to higher CHD risk.

In the network shown in Fig. 3b, each node has its own
estimated HR. For each nutrient, we compare the estimated HR
with the expected geometric hazard ratio hHRN

i if , determined by

Eq. (1),

hHRN
i if ¼ e

Pj

k¼1
w0
kβ

F
k ¼

Yj

k¼1

ðHRF
k Þ

w0
k ; ð1Þ

where w0
k is the normalized weight of the link connecting nutrient

Table 1 EWAS results.

Type Exposure Effect size SE (effect size) Hazard ratio 95% CI P value of PH VIF P value FDR

Nutrient Alcohol −0.13 0.02 0.88 (0.84, 0.91) 0.19 1.12 4.98E–11 0.000
Nutrient Added bran from wheat,

rice, etc.
−0.13 0.02 0.87 (0.84, 0.91) 0.1 1.22 5.56E− 10 0.000

Nutrient Trans 16:1 0.17 0.03 1.19 (1.12, 1.25) 0.41 2.15 9.59E–10 0.000
Nutrient Discretionary liquid fat −0.15 0.02 0.86 (0.82, 0.91) 0.84 1.48 1.33E–09 0.000
Nutrient Animal MUFA 0.16 0.03 1.17 (1.11, 1.24) 0.78 2.09 1.42E–08 0.001
Nutrient Discretionary solid fat 0.17 0.03 1.18 (1.11, 1.25) 0.71 2.51 3.82E–08 0.001
Food White wine −0.12 0.02 0.89 (0.85, 0.92) 0.66 1.07 4.14E–08 0.001
Nutrient Palmitoleic acid 0.16 0.03 1.17 (1.11, 1.24) 0.64 2.34 4.42E–08 0.001
Nutrient Animal fat 0.16 0.03 1.17 (1.10, 1.24) 0.9 2.26 6.73E–08 0.001
Food Salad/oil and vinegar dressing −0.1 0.02 0.9 (0.87, 0.94) 0.24 1.09 3.41E–07 0.001
Food Yogurt −0.11 0.02 0.9 (0.86, 0.94) 0.09 1.07 1.37E–06 0.003
Nutrient Phytate −0.13 0.03 0.88 (0.84, 0.93) 0.02 1.96 4.01E–06 0.005
Nutrient Stearic acid 0.15 0.03 1.16 (1.09, 1.23) 0.82 2.76 4.25E–06 0.005
Nutrient Carbohydrate from milled

wholegrain
−0.1 0.02 0.91 (0.87, 0.95) 0.29 1.29 5.03E–06 0.005

Nutrient Sodium 0.13 0.03 1.14 (1.08, 1.21) 0.13 2.28 5.11E–06 0.005
Food Raw carrots −0.09 0.02 0.91 (0.87, 0.95) 0.06 1.1 6.33E–06 0.005
Nutrient Total saturated fat 0.15 0.03 1.16 (1.08, 1.24) 0.78 3.14 1.20E–05 0.007
Nutrient Hydroxyproline 0.11 0.03 1.12 (1.06, 1.17) 0.25 1.64 1.26E–05 0.007
Nutrient Isorhamnetin −0.09 0.02 0.91 (0.87, 0.95) 0.32 1.27 1.59E–05 0.007
Food Liquor −0.08 0.02 0.92 (0.89, 0.96) 0.12 1.06 2.06E–05 0.009
Nutrient Carbohydrate from wholegrain −0.09 0.02 0.91 (0.87, 0.95) 0.22 1.28 2.46E–05 0.010
Nutrient Cereal fiber −0.1 0.02 0.91 (0.87, 0.95) 0.2 1.49 4.04E–05 0.012
Food Red wine −0.09 0.02 0.91 (0.87, 0.95) 0.63 1.04 4.28E–05 0.012
Nutrient Trans 18:2 0.11 0.03 1.12 (1.06, 1.18) 0.19 1.83 4.48E–05 0.012
Nutrient Dietary tocopherols −0.13 0.03 0.88 (0.83, 0.94) 0.75 2.78 5.71E–05 0.013
Nutrient Palmitic acid 0.14 0.03 1.15 (1.07, 1.23) 0.93 3.37 7.01E–05 0.015
Nutrient Dietary folate −0.11 0.03 0.9 (0.85, 0.95) 0.49 1.91 8.33E–05 0.016
Food Doughnuts 0.07 0.02 1.08 (1.04, 1.12) 0.1 1.1 9.84E–05 0.017
Nutrient Beta-tocotrienol −0.09 0.02 0.92 (0.88, 0.96) 0.43 1.31 1.07E–04 0.018
Nutrient Plant MUFA −0.11 0.03 0.9 (0.85, 0.95) 0.8 2.05 1.22E–04 0.019
Food Hotdog 0.07 0.02 1.07 (1.04, 1.11) 0.05 1.09 1.26E–04 0.019
Food White bread 0.07 0.02 1.08 (1.04, 1.12) 0.08 1.12 1.61E–04 0.022
Nutrient Natural germ −0.08 0.02 0.92 (0.88, 0.96) 0.39 1.24 1.78E–04 0.022
Nutrient Apigenin −0.08 0.02 0.92 (0.89, 0.96) 0.81 1.15 1.79E–04 0.022
Nutrient Beta-tocopherol −0.1 0.03 0.91 (0.86, 0.96) 0.55 1.87 2.73E–04 0.028
Nutrient Natural bran −0.08 0.02 0.92 (0.89, 0.96) 0.45 1.26 2.90E–04 0.028
Nutrient Supplemental selenium −0.08 0.02 0.92 (0.88, 0.96) 0.89 1.38 4.01E–04 0.034
Food Apple juice or cider 0.07 0.02 1.07 (1.03, 1.11) 0.95 1.07 4.49E–04 0.036
Nutrient Dietary manganese −0.09 0.03 0.91 (0.86, 0.96) 0.08 2 4.82E–04 0.037
Food Peanuts −0.07 0.02 0.93 (0.89, 0.97) 0.09 1.08 4.92E–04 0.037
Nutrient Alpha-tocotrienol −0.08 0.02 0.92 (0.88, 0.96) 0.43 1.51 5.37E–04 0.037
Nutrient Myristic acid 0.09 0.03 1.1 (1.04, 1.15) 0.59 1.99 5.44E–04 0.037
Nutrient Cholesterol 0.09 0.03 1.1 (1.04, 1.16) 0.43 2 6.09E–04 0.039
Nutrient Supplemental or fortified

folic acid
−0.08 0.02 0.92 (0.88, 0.97) 0.53 1.55 6.63E–04 0.040

Food All processed meats 0.07 0.02 1.07 (1.03, 1.11) 0.23 1.14 6.73E–04 0.040
Nutrient Trans 18:1 0.09 0.03 1.09 (1.04, 1.15) 0.62 1.93 6.94E–04 0.040
Nutrient Total manganese −0.08 0.02 0.92 (0.88, 0.97) 0.99 1.59 8.72E–04 0.046
Food Hamburger 0.07 0.02 1.07 (1.03, 1.11) 0.09 1.18 9.53E–04 0.047
Food Beverages with sugar 0.07 0.02 1.07 (1.03, 1.11) 0.86 1.13 9.70E–04 0.047
Nutrient Synthetic vitamin B6 −0.07 0.02 0.94 (0.90, 0.97) 0.66 1.07 1.02E–03 0.047
Food Cold breakfast cereal −0.07 0.02 0.94 (0.90, 0.97) 0.13 1.1 1.02E–03 0.047
Food Raisins or grapes −0.07 0.02 0.93 (0.90, 0.97) 0.91 1.11 1.09E–03 0.048
Nutrient Heme iron 0.08 0.02 1.08 (1.03, 1.14) 0.51 1.55 1.17E–03 0.050

The exposures that are statistically significant in association with CHD risk are listed. P values are associated with two-sided Wald tests.
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i to food k, βFk is the estimated effect size of food k, HRF
k is the

estimated hazard ratio of food k, and HRN
i ≶hHRN

i if (Fig. 4a).
As we show in Fig. 4b, for the majority of nutrients, the actual

nutrient HR has the same directionality as the weighed food HR,
indicating that EWAS captures both important nutrients and
their main drivers in the food system. Whole-grain carbohydrate
and milled whole-grain carbohydrate were found to be negatively
associated with CHD risk; however, among food items high in
these two exposures, we only found doughnuts to relate with
higher CHD risk statistically significantly. Consequently, the
weighted food HR for these exposures has an opposite directional
effect. Yet, the correlation analysis (Supplementary Fig. 3) shows
that these two exposures have negative correlations with
positively associated foods, such as white bread and processed
meats, and positive correlations with negatively associated foods,
such as cold breakfast cereal and raw carrots. Moreover, myristic
acid, trans-18:2, sodium, and total saturated fat were found to be
positively associated with higher CHD risk themselves, but the
weighted food HR for them indicates an opposite direction. These
nutrients are not only distributed among positively associated
foods, but also negatively associated foods. Myristic acid is in
both processed meats and yogurt, trans-fatty acid 18:2 is present

in salad/oil, vinegar dressing, and doughnuts, sodium is spread
among salad/oil and vinegar dressing and processed meats, and
total saturated fat is found in yogurt and processed meat.
However, the consumption of these exposures is positively
correlated with positively associated foods (Supplementary Fig. 3).
The observed disparity indicates that for most of the nutrients,
the structure of the food system determines the amount of
nutrients in the diet, while for some other nutrients individual
choices drive the nutrient amount in the diet. The signal
determined by significant foods is a strong driver, but not always
sufficient to capture exhaustively the nutrient associations with
CHD. Even though some of the nutrients are not well captured by
the food approximation (yellow points), with this approach we
tend to correctly estimate the sign of the association, while
underestimating the effect size. This observation indicates that
solely looking at food items, one would underestimate the effect
of those nutrients whose consumption is strongly determined by
the behavioral aspect and not mainly by their average amount in
food. Additionally, this observation can be partially explained by
the higher resolution in the calculation of nutrient intake for
breakfast cereals, margarine, and types of fats used for cooking
and baking, for which we asked separate questions about their
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type and brand that linked with extensive databases for detailed
composition values.

Comparison with the literature. Applying the EWAS metho-
dology to NHS data allowed us to identify 53 dietary exposures
that show statistically significant association with CHD risk. Next,
we discuss our results in the context of the previous literature,
offering a direct validation of our findings, also helping detect
novel knowledge, and to generate new hypotheses. We found that
in most cases, EWAS strengthens the existing knowledge about
the effect of diet on CHD, and in some cases, it sheds a light on
exposures that have not been thoroughly studied in the literature.

Most of our statistically significant findings were in agreement
with the previous literature, strengthening the prior findings and
supporting the robustness of the EWAS platform. Among food
items, we found that white wine, red wine, and liquor, but not
beer, have a negative association with higher CHD risk, aligned
with previous findings35,36. Despite recovering an inverse
association between alcohol intake and CHD risk (HR 0.88;
95% CI: 0.84–0.91; P value < 5 × 10−11), it is worth noting that
the overall level of alcohol consumption is not very high in this
population study, and such inverse association has not been
replicated in other quasi-experimental Mendelian randomization
studies37,38.

Moreover, we found salad/oil and vinegar dressing, yogurt,
cold breakfast cereal, raw carrots, raisins or grapes, and peanuts
have a negative association with higher CHD risk, in line with
previous studies39–44. Moreover, we found that total processed
meat consumption, hot dogs, apple juice or cider, beverages with
sugar, and white bread have positive association with higher CHD
risk, as previously shown by other studies45–48.

Many compounds from lipid and fatty acid groups have been
studied previously in relation to CHD risk. In line with previous
studies49–55, we found that higher consumption of cholesterol,
trans-fatty acid 16:1, trans-fatty acid 18:1, trans- fatty acid 18:2,
total saturated fat, animal monounsaturated fatty acids
(MUFA), myristic acid, palmitoleic acid, palmitic acid, and
stearic acid are associated with a higher risk of developing CHD
(P value < 1 ×10−3). These dietary factors are mainly distributed
among animal-based foods. By contrast, we found that plant
MUFA can be protective against CHD development (HR 0.90;
95% CI: 0.85–0.95; P value < 2 × 10−4), which has also been
shown by Zong et al.53. Plant MUFAs are abundant in salad/oil
and vinegar dressing and peanuts, food items that we also found
to be statistically significantly associated with lower CHD risk
(salad/oil and vinegar dressing: HR 0.90; 95% CI: 0.87–0.94; P
value < 4 × 10−7; peanuts: HR 0.93; 95% CI: 0.89–0.97; P value <
5 × 10−4).

Whole grains are composed of endosperm, germ, and bran, in
contrast with milled whole grains in which only endosperm is
retained. We found that higher consumption of carbohydrate
from whole grains is associated with lower CHD risk, similar to
the findings in ref. 56. While the milling process removes several
valuable compounds in whole grains, we interestingly detected a
similar protective effect for carbohydrate from milled whole
grains. In addition, we showed that both natural bran and added
bran are negatively associated with CHD risk, consistent with
previous studies57,58. We also documented a negative association
for cereal fiber with CHD (HR 0.91; 95% CI: 0.87–0.95; P value <
5 × 10−5), in agreement with ref. 59. One of the food groups that
can be rich in natural bran and germ, added bran, and cereal fiber
is cold breakfast cereal, which we also found to be negatively
related to CHD (HR 0.94; 95% CI: 0.90–0.97; P value < 2 × 10−3).

While we rediscovered the negative association of manganese
consumption with CHD risk (HR 0.92; 95% CI: 0.88–0.97; P value

< 1 × 10−3)60, we also found that higher supplemental selenium is
associated with lower CHD risk (HR 0.92; 95% CI: 0.88–0.96; P
value < 5 × 10−4). A specific cardiomyopathy responsive to
selenium supplementation has been observed in domestic
animals61 and among Chinese persons with Keshan disease62.
However, more recent studies found no association between
selenium supplementation and primary prevention of cardiovas-
cular disease (CVD), for which reason it is not recommended for
CVD prevention63,64. Moreover, our observed positive associa-
tion of sodium (HR 1.14; 95% CI: 1.08–1.21; P value < 6 × 10−6)
is also consistent with prior studies65.

Our findings indicate that higher consumption of dietary folate
(HR 0.90; 95% CI: 0.85–0.95; P value < 9 × 10−5) and folic acid
(HR 0.92; 95% CI: 0.88–0.97; P value < 7 × 10−4) are related to
lower CHD risk, again aligned with previous findings66,67. While
the beneficial effect of natural vitamin B6 was previously
documented66, we interestingly found that increased synthetic
vitamin B6 consumption is related to lower CHD risk (HR 0.94;
95% CI: 0.90–0.97; P value < 2 × 10−3). Moreover, our results
reveal that beta-tocopherol, total dietary tocopherol intake, alpha-
tocotrienol, and beta-tocotrienol are negatively associated with
CHD risk (HR < 0.92; P value < 6 × 10−4). Earlier studies
reported similar effects regarding alpha-tocopherol, total toco-
pherol intake, and alpha-tocotrienol68,69. While the antioxidant
and anti-inflammatory effects of some of the vitamin E isomers
have been documented, little is known about the effect of beta-
tocopherol and beta-tocotrienol on cardiovascular health. These
two compounds are mainly found in whole-grain products and
nuts. In the liver, beta-tocopherol undergoes omega-hydroxyla-
tion, oxidation, and beta-oxidation to generate 13′-hydroxychro-
manols/carboxychromanols, which have potential antioxidant
properties70,71. This fact strengths our findings regarding the
protective effect of beta-tocopherol against CHD. Moreover, beta-
tocotrienol, in particular, was shown to be inversely related to the
risk of type 2 diabetes mellitus72, but has not been well-studied
regarding its effects on the cardiovascular system. However,
among different forms of tocotrienols, beta-tocotrienol has the
highest antioxidant activity73, in support of the protective effect
against CHD that we observed in EWAS.

We found that heme iron (HR 1.08; 95% CI: 1.03–1.14; P value
< 2 × 10−3) is statistically significantly associated with higher
CHD risk. Similar effects were detected in ref. 74. We also found
isorhamnetin and apigenin (HR < 0.92; P value < 2 × 10−4) to be
inversely associated with CHD risk, in line with refs. 75,76

(Supplementary Table 7). Moreover, in EWAS, we found that
higher dietary hydroxyproline intake is associated with higher
CHD risk (HR 1.12; 95% CI: 1.06-1.17; P value < 2 × 10−5).
Hydroxyproline is a nonessential amino acid derivative and a
major component of the protein collagen mainly found in
animal-based food products, such as beef, chicken, and pork.
Increased hydroxyproline levels in the urine and/or serum are
normally associated with degradation of connective tissue and
Marfan syndrome77, and were also found to be related to Paget
disease78. The decrease in various hydroxyproline fractions in
aortic tissue of rabbits has been shown to be a risk factor for the
progression of atherosclerosis79. Nonetheless, serum hydroxypro-
line is mainly associated with peptides released from the
breakdown of collagen, and dietary hydroxyproline intake does
not considerably affect serum hydroxyproline levels unless
consumed in the form of gelatin80. While non-prescription
hydroxyproline supplements are available as L-hydroxyproline
and N-acetyl-L-hydroxyproline, there seems to be no evidence for
the effectiveness of oral hydroxyproline supplements in the
prevention or treatment of osteoarthritis, osteoporosis, rheuma-
toid arthritis, skin ulcers, sports injuries, and wrinkled skin,
or in promoting muscle growth or weight loss81. The lack of
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effectiveness of dietary hydroxyproline is probably a consequence
of its failure to be incorporated into collagen: only proline is
bioavailable for this purpose. Proline only becomes hydroxylated
during a later stage of collagen formation in order to facilitate the
strengthening of the collagen helix. Once a collagen helix forms, it
does so irreversibly in mammals82. The ambiguous role of dietary
hydroxyproline, along with the positive association with higher
CHD risk that we observed in EWAS, emphasizes the need for
exploring the metabolic role that this amino acid plays in health
and disease. A potential mechanism that can explain the positive
association between hydroxyproline consumption and CHD risk
is its metabolic reaction with succinate and CO2, producing 2-
oxoglutarate. Chen et al.83 showed that increased serum 2-
oxoglutarate is associated with high myocardial energy expendi-
ture and poor prognosis in chronic heart failure patients.

Validation in NHS II. In the second phase of our study, we used
NHS II in order to validate statistically significant associations
that we found in the original NHS. During 20 years of follow-up
in NHS II, 90,861 participants were followed and 604 CHD
incidents were documented (Supplementary Methods 3.1). We
examined the relationship between 53 exposures found in NHS
with CHD risk and deemed an exposure tentatively validated if it
had achieved a false discovery rate (FDR) <0.05 significance in

NHS and achieved nominal statistical significance in NHS II (P
value < 0.05). Tentatively validated exposures in NHS II had the
same directional association with CHD risk as in the original
NHS (Table 2). A list of validated and non-validated associations
is provided in Supplementary Table 5.

Discussion
Our analysis of the dietary determinants of CHD has several
limitations based on the nature of the data we used in our ana-
lysis. First, the study subjects are only women with a specific
occupation (nurses), which restricts the generalizability of the
findings to populations comprising males, as well as to more
heterogeneous occupational groups and socio-economic back-
grounds (Supplementary Figs. 4 and 5). Second, the present study
only focused on the effect of dietary factors on CHD risk. Even
though diet is an important part of an individual’s environmental
exposure, it does not cover the entire exposome84. The environ-
ment also includes persistent organic pollutants, plastic-
associated chemicals, bacterial and viral infections, air quality,
stress, and social network effects85, as well as the endogenous
microbiome. Moreover, our diet is not limited to nutrient con-
tent; it also carries food additives and other chemicals added
during the packaging process, which are absent in the food
composition databases, and hence are not included in this

Table 2 Validation in NHS II.

Type Exposure Effect size SE (effect size) Hazard ratio 95% CI P value of PH VIF P value

Nutrient Cereal fiber −0.28 0.06 0.75 (0.68, 0.84) 0.7 1.62 2.70E–07
Nutrient Total manganese −0.28 0.06 0.76 (0.68, 0.85) 0.32 1.68 5.82E–07
Nutrient Alcohol −0.21 0.04 0.81 (0.74, 0.88) 0.3 1.12 1.06E–06
Nutrient Beta-tocotrienol −0.25 0.05 0.78 (0.70, 0.86) 0.56 1.39 1.92E–06
Nutrient Alpha-tocotrienol −0.25 0.05 0.78 (0.70, 0.87) 0.84 1.52 3.64E–06
Nutrient Dietary manganese −0.28 0.06 0.76 (0.68, 0.85) 0.74 1.96 3.72E–06
Nutrient Added bran from wheat, rice, etc. −0.21 0.05 0.81 (0.74, 0.89) 0.79 1.13 5.86E–06
Food Cold breakfast cereal −0.2 0.05 0.82 (0.74, 0.89) 0.16 1.11 1.18E–05
Nutrient Dietary folate −0.25 0.06 0.78 (0.69, 0.88) 0.08 2.03 3.50E–05
Nutrient Natural bran −0.2 0.05 0.82 (0.75, 0.90) 0.73 1.25 3.62E–05
Nutrient Carb from milled wholegrain −0.2 0.05 0.82 (0.75, 0.90) 0.69 1.26 3.90E–05
Nutrient Stearic acid 0.28 0.07 1.32 (1.15, 1.51) 0.45 2.64 6.26E–05
Nutrient Carb from wholegrain −0.19 0.05 0.83 (0.75, 0.91) 1 1.28 6.47E–05
Food Salad/oil and vinegar dressing −0.16 0.05 0.85 (0.78, 0.93) 0.15 1.17 3.41E–04
Food Raw carrots −0.17 0.05 0.84 (0.77, 0.93) 0.93 1.14 4.02E–04
Food Red wine −0.18 0.05 0.84 (0.76, 0.93) 0.72 1.07 7.00E–04
Nutrient Phytate −0.21 0.06 0.81 (0.71, 0.92) 0.34 2.18 9.66E–04
Nutrient Beta-tocopherol −0.21 0.06 0.81 (0.71, 0.92) 0.9 2.08 1.01E–03
Nutrient Apigenin −0.15 0.04 0.86 (0.79, 0.94) 0.86 1.2 1.07E–03
Nutrient Supplemental or fortified folic acid −0.17 0.05 0.85 (0.77, 0.94) 0.03 1.41 1.38E–03
Nutrient Discretionary solid fat 0.21 0.07 1.23 (1.08, 1.41) 0.72 2.46 1.49E–03
Nutrient Natural germ −0.14 0.05 0.87 (0.79, 0.95) 0.18 1.27 2.42E–03
Nutrient Total saturated fat 0.22 0.07 1.25 (1.08, 1.44) 0.65 3.04 2.88E–03
Nutrient Trans 16:1 0.17 0.06 1.19 (1.06, 1.33) 0.47 2.06 3.27E–03
Nutrient Palmitic acid 0.23 0.08 1.25 (1.08, 1.46) 0.94 3.31 3.47E–03
Food Beverages with sugar 0.12 0.04 1.12 (1.04, 1.22) 0.29 1.11 4.38E–03
Food White wine −0.14 0.05 0.87 (0.79, 0.96) 0.83 1.07 4.40E–03
Nutrient Synthetic vitamin B6 −0.13 0.05 0.88 (0.80, 0.96) 0.16 1.08 4.92E–03
Nutrient Trans 18:1 0.15 0.06 1.16 (1.04, 1.29) 0.17 1.71 7.17E–03
Nutrient Supplemental selenium −0.12 0.05 0.89 (0.81, 0.97) 0.09 1.28 7.41E–03
Nutrient Palmitoleic acid 0.16 0.06 1.18 (1.04, 1.33) 0.77 2.19 9.24E–03
Nutrient Animal fat 0.16 0.06 1.18 (1.04, 1.33) 0.97 2.23 1.03E–02
Nutrient Animal MUFA 0.15 0.06 1.16 (1.03, 1.31) 0.67 2.03 1.18E–02
Food Hotdog 0.12 0.05 1.12 (1.03, 1.23) 0.75 1.1 1.18E–02
Food Raisins or grapes −0.12 0.05 0.89 (0.80, 0.98) 0.28 1.08 1.90E–02
Nutrient Hydroxyproline 0.12 0.05 1.12 (1.01, 1.25) 0.15 1.55 3.22E–02
Food Yogurt −0.09 0.05 0.91 (0.83, 1.00) 0.14 1.1 3.95E–02

From 53 statistically significant exposures found in NHS, 37 were validated in NHS II. P values are associated with two-sided Wald tests.
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analysis. Including these chemicals is necessary for a more
comprehensive picture of the effect of the diet on health86,87. The
only way to overcome these limitations is to include more
environmental factors, offering a more comprehensive under-
standing of the global environment’s effects on health and disease.
Moreover, the FFQ used in NHS covers a number of food items
that includes the large majority of those consumed by Americans,
but the diet of some participants may not be completely repre-
sented. Third, while we included the confounding variables that
were previously used in other studies on CHD relying on NHS
data, our study remains limited to the common confounding
variables usually considered when exploring diet–CHD associa-
tions. Hence, residual confounding by unmeasured variables
cannot be excluded. The obtained results do not unveil causal
effects, but, rather, help us generate new hypotheses, which need
to be examined in more detail in these and other prospective
cohorts and experimental studies. We must also investigate
carefully and mechanistically the influence of these dietary factors
on human metabolism, exposures that require detailed mea-
surements in terms of dietary bioavailability, hence they can serve
as targets for further investigation for mechanism-based analysis.

Our overall goal was to apply GWAS-like analytical approaches
to study the dietary determinants of CHD. The methodology
allowed us to explore both food items and nutrients, offering a
more comprehensive picture of the effect of diet on CHD and
helping us visualize the obtained relationships using network
tools. Our study not only reproduced the prior knowledge in the
diet–CHD domains, but also led to novel associations. While
some of the previous EWAS studies failed to achieve adequate
statistical power in association detection19,20, our positive results
suggest that these failures were often related to the cohort size
and the absence of repeated longitudinal dietary assessments.
Indeed, our use of a large longitudinal dataset with a long follow-
up period and a sufficient number of subjects helped us achieve
sufficient statistical power to detect even relatively small effect
sizes. However, enabling a wide-association study to investigate
environmental factors requires careful consideration in designing
cohort studies, and detailed, comprehensive exposure assessment
methods to ensure that the effect of the environment is fully
captured. While selectively testing and reporting one or a few
associations has been argued to be a source of biased results and
false positives88,89, there is clearly a role for testing specific
etiologic hypotheses as this allows greater statistical power and a
more detailed examination of an exposure–outcome relationship.
An environment-wide association study is a complementary
approach that allows us to rank the associations and report
transparently both significant and non-significant associations. It
also allowed us to generate new hypotheses that can be further
investigated in single-association studies and mechanism-based
studies. It is worth mentioning that until recently NIH was
unlikely to fund research proposals without well-developed
hypotheses, restricting the possibility of conducting wide-
association studies and this analysis was only possible because
of the accrual of over 30 years of follow-up in this large cohort.

In the present study, we explored the effect of only 374 dietary
exposures. Yet, when it comes to the chemical composition of the
food we consume, these nutritional components represent only a
tiny fraction of the thousands of distinct definable biochemicals
that have been identified in foods90. While many of these che-
micals have well-documented or potential implications for health,
they remain largely unquantified in any systematic fashion across
different individual foods. Their invisibility to experimental,
clinical, epidemiological, and demographic studies—turning them
into the virtual dark matter of nutrition research—represents a
roadblock toward a better, more consistent, more reproducible
understanding of how diet affects health91,92. In the high-

resolution diet description space, the conventional single-
association approach is even more impractical and lacks scal-
ability. The EWAS methodology, however, would be able to test
higher order of magnitude of dietary compounds, to identify
significant associations with a disease of interest or with a pre-
scription for health.

Methods
Knowledge graph. To create the knowledge graph, we firstly identified in PubMed
all papers that have NHS or Health Professionals Follow-up Study in the title or
abstract, along with papers co-authored by the main PIs of the NHS. We manually
filtered papers that studied the association between dietary exposures and cardi-
ovascular complications, such as coronary heart disease, stroke, and hypertension.
Since not all papers are indexed on PubMed, we searched the web using the same
criteria to find the remaining papers. Next, we manually examined the abstracts of
the obtained papers and extracted the exposure–phenotype relations, the associa-
tions found, the effect size, and other related information (Table 3). More than one
association might be studied in a paper. Overall, we found 292 studied associations
documented in 91 papers, altogether 124 negative and 45 positive associations were
documented in relation to cardiovascular complications. In the remaining cases,
there was no significant association between an exposure and a phenotype of study.
The obtained data are shown in a knowledge graph (Fig. 1) where each link
represents an association. The space of studied exposures is rather heterogeneous
and is often driven by the researcher’s interests and experience. For example, the
effects of some nutrients were studied with respect to replacement with other
nutrients, such as the effect of replacing trans-fat with MUFAs. In some cases, the
intake ratio of two nutrients, for example, the ratio of polyunsaturated fat to trans-
fat, or of two food items was examined. Moreover, according to the exposure of
interest, the set of adjusting variables used to account for confounding effects
varied from one study to another. The raw data and code used for constructing the
knowledge graph are available at ref. 93.

Population. Using the year 1986 as the baseline because the dietary questionnaires
have been unchanged since, we followed women who were healthy and free of
chronic diseases up to 2014. In the baseline year, participants with a history of
CVD, diabetes mellitus, and cancer were excluded. We also excluded women whose
demographic data were missing, whose reported average energy intake was <600 or
>3500 kcal/day, or left >70 questions in the FFQ unanswered10,94–97. Participants
received one questionnaire every 2 years to report their medical data and one
questionnaire every 4 years to document their dietary data. At any point within the
follow-up period, if a participant reported development of non-fatal myocardial
infarction (MI) or fatal CHD98–100, she will be classified as a case, with no further
update of her dietary records. If she developed other diseases, such as diabetes
mellitus or cancer, she would still be classified as a non-case, with no further update
of her dietary records (Supplementary Methods 3.1 and Supplementary Fig. 1).
These exclusion criteria were chosen by virtue of minimizing reverse causation bias
and reducing the impact of measurement errors and missing data. In total, we
included 62,811 subjects in the analysis, representing 2774 cases (4%) and 60,037
controls (96%).

Ascertainment of diet. NHS uses an internally designed FFQ, with documented
reproducibility and validity10,101,102. The FFQ has been regularly updated to adapt
to changes in the food market and to capture additional food items103. For each
food item, the FFQ specified a commonly used unit or portion size, asking each
subject how often, on average, she had consumed that quantity during the past
year104. Nine responses were possible, ranging from “almost never” to “six or more
times per day.” We converted the frequency responses to the number of servings
per day for each food item. We calculated daily intake of nutrients by multiplying
the frequency of consumption of each item by its nutrient content and summing
the nutrient contributions of all foods on the basis of Harvard University Food
Composition Database derived from US Department of Agriculture sources105 and
other resources, including published reports, data from manufacturers, and in-
house analyses of fatty acid composition106. We looked into several food items
more closely. For example, we used an algorithm designed by Jacobs et al.107 to
classify breakfast cereals into wholegrain and refined grain. We also collected
detailed information on the type of fat or oil used in food preparation and brand or
type of margarines to calculate the fatty acid consumption.

Ascertainment of CHD. We ascertained incident cases of CHD (non-fatal MI or
fatal CHD) that occurred after the return of the 1986 questionnaire but before June
1, 2014. Physicians, unaware of the self-reported risk factor status, systematically
reviewed the medical records of those who reported having an MI on each biennial
questionnaire. MI was classified as confirmed if the World Health Organization
criteria, that is, symptoms, electrocardiographic changes, or elevated cardiac
enzyme concentrations, were met108. Fatal CHD was confirmed by either hospital
records or through an autopsy if CHD was listed as the cause of death on the death
certificate, if it was listed as an underlying and most plausible cause of death, or if
evidence of previous CHD was available. Deaths were identified from state vital
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statistics records and the National Death Index, or were reported by the families
and the postal system47.

Statistical analysis. Figure 2a shows a brief snapshot of the statistical approaches
used in this paper. We used the extended Cox model for time-dependent variables to
associate each exposure with the time to occurrence of CHD. The underlying time
for the Cox model is the time on study for each participant. We used the cumulative
average (Supplementary Methods 3.2) of the food intakes from baseline to the start of
each 2-year follow-up interval, which represents the long-term habitual intake and
reduces random within-person variation10,109–116 (for analyses in which the time-
dose effects are taken into account see Supplementary Table 4 and Supplementary
Fig. 6). We adjusted the analyses for potential risk factors and confounders, including
age (Supplementary Fig. 2), BMI, physical activity, and total caloric intake as con-
tinuous covariates; and ethnicity, smoking status, multivitamin use, vitamin E sup-
plement use, post-menopausal hormone use, aspirin use, high blood pressure117,
elevated cholesterol118, and family history of MI and high blood pressure as cate-
gorical variables. We selected the set of confounding variables based on their
potential effects on both exposures and the outcome. Dietary exposures entered the
analysis as continuous variables. We used Box–Cox transformation to stabilize the
variance and improve the validity of measures of association. Later, the exposures
were z-transformed in order to compare the effect sizes from many regressions.

To examine the validity of the EWAS results, we assessed the proportionality
assumption for each test. We also tested whether there was severe multicollinearity
among the variables in each test by calculating the VIF, which can potentially make
effect size estimates unstable, reduce or eliminate statistical power, and cause the
coefficients to switch signs119. Ultimately, to control for type I error due to multiple
hypotheses testing, we calculated the FDR, the estimated proportion of false
discoveries made versus the number of real discoveries at a given significance
level120 (Supplementary Methods 3.3). To estimate the number of false discoveries,
we created a null distribution of Cox model P values by randomly shuffling the
CHD status 1000 times and recomputing the P values. Accordingly, we estimated
the FDR to be the ratio of the proportion of results that were called significant at a
given level α in the null distribution and the proportion of results called significant
from real tests. Since in the FDR estimation, we utilize the data themselves, we
naturally consider the correlated structure of the data, given the intrinsic
dependencies among dietary factors121. Since the confounding effect of the
adjusting covariates on CHD risk exists, certain subjects have greater odds of
developing CHD. Therefore, we maintained the confounding role of the adjusting
covariates in each permuted dataset while the association between the exposure and
CHD has been eliminated122. We used Cox regression to estimate the odds of
developing CHD as a function of adjusting covariates. Next, we permuted the CHD
cases among the subjects as taking a random sample from a biased pool.
Furthermore, we re-ran the analyses and calculated the null P values. Repeating this
procedure 1000 times, we measured the FDR as the ratio of the proportion of
results that were called significant at a given level α in the null distribution to a
proportion of results called significant from our real tests.

Study protocol. The study protocol was approved by the institutional review board
(IRB) of the Brigham and Women’s Hospital, and the IRB allowed participants’
completion of questionnaires to be considered as implied consent. Written
informed consent was obtained from participants to release medical records doc-
umenting the incidence of coronary heart disease.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the findings of this study are available upon
request to Nurses’ Health Study (NHS) and when the request for data access is approved.
Access is restricted due to participant confidentiality and privacy concerns. Individuals
who want to request access to NHS data must first submit an online request form. If the
project is approved, completion of a data use agreement, completion of CITI training
demonstrating ethical training in using human subjects’ data, and a small provision of
funds to support the computing system will also be required. Further information
including the procedures to obtain and access data from the NHS is described in ref. 123

(contact email: nhsaccess@channing.harvard.edu). The Food Frequency Questionnaires
used in NHS are available in ref. 104. Harvard University Food Composition Database
can be accessed in ref. 106. Source data are provided with this paper.

Code availability
The programming materials are available on GitHub and Zenodo platforms93. R version
3.4.0 was used for data analysis and Python version 2.7.16 and MATLAB 2019a were
used for data visualizations.

Received: 21 June 2019; Accepted: 29 October 2020;

T
ab

le
3
K
no

w
le
dg

e
gr
ap

h
da

ta
pr
ep

ar
at
io
n.

P
ub

M
ed

ID
Y
ea
r

T
it
le

A
bs
tr
ac
t

Ex
po

su
re

P
he

no
ty
pe

G
en

de
r

A
ss
oc
ia
ti
on

M
od

el
Ef
fe
ct

si
ze

29
52

9
16
2

20
18

C
ar
bo

hy
dr
at
e
qu

al
ity

an
d
qu

an
tit
y
an
d

ri
sk

of
co
ro
na
ry

he
ar
t
di
se
as
e
am

on
g
us

w
om

en
an
d
m
en

...
W

e
ai
m
ed

to
as
se
ss

th
e
re
la
tio

n
be

tw
ee
n
va
ri
ou

s
m
ea
su
re
s
of

ca
rb
oh

yd
ra
te

qu
al
ity

an
d

in
ci
de

nt
C
H
D
.
D
at
a
on

di
et

an
d
lif
es
ty
le

be
ha
vi
or
s
w
er
e
pr
os
pe

ct
iv
el
y
co
lle
ct
ed

on
75

,0
20

w
om

en
an
d
4
2,
8
6
5
m
en

pa
rt
ic
ip
at
in
g
in

th
e
N
ur
se
s’

H
ea
lth

St
ud

y
(N

H
S)

an
d
th
e
H
ea
lth

Pr
of
es
si
on

al
s
Fo
llo
w
-U

p
St
ud

y
(H

PF
S)

st
ar
tin

g
in

19
8
4
an
d
19
8
6
,
re
sp
ec
tiv

el
y,

an
d
ev
er
y
2–
4

ye
ar
s
th
er
ea
ft
er

un
til

20
12

...
In

m
od

el
s
ad
ju
st
ed

fo
r
ag
e,
lif
es
ty
le
be

ha
vi
or
s,
an
d
di
et
ar
y
va
ri
ab
le
s,

th
e
hi
gh

es
t
qu

in
til
e
of

ca
rb
oh

yd
ra
te

in
ta
ke

w
as

no
t
as
so
ci
at
ed

w
ith

in
ci
de

nt
C
H
D

(p
oo

le
d
R
R
=

1.
0
4
;9

5%
C
I:
0
.9
6
,1
.1
4
;P

tr
en

d
=
0
.3
1)
.T

ot
al

fi
be

r
in
ta
ke

w
as

no
t
as
so
ci
at
ed

w
ith

ri
sk

of
C
H
D

(p
oo

le
d
R
R
=
0
.9
4
;9

5%
C
I:
0
.8
5,

1.
0
3;

P
tr
en

d
=
0
.7
2)
,w

hi
le

ce
re
al

fi
be

r
w
as

as
so
ci
at
ed

w
ith

a
lo
w
er

ri
sk

fo
r
in
ci
de

nt
C
H
D

(p
oo

le
d
R
R
=
0
.8
0
;
9
5%

C
I:
0
.7
4
,
0
.8
7;

P
tr
en

d
<
0
.0
0
0
1)
.
In

fu
lly

ad
ju
st
ed

m
od

el
s,
th
e
ca
rb
oh

yd
ra
te
-t
o-
to
ta
l
fi
be

r
ra
tio

w
as

no
t
as
so
ci
at
ed

w
ith

in
ci
de

nt
C
H
D

(p
oo

le
d
R
R
=
1.
0
4
;9

5%
C
I:
0
.9
6
,1
.1
3;
P
tr
en

d
=
0
.4
6
).
H
ow

ev
er
,t
he

ca
rb
oh

yd
ra
te
-t
o-
ce
re
al
fi
be

r
ra
tio

an
d
th
e
st
ar
ch
-t
o-
ce
re
al

fi
be

r
ra
tio

w
er
e
as
so
ci
at
ed

w
ith

an
in
cr
ea
se
d
ri
sk

fo
r
in
ci
de

nt
C
H
D

(p
oo

le
d
R
R
=
1.
20

;9
5%

C
I:
1.
11
,1
.2
9
;P

tr
en

d
<
0
.0
0
0
1,
an
d
po

ol
ed

R
R
=
1.
17
;9

5%
C
I:
1.
0
9
,1
.2
7;

P
tr
en

d
<
0
.0
0
0
1)
...
59

T
ot
al

fi
be

r
C
H
D

Bo
th

N
o

as
so
ci
at
io
n

C
ox

–

C
er
ea
l
fi
be

r
C
H
D

Bo
th

N
eg
at
iv
e

C
ox

0
.8

R
at
io

of
ca
rb

to
to
ta
l
fi
be

r

C
H
D

Bo
th

N
o

as
so
ci
at
io
n

C
ox

–

R
at
io

of
ca
rb

to
ce
re
al

fi
be

r

C
H
D

Bo
th

Po
si
tiv

e
C
ox

1.
2

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19888-2 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:6074 | https://doi.org/10.1038/s41467-020-19888-2 | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


References
1. Siscovick, D. S. et al. Dietary intake and cell membrane levels of long-chain n-

3 polyunsaturated fatty acids and the risk of primary cardiac arrest. JAMA
274, 1363–1367 (1995).

2. Estruch, R. et al. Primary prevention of cardiovascular disease with a
Mediterranean diet. N. Engl. J. Med. 368, 1279–1290 (2013).

3. Li, S. et al. Better diet quality and decreased mortality among myocardial
infarction survivors. JAMA Intern. Med. 173, 1808–1819 (2013).

4. Mente, A., de Koning, L., Shannon, H. S. & Anand, S. S. A systematic review of
the evidence supporting a causal link between dietary factors and coronary
heart disease. Archiv. Intern. Med. 169, 659–669 (2009).

5. Division for Heart Disease and Stroke Prevention. Heart Disease and Stroke
Maps www.cdc.gov/dhdsp/maps (2016).

6. Robertson, T. L. et al. Epidemiologic studies of coronary heart disease and
stroke in Japanese men living in Japan, Hawaii and California: coronary heart
disease risk factors in Japan and Hawaii. Am. J. Cardiol. 39, 244–249 (1977).

7. Capuano, E., Oliviero, T. & van Boekel, M. A. Modeling food matrix effects on
chemical reactivity: challenges and perspectives. Crit. Rev. Food Sci. Nutr. 58,
1–15 (2017).

8. Kolonel, L. N., Yoshizawa, C. N. & Hankin, J. H. Diet and prostatic cancer: a
case-control study in Hawaii. Am. J. Epidemiol. 127, 999–1012 (1988).

9. Marchand, L. L., Hankin, J. H., Kolonel, L. N. & Wilkens, L. R. Vegetable and
fruit consumption in relation to prostate cancer risk in Hawaii: a reevaluation
of the effect of dietary beta-carotene. Am. J. Epidemiol. 133, 215–219 (1991).

10. Willett, W. Nutritional Epidemiology (Oxford Univ. Press, 2012).
11. Cespedes, E. M. & Hu, F. B. Dietary patterns: from nutritional epidemiologic

analysis to national guidelines. Am. J. Clin. Nutr. 101, 899–900 (2015).
12. Hu, F. B. Dietary pattern analysis: a new direction in nutritional epidemiology.

Curr. Opin. Lipidol. 13, 3–9 (2002).
13. Shimazu, T. et al. Dietary patterns and cardiovascular disease mortality in

Japan: a prospective cohort study. Int. J. Epidemiol. 36, 600–609 (2007).
14. Tapsell, L. C., Neale, E. P., Satija, A. & Hu, F. B. Foods, nutrients, and dietary

patterns: interconnections and implications for dietary guidelines. Adv. Nutr.
7, 445–454 (2016).

15. Patel, C. J., Bhattacharya, J. & Butte, A. J. An environment-wide association
study (EWAS) on type 2 diabetes mellitus. PLoS ONE 5, e10746 (2010).

16. Wulaningsih, W. et al. Investigating nutrition and lifestyle factors as
determinants of abdominal obesity: an environment-wide study. Int. J. Obes.
41, 340 (2017).

17. Merritt, M. A. et al. Investigation of dietary factors and endometrial cancer
risk using a nutrient-wide association study approach in the EPIC and Nurses’
Health Study (NHS) and NHS II. Cancer Epidemiol. Prev. Biomarkers 24,
466–471 (2015).

18. Forman, J. P. & Willett, W. C. Nutrient-wide association studies: another road
to the same destination. Circulation 126, 2447–2448 (2012).

19. Tzoulaki, I. et al. A nutrient-wide association study on blood pressure.
Circulation 126, 2456–2464 (2012).

20. McGinnis, D. P., Brownstein, J. S. & Patel, C. J. Environment-wide association
study of blood pressure in the national health and nutrition examination
survey (1999–2012). Scientific Rep. 6, 30373 (2016).

21. Mubarak, A., Hodgson, J. M., Considine, M. J., Croft, K. D. & Matthews, V. B.
Supplementation of a high-fat diet with chlorogenic acid is associated with
insulin resistance and hepatic lipid accumulation in mice. J. Agric. Food Chem.
61, 4371–4378 (2013).

22. Onakpoya, I., Terry, R. & Ernst, E. The use of green coffee extract as a weight
loss supplement: a systematic review and meta-analysis of randomised clinical
trials. Gastroenterol. Res. Pract. 2011, 382852 (2011).

23. Vogel, R. A., Corretti, M. C. & Plotnick, G. D. The postprandial effect of
components of the Mediterranean diet on endothelial function. J. Am. College
Cardiol. 36, 1455–1460 (2000).

24. Sudlow, C. et al. Uk biobank: an open access resource for identifying the
causes of a wide range of complex diseases of middle and old age. PLoS Med.
12, e1001779 (2015).

25. Chen, Z. et al. China kadoorie biobank of 0.5 million people: survey methods,
baseline characteristics and long-term follow-up. Int. J. Epidemiol. 40,
1652–1666 (2011).

26. Colditz, G. A. The Nurses’ Health Study: a cohort of us women followed since
1976. J. Am. Med. Women’s Assoc. 50, 40 (1995).

27. Colditz, G. A., Manson, J. E. & Hankinson, S. E. The Nurses’ Health Study: 20-
year contribution to the understanding of health among women. J. Women’s
Health 6, 49–62 (1997).

28. Colditz, G. A. & Hankinson, S. E. The Nurses’ Health Study: lifestyle and
health among women. Nat. Rev. Cancer 5, 388 (2005).

29. Willett, W. C. et al. Intake of trans fatty acids and risk of coronary heart
disease among women. Lancet 341, 581–585 (1993).

30. Mensink, R. P., Zock, P. L., Kester, A. D. & Katan, M. B. Effects of dietary fatty
acids and carbohydrates on the ratio of serum total to HDL cholesterol and on

serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am.
J. Clin. Nutr. 77, 1146–1155 (2003).

31. Mozaffarian, D. & Clarke, R. Quantitative effects on cardiovascular risk factors
and coronary heart disease risk of replacing partially hydrogenated vegetable
oils with other fats and oils. Eur. J. Clin. Nutr. 63, S22 (2009).

32. Chiuve, S. E. et al. Dietary and plasma magnesium and risk of coronary heart
disease among women. J. Am. Heart Assoc. 2, e000114 (2013).

33. Wolk, A. et al. Long-term intake of dietary fiber and decreased risk of
coronary heart disease among women. JAMA 281, 1998–2004 (1999).

34. Pereira, M. A. et al. Dietary fiber and risk of coronary heart disease: a pooled
analysis of cohort studies. Arch. Intern. Med. 164, 370–376 (2004).

35. Mukamal, K. J. et al. Roles of drinking pattern and type of alcohol consumed
in coronary heart disease in men. N. Engl. J. Med. 348, 109–118 (2003).

36. Estruch, R. et al. Moderate consumption of red wine, but not gin, decreases
erythrocyte superoxide dismutase activity: a randomised cross-over trial. Nutr.
Metab. Cardiovasc. Dis. 21, 46–53 (2011).

37. Millwood, I. Y. et al. Conventional and genetic evidence on alcohol and
vascular disease aetiology: a prospective study of 500 000 men and women in
china. Lancet 393, 1831–1842 (2019).

38. Holmes, M. V. et al. Association between alcohol and cardiovascular disease:
Mendelian randomisation analysis based on individual participant data. BMJ
349, g4164 (2014).

39. Hu, F. B. et al. Dietary intake of α-linolenic acid and risk of fatal ischemic
heart disease among women. Am. J. Clin. Nutr. 69, 890–897 (1999).

40. Rice, B. H. Dairy and cardiovascular disease: a review of recent observational
research. Curr. Nutr. Rep. 3, 130–138 (2014).

41. Djoussé, L. & Gaziano, J. M. Breakfast cereals and risk of heart failure in the
physicians’ health study I. Arch. Intern. Med. 167, 2080–2085 (2007).

42. Gaziano, J. M. et al. A prospective study of consumption of carotenoids in
fruits and vegetables and decreased cardiovascular mortality in the elderly.
Ann. Epidemiol. 5, 255–260 (1995).

43. Puglisi, M. J. et al. Raisins and additional walking have distinct effects on
plasma lipids and inflammatory cytokines. Lipids Health Dis. 7, 14 (2008).

44. Hu, F. B. et al. Frequent nut consumption and risk of coronary heart disease in
women: prospective cohort study. BMJ 317, 1341–1345 (1998).

45. Micha, R., Michas, G. & Mozaffarian, D. Unprocessed red and processed
meats and risk of coronary artery disease and type 2 diabetes—an updated
review of the evidence. Curr. Atheroscler. Rep. 14, 515–524 (2012).

46. Pase, M. P., Grima, N., Cockerell, R. & Pipingas, A. Habitual intake of fruit
juice predicts central blood pressure. Appetite 84, 68–72 (2015).

47. Fung, T. T. et al. Sweetened beverage consumption and risk of coronary heart
disease in women. Am. J. Clin. Nutr. 89, 1037–1042 (2009).

48. Sieri, S. et al. Dietary glycemic load and index and risk of coronary heart
disease in a large italian cohort: the epicor study. Arch. Intern. Med. 170,
640–647 (2010).

49. Connor, W. E. & Connor, S. L. Dietary cholesterol and coronary heart disease.
Curr. Atherosclerosis Rep. 4, 425–432 (2002).

50. Mozaffarian, D., Aro, A. & Willett, W. C. Health effects of trans-fatty acids:
experimental and observational evidence. Eur. J. Clin. Nutr. 63, S5 (2009).

51. Sun, Q. et al. A prospective study of trans fatty acids in erythrocytes and risk
of coronary heart disease. Circulation 115, 1858–1865 (2007).

52. Zong, G. et al. Intake of individual saturated fatty acids and risk of coronary
heart disease in us men and women: two prospective longitudinal cohort
studies. BMJ 355, i5796 (2016).

53. Zong, G. et al. Monounsaturated fats from plant and animal sources in
relation to risk of coronary heart disease among us men and women. Am. J.
Clin. Nutr. 107, 445–453 (2018).

54. Djoussé, L., Weir, N. L., Hanson, N. Q., Tsai, M. Y. & Gaziano, J. M. Plasma
phospholipid concentration of cis-palmitoleic acid and risk of heart
failureclinical perspective. Circ. Heart Fail. 5, 703–709 (2012).

55. Hu, F. B., Manson, J. E. & Willett, W. C. Types of dietary fat and risk of
coronary heart disease: a critical review. J. Am. Coll. Nutr. 20, 5–19
(2001).

56. Li, Y. et al. Saturated fats compared with unsaturated fats and sources of
carbohydrates in relation to risk of coronary heart disease: a prospective
cohort study. J. Am. Coll. Cardiol. 66, 1538–1548 (2015).

57. Wu, H. et al. Association between dietary whole grain intake and risk of
mortality: two large prospective studies in US men and women. JAMA Intern.
Med. 175, 373–384 (2015).

58. Jensen, M. K. et al. Intakes of whole grains, bran, and germ and the risk of
coronary heart disease in men. Am. J. Clin. Nutr. 80, 1492–1499 (2004).

59. AlEssa, H. B. et al. Carbohydrate quality and quantity and risk of coronary
heart disease among us women and men. Am. J. Clin. Nutr. 107, 257–267
(2018).

60. Rosique-Esteban, N., Guasch-Ferré, M., Hernández-Alonso, P. & Salas-
Salvadó, J. Dietary magnesium and cardiovascular disease: a review with
emphasis in epidemiological studies. Nutrients 10, 168 (2018).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19888-2

12 NATURE COMMUNICATIONS |         (2020) 11:6074 | https://doi.org/10.1038/s41467-020-19888-2 | www.nature.com/naturecommunications

http://www.cdc.gov/dhdsp/maps
www.nature.com/naturecommunications


61. Burk, R. F. in Human and Veterinary Nutrition, Biochemical Aspects of
Nutrients, Vol. 30, 88–106 (Karger Publishers, 1978).

62. Chen, X. et al. Studies on the relations of selenium and keshan disease. Biol.
Trace Element Res. 2, 91–107 (1980).

63. Stranges, S. et al. Effects of selenium supplementation on cardiovascular
disease incidence and mortality: secondary analyses in a randomized clinical
trial. Am. J. Epidemiol. 163, 694–699 (2006).

64. Flores-Mateo, G., Navas-Acien, A., Pastor-Barriuso, R. & Guallar, E. Selenium
and coronary heart disease: a meta-analysis. Am. J. Clin. Nutr. 84, 762–773
(2006).

65. Aburto, N. J. et al. Effect of lower sodium intake on health: systematic review
and meta-analyses. BMJ 346, f1326 (2013).

66. Rimm, E. B. et al. Folate and vitamin b6 from diet and supplements in relation
to risk of coronary heart disease among women. JAMA 279, 359–364 (1998).

67. Malinow, M. R. et al. Reduction of plasma homocyst(e)ine levels by breakfast
cereal fortified with folic acid in patients with coronary heart disease. N. Engl.
J. Med. 338, 1009–1015 (1998).

68. Li, G. et al. Circulating tocopherols and risk of coronary artery disease: a
systematic review and meta-analysis. Eur. J. Prev. Cardiol. 23, 748–757 (2016).

69. Prasad, K. Tocotrienols and cardiovascular health. Curr. Pharm. Des. 17,
2147–2154 (2011).

70. Jiang, Q. Natural forms of vitamin E: metabolism, antioxidant, and anti-
inflammatory activities and their role in disease prevention and therapy. Free
Radic. Biol. Med. 72, 76–90 (2014).

71. Mathur, P., Ding, Z., Saldeen, T. & Mehta, J. L. Tocopherols in the prevention
and treatment of atherosclerosis and related cardiovascular disease. Clin.
Cardiol. 38, 570–576 (2015).

72. Montonen, J., Knekt, P., Järvinen, R. & Reunanen, A. Dietary antioxidant
intake and risk of type 2 diabetes. Diabetes Care 27, 362–366 (2004).

73. Shahidi, F. Antioxidants in food and food antioxidants. Food/Nahrung 44,
158–163 (2000).

74. Yang, W. et al. Is heme iron intake associated with risk of coronary heart
disease? A meta-analysis of prospective studies. Eur. J. Nutr. 53, 395–400
(2014).

75. Gao, L. et al. Isorhamnetin protects against cardiac hypertrophy through
blocking PI3K–AKT pathway. Mol. Cell. Biochem. 429, 167–177 (2017).

76. Zhang, K., Song, W., Li, D. & Jin, X. Apigenin in the regulation of cholesterol
metabolism and protection of blood vessels. Exp. Ther. Med. 13, 1719–1724
(2017).

77. Laitinen, O., Nikkilä, E. & Kivirikko, K. Hydroxyproline in the serum and
urine normal values and clinical significance. Acta Med. Scand. 179, 275–284
(1966).

78. Wheeless, C. R. Wheeless’ Textbook of Orthopaedics (C.R. Wheeless, M.D.,
1996).

79. Abdelhalim, M. A. K., Siddiqi, N., Alhomida, A. & Al-Ayed, M. S. The changes
in various hydroxyproline fractions in aortic tissue of rabbits are closely
related to the progression of atherosclerosis. Lipids Health Dis. 9, 26 (2010).

80. Prockop, D. J. & Sjoerdsma, A. Significance of urinary hydroxyproline in man.
J. Clin. Invest. 40, 843–849 (1961).

81. US Food and Drug Administration. New Dietary Ingredient Notification for N-
Acetyl-L-Hydroxyproline (US Food and Drug Administration, 2001).

82. Barbul, A. Proline precursors to sustain mammalian collagen synthesis. J.
Nutr. 138, 2021S–2024S (2008).

83. Chen, P. et al. Increased serum 2-oxoglutarate associated with high
myocardial energy expenditure and poor prognosis in chronic heart failure
patients. Biochim. Biophys. Acta 1842, 2120–2125 (2014).

84. Rappaport, S. M. & Smith, M. T. Environment and disease risks. Science 330,
460–461 (2010).

85. Christakis, N. A. & Fowler, J. H. The spread of obesity in a large social
network over 32 years. N. Engl. J. Med. 357, 370–379 (2007).

86. Bouvard, V. et al. Carcinogenicity of consumption of red and processed meat.
Lancet Oncol. 16, 1599 (2015).

87. Tonacchera, M. et al. Relative potencies and additivity of perchlorate,
thiocyanate, nitrate, and iodide on the inhibition of radioactive iodide uptake
by the human sodium iodide symporter. Thyroid 14, 1012–1019 (2004).

88. Ioannidis, J. P., Loy, E. Y., Poulton, R. & Chia, K. S. Researching genetic versus
nongenetic determinants of disease: a comparison and proposed unification.
Sci. Transl. Med. 1, 7ps8–7ps8 (2009).

89. Boffetta, P. et al. False-positive results in cancer epidemiology: a plea for
epistemological modesty. J. Natl Cancer Inst. 100, 988–995 (2008).

90. The Metabolomics Innovation Centre (TMIC). FooDB http://foodb.ca (2018).
91. Barabási, A.-L., Menichetti, G. & Loscalzo, J. The Nutritional Dark Matter: the

unmapped chemical complexity of our diet. Nat. Food 1, 33–37 (2019).
92. Hooton, F., Menichetti, G. & Barabási, A.-L. Exploring food contents in

scientific literature with FoodMine. Scientific Reports 10, (2020)
93. Milanlouei, S. & Menichetti, G. soodimilanlouei/EWAS-NHS: v1.0.1 (Version

v1.0.1). Zenodo. https://doi.org/10.5281/zenodo.4038928 (2020).

94. Michels, K. B. & Willett, W. C. Self-administered semiquantitative food
frequency questionnaires: patterns, predictors, and interpretation of omitted
items. Epidemiology 20, 295 (2009).

95. Gates, M. A. et al. A prospective study of dietary flavonoid intake and
incidence of epithelial ovarian cancer. Int. J. Cancer 121, 2225–2232 (2007).

96. Conen, D. et al. Caffeine consumption and incident atrial fibrillation in
women. Am. J. Clin. Nutr. 92, 509–514 (2010).

97. Guasch-Ferré, M. et al. Nut consumption and risk of cardiovascular disease. J.
Am. Coll. Cardiol. 70, 2519–2532 (2017).

98. Hu, F. B. et al. Dietary fat intake and the risk of coronary heart disease in
women. N. Engl. J. Med. 337, 1491–1499 (1997).

99. Hu, F. B. et al. Fish and omega-3 fatty acid intake and risk of coronary heart
disease in women. JAMA 287, 1815–1821 (2002).

100. Liu, S. et al. Whole-grain consumption and risk of coronary heart disease:
results from the Nurses’ Health Study. Am. J. Clin. Nutr. 70, 412–419 (1999).

101. Yuan, C. et al. Relative validity of nutrient intakes assessed by questionnaire,
24-hour recalls, and diet records as compared with urinary recovery and
plasma concentration biomarkers: findings for women. Am. J. Epidemiol. 187,
1051–1063 (2017).

102. Yuan, C. et al. Validity of a dietary questionnaire assessed by comparison with
multiple weighed dietary records or 24-hour recalls. Am. J. Epidemiol. 185,
570–584 (2017).

103. Oh, K., Hu, F. B., Manson, J. E., Stampfer, M. J. & Willett, W. C. Dietary fat
intake and risk of coronary heart disease in women: 20 years of follow-up of
the Nurses’ Health Study. Am. J. Epidemiol. 161, 672–679 (2005).

104. Harvard, T. H. Chan School of Public Health Nutrition Department. Nurses’
Health Study: Food Frequency Questionnaires. https://www.nurseshealthstudy.
org/participants/questionnaires (2020).

105. US Department of Agriculture. Composition of Foods, 1976 to 1992.
Agricultural Handbook No. 8 Series (Department of Agriculture, Washington,
1989).

106. Harvard T.H. Chan School of Public Health Nutrition Department. Harvard
University Food Composition Database https://regepi.bwh.harvard.edu/health/
nutrition.html (2020).

107. Jacobs, D. R., Meyer, K. A., Kushi, L. H. & Folsom, A. R. Whole-grain intake
may reduce the risk of ischemic heart disease death in postmenopausal
women: the Iowa Women’s Health Study. Am. J. Clin. Nutr. 68, 248–257
(1998).

108. Rose, G. A. et al. Cardiovascular Survey Methods, Vol. 56 (WHO, Geneva, 1982).
109. Kahn, H. A. & Dawber, T. R. The development of coronary heart disease in

relation to sequential biennial measures of cholesterol in the Framingham
study. J. Clin. Epidemiol. 19, 611–620 (1966).

110. Larsson, S. C., Giovannucci, E. & Wolk, A. Coffee consumption and stomach
cancer risk in a cohort of Swedish women. Int. J. Cancer 119, 2186–2189
(2006).

111. Kim, E. H. et al. Dietary fat and risk of postmenopausal breast cancer in a 20-
year follow-up. Am. J. Epidemiol. 164, 990–997 (2006).

112. Haring, B. et al. Dietary protein intake and coronary heart disease in a large
community based cohort: results from the Atherosclerosis Risk in
Communities (ARIC) Study. PLoS ONE 9, e109552 (2014).

113. Halton, T. L. et al. Low-carbohydrate-diet score and the risk of coronary heart
disease in women. N. Engl. J. Med. 355, 1991–2002 (2006).

114. Streppel, M. T., Ocké, M. C., Boshuizen, H. C., Kok, F. J. & Kromhout, D.
Dietary fiber intake in relation to coronary heart disease and all-cause
mortality over 40 y: the Zutphen Study. Am. J. Clin. Nutr. 88, 1119–1125
(2008).

115. Eshak, E. S. et al. Soft drink intake in relation to incident ischemic heart disease,
stroke, and stroke subtypes in Japanese men and women: the Japan Public Health
Centre–based study cohort I. Am. J. Clin. Nutr. 96, 1390–1397 (2012).

116. Hu, F. B. et al. Dietary fat and coronary heart disease: a comparison of
approaches for adjusting for total energy intake and modeling repeated dietary
measurements. Am. J. Epidemiol. 149, 531–540 (1999).

117. Lawes, C. M., Bennett, D. A., Lewington, S. & Rodgers, A. in Seminars in
Vascular Medicine, Vol. 2, 355–368 (Thieme Medical Publishers, Inc., New
York, 2002).

118. Huxley, R., Lewington, S. & Clarke, R. in Seminars in Vascular Medicine, Vol.
2, 315–324 (Thieme Medical Publishers Inc., New York, 2002).

119. Belsley, D. A. in Encyclopedia of Statistical Sciences, Vol. 2 (Wiley, 2004).
120. Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies.

Proc. Natl Acad. Sci. USA 100, 9440–9445 (2003).
121. Noble, W. S. How does multiple testing correction work? Nat. Biotechnol. 27,

1135 (2009).
122. Epstein, M. P. et al. A permutation procedure to correct for confounders in

case-control studies, including tests of rare variation. Am. J. Hum. Genet. 91,
215–223 (2012).

123. Harvard T.H. Chan School of Public Health Nutrition Department. External
Collaboration Request https://www.nurseshealthstudy.org/researchers (2020).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19888-2 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:6074 | https://doi.org/10.1038/s41467-020-19888-2 | www.nature.com/naturecommunications 13

http://foodb.ca
https://doi.org/10.5281/zenodo.4038928
https://www.nurseshealthstudy.org/participants/questionnaires
https://www.nurseshealthstudy.org/participants/questionnaires
https://regepi.bwh.harvard.edu/health/nutrition.html
https://regepi.bwh.harvard.edu/health/nutrition.html
https://www.nurseshealthstudy.org/researchers
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Acknowledgements
We were supported by grants from NIH (grants P01 HL132825, UM1 CA186107, P01
CA87969, R01 CA49449, R01 HL034594, R01 HL088521, UM1 CA176726, R01
CA67262, U54 HL119145, U01 HG007690, and P50 GM107618) and AHA (grants
151708, 414110-68953, and D700382). A.-L.B. was supported by NIH 1P01HL132825,
Rockefeller Foundation 2109 FOD 026, and the European Unionʼs Horizon 2020
research and innovation programme under grant agreement No 810115 - DYNASNET.

Author contributions
S.M. performed data query and integration, statistical modeling, network analysis, and
programming and contributed to writing the manuscript. G.M. contributed to network
analysis, statistical modeling, programming, and writing the manuscript. Y.L. contributed to
data query and programming. J.L. contributed to interpreting the results and writing the
manuscript. W.C.W. contributed to data collection, analyzing the results, and writing the
manuscript. A.-L.B. contributed to the conceptual design of the study and writing the
manuscript.

Competing interests
A.-L.B. is founder of Nomix and Foodome, and J.L. and A.-L.B. are founders of Scipher
Medicine, companies that explore the use of network-based tools in health. The
remaining authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-19888-2.

Correspondence and requests for materials should be addressed to A.-L.B.

Peer review information Nature Communications thanks Ramon Estruch, Paolo Vineis
and the other, anonymous, reviewer(s) for their contribution to the peer review of this
work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19888-2

14 NATURE COMMUNICATIONS |         (2020) 11:6074 | https://doi.org/10.1038/s41467-020-19888-2 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-020-19888-2
https://doi.org/10.1038/s41467-020-19888-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	A systematic comprehensive longitudinal evaluation of dietary factors associated with acute myocardial infarction and fatal coronary heart disease
	Results
	Main findings
	Comparison with the literature
	Validation in NHS II

	Discussion
	Methods
	Knowledge graph
	Population
	Ascertainment of diet
	Ascertainment of CHD
	Statistical analysis
	Study protocol

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




