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Abstract

We derive a stochastic nonlinear continuum equation to describe the morphological evolution of amorphous sur-

faces eroded by ion bombardment. Starting from Sigmund�s theory of sputter erosion, we calculate the coefficients

appearing in the continuum equation in terms of the physical parameters characterizing the sputtering process. We

analyze the morphological features predicted by the continuum theory, comparing them with the experimentally re-

ported morphologies. We show that for short time scales, where the effect of nonlinear terms is negligible, the con-

tinuum theory predicts ripple formation. We demonstrate that in addition to relaxation by thermal surface diffusion, the

sputtering process can also contribute to the smoothing mechanisms shaping the surface morphology. We explicitly

calculate an effective surface diffusion constant characterizing this smoothing effect and show that it is responsible for

the low temperature ripple formation observed in various experiments. At long time scales the nonlinear terms dom-

inate the evolution of the surface morphology. The nonlinear terms lead to the stabilization of the ripple wavelength

and we show that, depending on the experimental parameters, such as angle of incidence and ion energy, different

morphologies can be observed: asymptotically, sputter eroded surfaces could undergo kinetic roughening, or can

display novel ordered structures with rotated ripples. Finally, we discuss in detail the existing experimental support for

the proposed theory and uncover novel features of the surface morphology and evolution, that could be directly tested

experimentally.

� 2002 Published by Elsevier Science B.V.
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1. Introduction

Sputtering is the removal of material from the

surface of solids through the impact of energetic
particles [1–3]. It is a widespread experimental

technique, used in a large number of applica-

tions with a remarkable level of sophistication. It

is a basic tool in surface analysis, depth profil-

ing, sputter cleaning, micromachining and sputter
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deposition. Perhaps the largest community of users

is in the thin film and semiconductor fabrication

areas, sputter erosion being routinely used for

etching patterns important to the production of
integrated circuits and device packaging.

To have a better control over this important

tool, we need to understand the effect of the

sputtering process on the surface morphology. In

many cases sputtering is routinely used to smooth

out surface features. On the other hand, some in-

vestigations indicate that sputtering can also

roughen the surface. Consequently, sputter erosion
may have different effects on the surface, depend-

ing on many factors, such as incident ion energy,

mass, angle of incidence, sputtered substrate tem-

perature and material composition. The experi-

mental results on the effect of sputter erosion on

the surface morphology can be classified in two

main classes. There exists ample experimental ev-

idence that ion sputtering can lead to the devel-
opment of periodic ripples on the surface [4–27].

Depending on the sputtered substrate and the

sputtering conditions these ripples can be surpris-

ingly straight and ordered. However, a number of

recent investigations [28–36] have provided rather

detailed and convincing experimental evidence

that under certain experimental conditions ion

eroded surfaces become rough and the roughness
follows the predictions of various scaling theories

[37]. Moreover, these investigations did not find

any evidence of ripple formation on the surface.

Up to recently these two morphological features

were treated separately and no unified theoretical

framework describing these morphologies was

available.

The first widely accepted theoretical approach
describing the process of ripple formation on

amorphous substrates was developed by Bradley

and Harper (BH) [38]. This theory is rather suc-

cessful in predicting the ripple wavelength and

orientation in agreement with numerous experi-

mental observations. However, a number of ex-

perimental results have systematically eluded this

theory. For example, the BH theory predicts an
unlimited exponential increase in ripple amplitude

in contrast with the observed saturation of the

surface width. Similarly, it cannot account for

surface roughening, or for ripple orientations dif-

ferent from those defined by the incoming ion

direction or perpendicular to it. Finally, recent

experiments [12,13] have observed ripples whose

wavelength is independent of the substrate tem-
perature, and linear in the ion energy, in contrast

with the BH prediction of a ripple wavelength

which depends exponentially on temperature and

decreases with ion energy.

In the light of the accumulated experimental

results, it is clear that a theory going beyond the

BH approach is required, motivating the results

described in this paper. Thus here we investigate
the morphology of ion-sputtered amorphous sur-

faces aiming to describe in an unified framework

the dynamic and scaling behavior of the experi-

mentally observed surface morphologies. For this

we derive a nonlinear theory that describes the

time evolution of the surface morphology. At

short time scales the nonlinear theory predicts the

development of a periodic ripple structure, while at
large time scales the surface morphology may be

either rough or dominated by new ripples, that are

different from those existing at short time scales.

We find that transitions may take place between

various surface morphologies as the experimental

parameters (e.g. angle of incidence, energy depo-

sition depth) are varied. Usually stochastic equa-

tions describing growth and erosion models are
constructed using symmetry arguments and con-

servation laws. In contrast, here we show that for

sputter eroded surfaces the growth equation can be

derived directly from a microscopic model of the

elementary processes taking place in the system. A

particular case of our theory was presented in [39].

In addition, we show that the presented theory

can be extended to describe low temperature ripple
formation as well. We demonstrate that, under

certain conditions, ion-sputtering can lead to pref-

erential erosion that appears as a surface diffusion

term in the equation of motion, even though no

mass transport along the surface takes place in the

system. To distinguish it from ordinary surface

diffusion, in the following we refer to this phe-

nomenon as effective smoothing (ES). We calculate
analytically an effective surface diffusion constant

accounting for the ES effect, and study its depen-

dence on the ion energy, flux, angle of incidence,

and energy deposition depth. The effect of ES on
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the morphology of ion-sputtered surfaces is sum-

marized in a morphological phase diagram, al-

lowing for direct experimental verification of our

predictions. A restricted study along these lines
appeared in [40].

The paper is organized as follows. In Section 2

we review the recent advances in the scaling theory

of rough (self-affine) interfaces. Section 3 is dedi-

cated to a brief overview of the experimental re-

sults on surface morphology development under

ion sputtering. A short summary of the theoretical

approaches developed to describe the morphology
of ion sputtered surfaces is presented in Section 4.

This section also contains a short description of

Sigmund�s theory of sputtering, that is the basis

for our calculations. In Section 5 we derive the

nonlinear stochastic equation describing sputter

erosion. Analysis of this equation is presented in

Section 6, discussing separately both the high and

low temperature ripple formation. We compare
the predictions of our theory with experimental

results on surface roughening and ripple formation

in Section 7, followed by Section 8, that summa-

rizes our findings.

2. Scaling theory

In the last decade we witnessed the development

of an array of theoretical tools and techniques

intended to describe and characterize the rough-

ening of nonequilibrium surfaces and interfaces

[37]. Initiated by advances in the statistical me-

chanics of various nonequilibrium systems, it has

been observed that the roughness of many natural

surfaces follows rather simple scaling laws, which
can be quantified using scaling exponents. Since

kinetic roughening is a common feature of ion-

bombarded surfaces, before we discuss the experi-

mental results on sputtering, we need to introduce

the main quantities characterizing the surface

morphology.

Let us consider a two-dimensional surface that

is characterized by the height function hðx; y; tÞ.
The morphology and dynamics of a rough surface

can be quantified by the interface width, defined by

the rms fluctuations in the height hðx; y; tÞ,

wðL; tÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L2

X
x;y¼1;L

½hðx; y; tÞ � �hhðtÞ�2
s

; ð1Þ

where L is the linear size of the sample and �hh is the

mean surface height of the surface

�hhðtÞ � 1

L2

X
x;y¼1;L

hðx; y; tÞ: ð2Þ

Instead of measuring the roughness of a surface

over the whole sample size L� L, we can choose a

window of size ‘� ‘ and measure the local width,

wð‘Þ. A general property of many rough surfaces is

that the roughness depends on the length scale of

observation. This can be quantified by plotting
wð‘Þ as a function of ‘. There are two characteristic

regimes one can distinguish:

(i) For length scales smaller than ‘�, the local

width increases as

wð‘Þ 	 ‘a; ð3Þ

where a is the roughness exponent. If we are in-
terested in surface phenomena that take place at

length scales shorter than ‘� then we cannot ne-

glect the roughness of the surface. In this regime,

the roughness is not simply a number, but it de-

pends on the length scale accessible to the method

probing the surface.

(ii) For ‘ 
 ‘�, wð‘Þ is independent of ‘, thus, at
length scales larger than ‘�, the surface is smooth.
In this regime we can characterize the surface

roughness with the saturation width wsat ¼ wð‘�Þ.
The dynamics of the roughening process can be

best characterized by the time dependent total

width, given by Eq. (1). At early times the total

width increases as wðL; tÞ 	 tb, where b is the

growth exponent. However, for finite systems, after

a crossover time t�, the width saturates, following
the Family–Vicsek scaling function [41],

wðL; tÞ � tbg
t
Lz

� �
; ð4Þ

where z ¼ a=b is the dynamic exponent and

gðu � 1Þ 	 1, while gðu 
 1Þ 	 u�b.

Scaling relations such as Eq. (4) allow us to

define universality classes. The universality class
concept is a product of modern statistical me-

chanics, and encodes the fact that there are but a
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few essential factors that determine the exponents

characterizing the scaling behavior. Thus different

systems, which at first sight may appear to have no

connection between them, behave in a remarkably
similar fashion. The values of the exponents a and

b are independent of many ‘‘details’’ of the system,

and they are uniquely defined for a given univer-

sality class. In contrast, other quantities, such as ‘�
or wsat, are nonuniversal, i.e. they depend on

almost every detail of the system.

3. Experimental results

The morphology of surfaces bombarded by

energetic ions has long fascinated the experimental

community. Lately, with the development of high

resolution observation techniques such as atomic

force and scanning tunneling microscopies, this

problem is living a new life. The various experi-
mental investigations can be classified into two

main classes. First, early investigations, corrobo-

rated by numerous recent studies, have found that

sputter eroded surfaces develop a ripple mor-

phology with a rather characteristic wavelength of

the order of a few micrometers [4–27]. However, a

number of research groups have found no evidence

of ripples, but observed the development of ap-
parently random, rough surfaces [28–36], that were

characterized using scaling theories. In the fol-

lowing we summarize the key experimental ob-

servations for both ripple development and kinetic

roughening.

3.1. Ripple formation

The ripple morphology of ion bombarded sur-

faces has been initially discovered in the mid 1970�s
[4–6]. Since then, a number of research groups

have provided detailed quantitative results re-

garding the ripple characteristics and dynamics of

ripple formation. It is beyond the scope of this

paper to offer a comprehensive review of the vast

body of the experimental literature on the subject.
Thus, we selected a few experiments that offer a

representative picture of the experimental features

that appear to be common to different materials.

3.1.1. Angle of incidence

An experimental parameter which is rather easy

to change in sputtering is the angle of incidence h
of the incoming ions relative to the normal to the

average surface configuration. Consequently, nu-

merous research groups have investigated the ef-

fect of h on the ripples. These results indicate that

ripples appear only for a limited range of incidence

angles, which, depending on materials and ions

involved, typically vary between 30� and 60�.
Support for a well defined window in h for

ripple formation was offered by Stevie et al. [7],

who observed abrupt secondary ion yield changes

(correlated with the onset of ripple morphology

development) in experiments on 6 and 8 keV Oþ
2

sputtering of Si and 8, 5.5 and 2.5 keV Oþ
2 sput-

tering of GaAs at incidence angles between 39�
and 52�. These results were corroborated by Karen

et al. [8–10], who investigated ripple formation on
GaAs surfaces under bombardment with 10.5 keV

Oþ
2 ions. They found that ripple formation takes

place for angles of incidence between 30� and 60�
(see Table 1 of [10]). Similarly, Wittmaack [11]

found that ripple formation occurs at incidence

angles between 32� and 58� during 10 keV Oþ
2 -ion

bombardment of a Si target.

3.1.2. Temperature dependence

Another parameter that has been found to in-

fluence the ripple structure, and, in particular, the

ripple wavelength, is the temperature of the sub-

strate, T. Two different behaviors have been doc-

umented: exponential dependence of the ripple

wavelength on T has been observed at high tem-

peratures, while the wavelength was found to be
constant at low temperatures.

A series of experiments on the temperature de-

pendence of ripple formation were reported by

MacLaren et al. [12]. They studied InP and GaAs

surfaces bombarded with 17.5 keV Csþ and 5.5

keV Oþ
2 ion beams in the temperature range from

)50 to 200 �C. For GaAs bombarded by Csþ ions

the ripple wavelength increased from 0.89 to 2.1
lm as the temperature increased from 0 to 100 �C.

Probably the most interesting finding of their study

was that lowering the temperature, the ripple

wavelength did not go continuously to zero, as one

would expect since the surface diffusion constant

188 M.A. Makeev et al. / Nucl. Instr. and Meth. in Phys. Res. B 197 (2002) 185–227



decreases exponentially with temperature (see

Subsection 4.3), but rather at approximately 60 �C
it stabilized at a constant value. MacLaren et al.

interpreted this as the emergence of radiation en-
hanced diffusion, that gives a constant (tempera-

ture independent) contribution to the diffusion

constant. Recently, Umbach et al. [13] have stud-

ied the sputter-induced ripple formation on SiO2

surfaces using 0.5–2.0 keV Ar ion beams. The

temperature dependence of the ripple wavelength ‘
was investigated for temperatures ranging from

room temperature to 800 �C. It was found that
for high temperatures, T P 400 �C, the ripple

wavelength follows the Arrhenius law ð1=T 1=2Þ
expð�DE=2kBT Þ, indicating the thermally acti-

vated character of the relaxation processes. How-

ever, at low temperatures the ripple wavelength

was independent of temperature, thus indicating

the presence of a temperature independent relax-

ation mechanism.
Results indicating temperature independent

nondiffusive relaxation have been reported for

crystalline materials as well by Carter et al. [14]. In

these experiments Si bombarded with highly en-

ergetic 10–40 keV Xeþ-ions led to ripple formation

with wavelength ‘ ’ 0:4 lm for angles of incidence

close to 45�. Change in the surface temperature

from 100 to 300 K did not cause the ripple wave-
length and orientation changes. This observation

led the authors to conclude that the smoothing

mechanism is not of the thermal origin. They also

found that the ripple wavevector is relatively in-

sensitive to the primary ion energy.

3.1.3. Flux and fluence dependence

The effect of the flux on the surface dynamics
was studied by Chason et al. [15,16]. In these ex-

periments a 1 keV Xe ion beam was directed to-

wards a SiO2 sample with an angle of incidence of

55�. The typical incoming flux was 1013 cm�2 s�1

and fluence (the number of incoming atoms per

surface area, playing the role of time) was up to

10� 1015 cm�2. The surface was analyzed using

in situ energy dispersive X-ray reflectivity and ex
situ AFM. It was found that the interface rough-

ness, which is proportional to the ripple amplitude,

increases linearly with the fluence. Similar experi-

ments were performed on Ge(0 0 1) surfaces [17]

using 0.3, 0.5 and 1 keV Xe ion beams for T ¼ 350

�C. For flux values up to 3 lA/cm2 and fluences up

to 6� 1016 cm�2, the roughness was observed to

increase as the square of the flux.

3.1.4. Ion energy

The ripple wavelength dependence on the inci-

dent ion energy and the angle of incidence was

reported in [8–10]. The experiments indicate that

the ripple wavelength is linear in the energy, fol-

lowing ‘ 	 � cos h. Similar results were obtained in

[18], providing an extensive study of ripple for-
mation by the secondary ion spectrometry and

scanning electron microscopy. The ripple topo-

graphy was observed during Oþ
2 primary ion

bombardment of a Si(1 0 0) substrate with ion en-

ergies ranging between 1.5 and 9 keV. No ripples

were observed for energies less than 1.5 keV or for

high energies, such as 1.5 and 7 keV, when Arþ

primary ions were used. The experiments indicate
that the ripple wavelength increases linearly from

100 to 400 nm when the energy of the primary ion

changes from 1 to 9 keV. Furthermore, the ex-

perimental data indicated that the primary ion

penetration depth, a and the ripple wavelength ‘
are related by the empirical relation ‘ ¼ 40a. The

wavelength of the ripples is found to be indepen-

dent of the primary ion flux and dependent merely
on fluence, i.e. sputtered depth. The recent results

by Umbach et al. [13] provided further strong ev-

idence for the linear relationship between the ion

energy and the ripple wavelength for SiO2 sub-

strates (see below).

3.1.5. Ripple amplitude

Indirect results on the ripple amplitude were
presented by Vajo et al. [18] in their study of the

surface topography induced secondary ion yield

changes on SiO2 surfaces bombarded by Oþ
2 ions.

The authors have found that the yield changes

exponentially in the first stages of ripple develop-

ment and saturates for large sputtered depth. Di-

rect evidence on ripple amplitude saturation was

obtained by Erlebacher et al. [20], who measured
the time evolution of the ripple amplitude in ex-

periments bombarding Si(1 0 0) surfaces with 0.75

keV Arþ ions. They found that, while at short time

scales the ripple amplitude increases exponentially,
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it saturates after a crossover time has been reached.

Furthermore, the experiments indicate that the

crossover time scales with the temperature induced

surface diffusion constant.

3.1.6. Surface chemistry and other morphological

features

While a number of attempts have been made to

explain ripple formation based on chemical effects,

such as Oþ
2 variations [18,21,22], most of these

studies were contradicted by subsequent investi-

gations [23] where such chemical component were
not present. Furthermore, in [8–10] it was unam-

biguously shown that the process of ripple for-

mation is not caused by defects or inherited

irregularities on the surface, but is determined

merely by the primary ion characteristics. These

results indicate that ripple formation is indepen-

dent of microscopic details and the surface chem-

istry.

3.1.7. Ripple formation on crystalline and metallic

surfaces

As the discussed experimental results have in-

dicated, ripple formation takes place under a va-

riety of conditions and on surfaces of different

materials, including both crystalline and amor-

phous materials. Despite the fact that Sigmund�s
theory, the basis of all theories of ripple formation,

has been developed for amorphous targets, it is

worth noting that these approaches describe many

features of ripple formation on crystalline surfaces

as well. However, when discussing ripple forma-

tion on crystalline materials, we always have to

be aware that additional effects, induced by the

crystalline anisotropy, could be present. An ex-
ample of ripple development on crystalline mate-

rials has been obtained for Ag(1 1 0) surfaces under

low energy (�P 800 eV) Arþ primary beam bom-

bardment by Rusponi et al. [24]. Ripples with

wavelength of approximately 600 �AA, oriented

along the h110i crystallographic direction, ap-

peared in a temperature range 270� K6 T 6 320�
K at normal ion incidence. The ripple structure was
found to be unstable at room temperature, i.e.

substantial smoothing of the surface with time

takes place. The structure depends on the ion flux

and ion energy. Similar results are available for

ion-sputtered Cu(1 1 0) monocrystals using a 1 keV

Arþ ion beam [25]. For normal incidence a well

defined ripple structure was observed, with wave

vectors whose direction changes from h001i to
h110i as the temperature of the substrate is raised.

Off-normal sputtering generated ripples whose

orientation depends both on the ion direction and

the surface orientation. The authors suggested that

this phenomenon can be explained in terms of

anisotropic surface diffusion.

3.1.8. Summary

As the presented results indicate, ripple forma-

tion on ion-sputtered surfaces has been observed

by many groups in various systems (for a partial

summary see Table 1).

The main experimental results, common to most

studied materials, can be summarized as follows:

• Off-normal ion bombardment often produces
periodically modulated structures (ripples) on

the surfaces of amorphous and crystalline mate-

rials. The wavelength of the ripples ‘ is usually

of the order of tenths of micrometers.

• For nonmetallic substrates, the orientation of

the ripples depends on the angle of inci-

dence h, and, in most cases, is either parallel

or perpendicular to the direction of the incom-
ing ions.

• At low temperatures the ripple wavelength is in-

dependent of T, while it follows the Arrhenius

law ‘ 	 ð1=T 1=2Þ expð�DE=kBT Þ at higher tem-

peratures.

• Numerous experiments find that the ripple

wavelength is proportional to the ion range,

and thus to the ion energy for intermediate en-
ergies.

• The ripple wavelength in many cases is indepen-

dent of the ion flux, but systematic flux depen-

dence has also been reported.

• The amplitude of the periodic modulations

grows exponentially for early times, but satu-

rates after a typical crossover time has been

reached. In many instances, the ripple wave-
length ‘ is found to be independent of time.

• Evidence for ripple formation was obtained for

different materials and different primary ions,

suggesting that the mechanism responsible for
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ripple formation is largely independent of sur-

face chemistry, chemical reactions on the sur-

face, or defects.

3.2. Kinetic roughening

Motivated by the advances in characterizing the

morphology of rough surfaces, recently a number
of experimental studies have focused on the scaling

properties of surfaces eroded by ion bombardment

[28–36]. These experiments have demonstrated

that, under certain ion bombardment conditions,

ripples do not form, and the surface undergoes

kinetic roughening. The goal of the present sec-

tion is to review the pertinent experimental re-

sults, aiming to summarize the key features that a
comprehensive theory should address.

3.2.1. Surface roughness and dynamical exponents

In the experiments of Eklund et al. [28,29]

pyrolytic graphite was bombarded by 5 keV Ar

ions, at an angle of incidence of 60�. The experi-

ments were carried out for two flux values,

6:9� 1013 and 3:5� 1014 ions s�1 cm�2, the total
fluences being 1016, 1017 and 1018 ions cm�2. STM

micrographs indicated that large scale features

develop with continuous bombardment, the inter-

face becoming highly correlated and rough. The

scaling properties have also been probed using the

Fourier transform of the height–height correlation

function, obtaining a dynamic exponent z in the

range 1.6–1.8, and a roughness exponent in the
range 0.2–0.4. These exponents are consistent with

the predictions of the continuum theory, describ-

ing kinetic roughening, proposed by Kardar, Parisi

and Zhang (KPZ) [42], that predicts z ’ 1:6 and

a ’ 0:38 (see Subsection 4.1.1).

A somewhat larger roughness exponent has

been measured for samples of iron bombarded

with 5 keV Ar ions at an angle of incidence of 25�
[30]. The interface morphology was observed using

STM, and the height–height correlation function

indicated a roughness exponent a ¼ 0:53� 0:02
[30]. The mechanism leading to such a rough-

ness exponent is not yet understood in terms of

continuum theories, since for two dimensional

Table 1

Summary of the ripple characteristics reported in sputter erosion experiments of nonmetallic substrates

Material Ion type Angle of incidence (deg) Ion energy (keV) Ripple wavelength (lm) Ref.

GaAs(1 0 0) Oþ
2 39 8 0.2 [7]

GaAs(1 0 0) Oþ
2 42 5.5 0.1 [7]

GaAs(1 0 0) Oþ
2 37 10.5 0.23 [9]

GaAs(1 0 0) Oþ
2 42 5.5 0.13 [10]

GaAs(1 0 0) Oþ
2 39 8.0 0.21 [10]

GaAs(1 0 0) Oþ
2 37 10.5 0.27 [10]

GaAs(1 0 0) Oþ
2 57 13 0.33 [10]

GaAs Oþ
2 40 3.0 0.075 [26]

GaAs Oþ
2 40 7.0 0.130 [26]

Ge(0 0 1) Xeþ 55 1 0.2 [15]

Si(0 0 1) Oþ
2 41 6 0.4 [7]

Si(0 0 1) Oþ
2 42 5.5 0.5 [7]

Si(1 0 0) Oþ
2 39 8 0.5 [7]

Si(1 0 0) Oþ
2 40 3 0.198 [18]

Si(1 0 0) Oþ
2 40 5 0.302 [18]

Si(1 0 0) Oþ
2 40 9 0.408 [18]

Si(1 0 0) Arþ 67.5 0.75 0.57 [19]

Si Xeþ 45 40 0.4 [14]

Si Oþ
2 37 12.5 0.35 [21]

SiO2 Arþ 45 0.5–2 0.2–0.55 [13]

SiO2 Xeþ 55 1 0.03 [16]

In all cases shown, the ripple wave vector is parallel to the ion beam direction. Note that a number of experiments have obtained

indirect information on ripple formation from secondary ion yield changes. These have not been included in the table.
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surfaces the existing continuum theories predict a
values of 0.38, 2/3 and 1 [37], far from the observed

roughness exponent.

Anomalous dynamic-scaling behavior of sput-
tered surfaces was reported by Yang et al. [31]. The

experiments performed on Si(1 1 1) surfaces with

0.5 keV Arþ ions with flux 0.2 lA/mm2 in a wide

range of substrate temperatures have provided

evidence of scaling behavior in the limit of small

distances r. The height–height correlation function

has been found to follow CðrÞ ¼ hðhðr0Þ � hðrþ
r0ÞÞ2i 	 r2a log t, with a ’ 1:15� 0:08 for temper-
atures lower than 530 �C. No roughening was

observed for higher temperatures, demonstrating

the temperature dependence of kinetic roughening.

3.2.2. Temperature dependence

The effect of surface relaxation due to surface

diffusion on roughening of GaAs(1 1 0) surfaces

eroded by 2 keV Arþ and Xeþ was reported by
Wang et al. [32]. They found that both the height–

height correlation function and the small scale

roughness increase significantly faster during ero-

sion at higher temperatures than at lower ones.

The surface width in these experiments increased

with b ¼ 0:3 at T ¼ 725 K and there was no evi-

dence of scaling for lower temperatures, such as

T ¼ 625 K. The roughness exponent has been de-
termined as a ¼ 0:38� 0:03. In general, [31] con-

cludes that on large scales the surfaces are rougher

at higher temperatures, contrary to the expectation

of smaller roughness due to increased relaxation

by surface diffusion. Similar conclusions on the

temperature dependence of the scaling properties

were drawn in [33]. A sharp transition between

scaling regimes in ion bombardment of Ge(0 0 1)

surfaces with 1 keV Xe ions was observed at

Tc ¼ 488 K. The regimes above and below Tc

are characterized by dynamic scaling exponents b
with values 0.4 and 0.1, respectively. The surface

roughness of Si(1 1 1) during low-energy (500 eV)

ion bombardment at T ¼ 610 K was studied in [34]

using STM. It was found that the rough mor-

phology is consistent with the early time behavior

of the noisy Kuramoto–Sivashinsky (KS) equation

(see Subsection 4.1.3). The measured roughness

exponent was a ¼ 0:7 and the dynamic exponent
was b ¼ 0:25.

3.2.3. Low energy ion bombardment

Recently a number of experiments and simula-

tions have focused on low energy ion bombard-

ment (i.e. at energies 50–500 eV), for which the

secondary ion yields are smaller than one [43–49].

In this systems, the effect of the ions is limited to
the surface of the material, the collective effect

created by the collision cascade being less relevant.

Often, such low energy sputtering leads to layer-

by-layer erosion, almost mirroring layer-by-layer

growth phenomena. The effect of vacancy diffusion

and Schwoebel barriers can be considered to be

well studied in these systems, that include Ge(0 0 1)

surface etching, by 240 eV Xe ions [43,46] and
Si(1 1 1) surfaces etched by 100 eV Ar ions [47]. In

the absence of the collision cascade, ripple for-

mation and kinetic roughening seen at higher en-

ergies, the subject of this paper, do not appear.

Various experimental results on ion-bombard-

ment induced surface roughening are summarized

in Table 2. These experiments demonstrate that

Table 2

Summary of the scaling exponents, characterizing the surface morphology, reported in various experiments on sputter eroded surfaces

Surface material Ion type Ion energy (keV) Angle of incidence

(deg)

a b Ref.

Graphite Arþ 5 60 0.2–0.4 2.5–2.9 [28]

Iron Arþ 5 25 0.53 – [30]

Si(1 1 1) Ar 0.5 0 1.15a – [31]

Si(1 1 1) Arþ 0.5 0 0.7 0.25 [34]

GaAs(1 1 0) Arþ 2 0 0.38(3) 0.3 [32]

Ge(0 0 1) Xe 1 30 – 0.1, 0.4 [33]

Ni, Cr, Cu Arþ 1 86 0.49 – [36]

aAnomalous logarithmic scaling was reported in this experiment.
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kinetic roughening is one of the major experi-

mental morphologies generated by ion bombard-

ment. However, as Table 2 indicates, there is a

considerable scattering in the scaling exponents.
This scattering is not too disturbing at this point:

accurate determination of the scaling exponents

from experimental data is rather difficult, since

often the scaling regime is masked by strong

crossover effects. As we demonstrate later, due to

the separation of the linear and nonlinear regimes,

such crossovers are, indeed, expected in sputter

erosion. Thus the main conclusion we would like
to extract from this section is that numerous ex-

periments do observe kinetic roughening, and find

that scaling concepts can successfully characterize

the surface morphology. It will be a major aim of

the theory proposed here to account for the origin

of kinetic roughening and predict the scaling ex-

ponents.

4. Theoretical approaches

The recent theoretical studies focusing on the

characterization of various surface morphologies

and their time evolution have revolutionized our

understanding of growth and erosion phenomena

(for reviews, see [37]). The physical understanding
of the processes associated with interface rough-

ening require the use of the modern concepts

of fractal geometry, universality and scaling. In

Subsection 4.1 we review the major theoretical

contributions to this area, necessary to describe

the morphology of ion-eroded surfaces. In Sub-

sections 4.2–4.5, we then review the available the-

oretical approaches (whether through continuum
equations or by the use of discrete atomistic

models) that specifically describe surfaces eroded

by ion bombardment, emphasizing the procedures

which allow to describe within a continuum ap-

proach some of the relevant physical processes

taking place at the surface, such as surface diffu-

sion and beam fluctuations.

4.1. Continuum theories of kinetic roughening

The full strength of the continuum theories

comes from the prediction of the asymptotic be-

havior of the growth process, which is valid in the

long time and large length scale limits. These limits

are often beyond the experimentally or practically

interesting time and length scales. A notable ex-
ception is sputter erosion, where both the short

time ripple development and the asymptotic ki-

netic roughening have been observed experimen-

tally. Consequently, next we discuss separately the

continuum theories needed to understand sputter

erosion.

4.1.1. Kardar–Parisi–Zhang equation

The time evolution of a nonequilibrium inter-

face can be described by the Kardar–Parisi–Zhang

(KPZ) equation [42],

oh
ot

¼ mr2hþ k
2
ðrhÞ2 þ g: ð5Þ

The first term on the rhs describes the relaxation of

the interface due to the surface tension (m is here

a positive constant) and the second is a generic

nonlinear term incorporating lateral growth or

erosion. The noise, gðx; y; tÞ, reflects the random

fluctuations in the growth process and is a set of
uncorrelated random numbers with zero configu-

rational average. For one dimensional interfaces

the scaling exponents of the KPZ equation are

known exactly, as a ¼ 1=2, b ¼ 1=3 and z ¼ 3=2.
However, for higher dimensions they are known

only from numerical simulations. For the physi-

cally most relevant two dimensional surfaces we

have a ’ 0:38 and b ’ 0:25 [50].
If k ¼ 0 in Eq. (5), the remaining equation de-

scribes the equilibrium fluctuations of an interface

which tries to minimize its area under the influence

of the external noise. This equation, first intro-

duced by Edwards and Wilkinson (EW) [51], can

be solved exactly due to its linear character, giv-

ing the scaling exponents a ¼ ð2� dÞ=2 and b ¼
ð2� dÞ=4. For two dimensional interfaces (d ¼ 2),
we have a ¼ b ¼ 0, meaning logarithmic rough-

ening of the interface, i.e. wðLÞ 	 log L for satu-

rated interfaces, and wðtÞ 	 log t for early times.

4.1.2. Anisotropic KPZ equation

The presence of anisotropy along the substrate

may drastically change the scaling properties of
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the KPZ equation. As a physical example, consider

an ion bombarded surface, where the ions arrive

under oblique incidence in the x–h plane. As a

result, the x and y directions along the substrate
will not be equivalent. This anisotropy is expected

to appear in the erosion equation, leading to an

anisotropic equation of the form (d ¼ 2)

oh
ot

¼ mxo
2
xhþ myo

2
yhþ

kx
2
ðoxhÞ2 þ

ky
2
ðoyhÞ2

þ gðx; y; tÞ; ð6Þ

where oxh � oh=ox and oyh � oh=oy. The aniso-

tropy leads to surface tension and nonlinear terms

that are different in the two directions, which have

been incorporated in the growth equation by
considering different values for the coefficients m
and k (in Eq. (6), mx and my are positive constants).

Eq. (6) is called the anisotropic KPZ (AKPZ)

equation. It was introduced by Villain [52], and its

nontrivial properties were studied by Wolf [53]. 1

We note that if mx ¼ my and kx ¼ ky , Eq. (6) reduces

to the KPZ Eq. (5). The AKPZ equation has dif-

ferent scaling properties depending on the signs of
the coefficients kx and ky . When kx � ky < 0, a sur-

face described by the AKPZ equation has the same

scaling properties as the EW equation. However,

when kx � ky > 0 the scaling properties are de-

scribed by the isotropic KPZ Eq. (5). Thus,

changing the sign of kx or ky can induce morpho-

logical phase transitions from power law scaling

ðw 	 tb;wðLÞ 	 LaÞ to logarithmic scaling ðw 	
log t;wðLÞ 	 log LÞ.

4.1.3. Kuramoto–Sivashinsky equation

The Kuramoto–Sivashinsky (KS) equation,

originally proposed to describe chemical waves

and flame fronts [55], is a deterministic equation of

the form

oh
ot

¼ �jmjr2h� Kr4hþ k
2
ðrhÞ2: ð7Þ

While it is deterministic, its unstable and highly

nonlinear character gives rise to chaotic solutions.

The analysis of the KS equation for one dimen-
sional surfaces shows [56–62] that in the limit of

long time and length scales, the surface described

by the KS equation is similar to that described

by the KPZ equation, i.e. obeys self-affine scaling

with exponents z ¼ 3=2 and b ¼ 1=3. The short

time scale solution of KS equation reveals an

unstable pattern-forming behavior, with a mor-

phology reminiscent of ripples [56]. For two di-
mensional surfaces, however, the results are not

clear. Computer simulations are somewhat con-

tradictory, providing evidence for both EW and

KPZ scaling [63,64].

The anisotropic KS equation was studied in

[65], indicating that for some parameter values

the nonlinearities cancel each other, and lead to

unstable modes dominating the asymptotic mor-
phology. At early times the surface displays a

chaotic pattern, with stable domains that nucleate

and grow linearly in time until ripple domains of

two different orientations are formed. The pattern

of domains of perpendicularly oriented ripples

coarsen with time until one orientation takes over

the system.

There are various physical systems, including
ion sputtering, in which the relevant equation for

the surface height is a noisy version of the KS

Eq. (7) [66,67]. Dynamical renormalization group

analysis [68] for the surface dimensions d ¼ 1 and

2 indicate that the large distance and long time

behavior of such noisy generalization of Eq. (7) is

the same as that of the KPZ equation, the d ¼ 2

result being only quantitative.

4.2. Bradley and Harper theory of ripple formation

A rather successful theoretical model, capturing

many features of ripple formation, was developed

by Bradley and Harper (BH) [38]. They used Sig-

mund�s theory of sputtering [69,70] (see Subsection

4.5) to relate the sputter yield to the energy de-
posited onto the surface by the incoming ions. This

work has demonstrated for the first time that the

yield variation with the local surface curvature

induces an instability, which leads to the forma-

tion of periodically modulated structures. This

1 The relevance of the AKPZ equation for ion-sputtered

surfaces was first pointed out by [54]. Note, however, that the

AKPZ equation does not have any instability and thus is unable

to predict the observed ripple structure.
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instability is caused by the different erosion rates

for troughs and crests, the former being eroded

faster than the latter (see Fig. 1). Consequently,

any surface perturbation increases exponentially
in time. Viewing the surface profile as a smooth

analytical function of coordinates, BH assumed

that the surface can be locally approximated by a

quadratic form. Due to the erosion mechanism,

described in Fig. 1, the erosion rate depends on the

local curvature. Combining the curvature depen-

dent erosion velocity with the surface smoothing

mechanism due to surface diffusion (see [71,72]
and Section 4.3), BH derived a linear equation for

surface morphology evolution,

oh
ot

¼ �vðhÞ þ mxðhÞo2
xhþ myðhÞo2

yh� Kr4h: ð8Þ

Here mxðhÞ, myðhÞ are the effective surface tensions

generated by the erosion process, dependent on the

angle of incidence of the ions, h, K is the relaxation

rate due to surface diffusion (K ¼ ðDscX
2n=kBT Þ

exp �DE=kBTf g, where DE is the activation energy

for surface diffusion, c is the surface free energy

per unit area, T is temperature, Ds is the surface
diffusion constant, X is the atomic volume and n

is the number of molecules per unit area on the

surface). The physical instability, illustrated in Fig.

1, leads to the negative signs of the mx, my coeffi-

cients in Eq. (8).

Eq. (8) is linearly unstable, with a Fourier mode

kc whose amplitude exponentially dominates all

the others. This mode is observed as the periodic
ripple structure. Using linear stability analysis, BH

derived from Eq. (8) the ripple wavelength as

‘c ¼ 2p=kc ¼ 2p

ffiffiffiffiffiffi
2K
jmj

s
	 ðJT Þ�1=2

exp
�DE
kBT

� �
;

ð9Þ
where m is the largest in absolute value of the two

negative surface tension coefficients, mx and my and

J is the ion flux. The calculation also predicts that

the ripple direction is a function of the angle of

incidence: for small h the ripples are parallel to the
ion direction, while for large h they are perpen-

dicular to it. As subsequent experiments have

demonstrated [15,18], the BH model predicts well

the ripple wavelength and orientation. On the

other hand, the BH Eq. (8) is linear, predicting

unbounded exponential growth of the ripple am-

plitude, thus it cannot account for the stabilization

of the ripples and for kinetic roughening, both
phenomena being strongly supported by experi-

ments (see Subsections 3.1 and 3.2). Furthermore,

the BH model cannot account for low temperature

ripple formation since the only smoothing mech-

anism it considers is of thermal origin. At low

temperatures the ion energy and flux dependence

of the ripple wavelength also disagree with the BH

predictions. Despite these shortcomings, the BH
theory represents a major step in understanding

the mechanism of surface evolution in ion sput-

tering since, for the first time, it uncovered the

origin of the ion induced surface instability. Re-

cently a generalization of BH linear theory has

been successfully introduced [73] to account for

the thermally activated anisotropic surface dif-

fusion present in metallic substrates such as
Cu(1 1 0).

Fig. 1. Schematic illustration of the physical origin of the in-

stability during ion erosion of nonplanar surfaces. A surface

element with convex geometry (a) is eroded faster than that

with a concave geometry (b), due to the smaller distances (solid

lines) the energy has to travel from the impact point to the

surface (A or A0 points).
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4.3. Surface diffusion and deposition noise

At high temperatures surface diffusion and
fluctuations in the ion beam flux are relevant phys-

ical mechanisms taking place on the surface. 2

In this section, we discuss the standard approach

to include these phenomena in continuum models.

Let us consider the simplest scenario: atoms are

deposited on a surface, whereupon they diffuse. If

we assume that surface diffusion is the only re-

laxation mechanism present, the height h obeys a
continuity equation of the form

oh
ot

þ ~rr � j ¼ 0; ð10Þ

where j is a surface current density tangent to the
surface and ~rr is calculated in the coordinate frame

with axes parallel to the surface [75]. In general, j is
given by the gradient of a chemical potential l,

j / � ~rrlðr; tÞ � � ~rr2 dF½h�
dh

; ð11Þ

where l minimizes the free energy functional of the
surface F½h� and ~rr2 is the surface Laplacian or the

Laplace–Beltrami operator. Taking the former to

be proportional to the total surface area

F½h� ¼
Z

dr
ffiffiffi
g

p
; ð12Þ

with g as defined in Appendix A, and neglecting

third or higher powers of derivatives of h, one

arrives [72] at

oh
ot

¼ �Kr2ðr2hÞ � �Kr4h; ð13Þ

where K is a positive constant. Eq. (13) is the so-

called linear MBE equation [37]. For an amor-

phous solid in equilibrium with its vapor Eq. (13)
was obtained in [71,72], together with the expres-

sion for the coefficient K as in Eq. (8).

In addition to the deterministic processes, there

is considerable randomness in sputter erosion due

to fluctuations in the intensity of the ion beam.

The ion flux is defined as the number of particles

arriving on the unit surface (or per lattice site) in

unit time. At large length scales the beam flux is
homogeneous with an average intensity J, but

there are local random fluctuations, gðx; tÞ �
dJðx; tÞ, uncorrelated in space and time. We can

include fluctuations in Eq. (13) by considering the

ion flux to be the sum of the average flux J and the

noise g, which has zero average,

hgðx; tÞi ¼ 0 ð14Þ
and is uncorrelated,

hgðx; tÞgðx0; t0Þi ¼ Jdðx� x0Þdðt � t0Þ; ð15Þ
where we have assumed a Poisson distribution

for the shot noise. Consequently, the stochastic
growth equation describing surface diffusion and

fluctuations in an erosion process has the form:

oh
ot

¼ �Kr4h� J þ gðx; tÞ: ð16Þ

This variant of Eq. (13) was introduced indepen-

dently by Wolf and Villain [76], and by Das Sarma

and Tamborenea [77], and played a leading role in

developing our understanding of MBE. We will

use the methods leading to Eq. (16) to incorporate

the smoothing by surface diffusion in our model

of ion erosion. Note, however, that, as numerous
experimental studies [78–83] indicate, ion bom-

bardment leads to an enhancement of the surface

adatom mobility and thus may drastically change

the relaxation mechanism, as compared to regular

surface diffusion.

4.4. Microscopic models of ripple formation and

roughening

Computer simulations provide an invaluable

insight into microscopic processes taking place in

physical systems. Consequently, a number of re-

2 Another prominent smoothing mechanism is viscous

relaxation, which in amorphous materials is fully determined

by the mobility of defects. This mechanism has been studied in

the context of ripple formation by Chason et al. [16], showing

that it reduces the amplitude of the high frequency perturba-

tions to the extent that a large viscous relaxation rate may even

suppress the ripple structure altogether. In the absence of a

clear understanding of the structure and dynamics of radiation

induced defects, at this point it is not possible to fully quantify

the effect of viscous relaxation [16]. Related relaxation mech-

anisms have been proposed, based on defect motion and

recombination [74a], defect creation [74b], or surface viscous

flow [74c].
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cent studies have focused on modeling ripple for-

mation at the microscopic level. These studies have

proven useful in resolving issues related to the low

temperature ripple formation and provided im-
portant ideas regarding the physical mechanism

governing ripple formation [84–93]. Here, we

shortly discuss the conclusions reached in some of

the most representative numerical works.

Monte Carlo simulations of sputter-induced

roughening were reported by Koponen et al. [85–

90]. Roughening of amorphous carbon surfaces

bombarded by 5 keV Arþ ions was studied in [85–
87] for incidence angles between 0� and 60�. It

was found that ion bombardment induces self-

affine topography on the submicrometer scale, the

roughness exponent being a ’ 0:25–0:47, depend-
ing on the angle of incidence [86,87]. The growth

exponent b was found to be strongly dependent

on the relaxation mechanism used and changed

from b ’ 0:3, in the model without relaxation, to
b ’ 0:2–0:14, when different relaxation rules were

used in the simulations. At the same time the

roughness exponent a was found to be relatively

insensitive to the relaxation process on the na-

nometer scales. Analogous results were obtained

for C ions [89]. In this reference, the ripple wave-

length was found to be relatively independent of

the ion energy and of the magnitude of surface
diffusion. Ripple formation was observed even

at zero temperature, when surface diffusion was

switched off, indicating the presence of ion induced

smoothing. Furthermore, these simulations led

to the observation of traveling ripples, as pre-

dicted by continuum theories (see Subsection

6.1.1). Similarly, for 5 keV Arþ bombardment of

amorphous carbon substrates, the ripple wave
vector is observed [90] to change from parallel to

normal to the beam direction as the incidence

angle is increased, in agreement with BH linear

theory (see Section 4). The ripple structure was

again observed even when no explicit relaxation

mechanism was incorporated in the simulations,

and ripple traveling also occurred. For length

scales comparable to the cascade dimensions, self-
affine topography is observed.

A discrete stochastic model was introduced in

[91,92] to study the morphological evolution of

amorphous one dimensional surfaces under ion

bombardment. This is a solid-on-solid model in-

corporating the erosion rate dependence of sur-

face curvature, the local slope dependence of the

sputtering yield, and thermally activated surface
diffusion. Up to four different dynamical regimes

have been identified. Initially, the surface relaxes

by surface diffusion with a growth exponent b ’
0:38, until the onset of the linear BH instability.

The instability induces rapid growth (b > 0:5). In
this regime the local slopes increase rapidly,

which triggers nonlinear effects eventually stabi-

lizing the surface, b taking up the EW value b ’
1=4, which indicates that an effective positive value

of the surface tension has been generated. Finally,

in the asymptotic time limit b reaches the KPZ

value b ’ 1=3. This behavior is consistent with

that displayed by the noisy KS equation [68].

Furthermore, the analytical study [94] using the

master equation approach to interface models [95]

has shown that the noisy KS equation indeed
provides the continuum limit of the discrete sto-

chastic model of [91]. Conversely, the results of the

simulations in [91] support the theoretical conclu-

sions of [68] that the asymptotic behavior of the

noisy KS equation is the same as that of the KPZ

equation for one and two dimensional surfaces.

In summary, Monte Carlo simulations of the

sputtering process of amorphous materials have
shown that intermediate and high energy ion

bombardment may lead to ripple formation in a

wide parameter range. Furthermore, ripple for-

mation was observed even at zero temperature.

Computer simulations have also confirmed the

linear dependence of the ripple wavelength on the

incident ion penetration depth and the fact that

ripple formation is a process fully determined by
the incident ion characteristics and not caused by

any defects, irregularities or surface chemistry. The

same simulations have confirmed that, under some

bombarding conditions, the surface is rough, and

obeys scaling.

4.5. Sigmund’s theory of sputtering

The erosion rate of ion bombarded surfaces is

characterized by the sputtering yield, Y, defined as

the average number of atoms leaving the surface of

a solid per incident particle. In order to calculate
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the yield and to predict the surface morphology

generated by ion bombardment, we first need to

understand the mechanism of sputtering, resulting

from the interaction of the incident ions and the
substrate [1,3]. In the process of sputtering the

incoming ions penetrate the surface and transfer

their kinetic energy to the atoms of the substrate

by inducing cascades of collisions among the

substrate atoms, or through other processes, such

as electronic excitations. Whereas most of the

sputtered atoms are located at the surface, the

scattering events, that might lead to sputtering,
take place within a certain layer of average depth

a, which is the average energy deposition depth

(usually it is of the order of the incident ion pen-

etration depth). A qualitative picture of the sput-

tering process is as follows: an incoming ion

penetrates into the bulk of the material and un-

dergoes a series of collisions with the atoms of the

substrate. Some of the atoms undergo secondary
collisions, thereby generating another generation

of recoiling atoms. A vast majority of atoms will

not gain enough energy to leave their lattice po-

sitions permanently. However, some of them will

be permanently removed from their sites. The

atoms located in the close vicinity of the surface,

which can gain enough energy to break their

bonds, will be sputtered. Usually the number of
sputtered atoms is orders of magnitude smaller

than the total number of atoms participating in the

collision cascade.

A quantitative description of the process of ion

sputtering was developed by Sigmund [69]. As-

suming an amorphous target, Sigmund derived a

set of transport equations describing the energy

transfer during the sputtering process. A practi-
cally important result of Sigmund�s theory is the

prediction of the deposited energy distribution:

the ion deposited at a point P inside the bulk of

the material spreads its kinetic energy according

to the Gaussian distribution,

EðrÞ ¼ �

ð2pÞ3=2rl2
exp

�
� Z 02

2r2
� X 02 þ Y 02

2l2

�
:

ð17Þ

In Eq. (17), Z 0 is the distance from point P to point

O measured along the ion trajectory, and X 0, Y 0 are

measured in the plane perpendicular to it (see Fig.

2 and the inset of Fig. 5); � denotes the total energy

carried by the ion and r and l, are the widths of

the distribution in directions parallel and perpen-
dicular to the incoming beam, respectively. Devi-

ations of the energy distribution from Gaussian

(17) occur mainly when M1 > M2, where M1 is the

mass of the projectile and M2 is the mass of the

target atom. As shown by Sigmund [69,70] and

Winterbon [96], electronic stopping does not affect

much the shape of deposited-energy distribution.

Subsequently, Monte Carlo simulations of the
sputtering process have demonstrated that the

deposited-energy distribution and damage distri-

bution can be well approximated by Gaussian for

intermediate and high energies. In general, com-

parison of Sigmund�s theory with experimental

results has shown that it describes well the quali-

tative behavior of the backsputtering yield, and, in

many cases, there is good quantitative agreement
as well [1–3].

A quantity of central importance is the mean

energy deposition depth due to an ion traveling

inside the bulk of the material (see Fig. 2), which is

usually of the order of the penetration depth, has

similar dependence on the incident ion energy, and

is given by

að�Þ ¼ 1� m
2m

cm�1 �2m

NCm

; ð18Þ

Fig. 2. Schematic illustration of the energy distributed by an

incident ion. While the collision process induced by a ion is

rather complex, according to Sigmund it can be reduced to the

following effective process: The ion penetrates the bulk of the

material and stops at point P, where all its kinetic energy is

released and spread out to the neighboring sites following a

Gaussian form with widths r and l.

198 M.A. Makeev et al. / Nucl. Instr. and Meth. in Phys. Res. B 197 (2002) 185–227



where N is the target atom density, Cm is a con-

stant dependent on the parameters of the inter-

atomic potential [70] and the exponent m ¼ mð�Þ
varies slowly from m ¼ 1 at high energies to m ’ 0

at very low energies. In the region of intermediate

energies, i.e. for � between 10 and 100 keV,

m ’ 1=2 and we can approximate the energy de-

position depth as að�Þ 	 �.
Eq. (17) describes the effect of a single incident

ion. Actually, the sample is subject to an uniform

flux J of bombarding ions, penetrating the solid at
different points simultaneously, such that the ero-

sion velocity at an arbitrary point O depends on

the total power EO contributed by all the ions

deposited within the range of the distribution (17).

If we ignore shadowing effects and redeposition of

the eroded material, the normal erosion velocity at

O is given by

VO ¼ p
Z
R

drUðrÞEðrÞ; ð19Þ

where the integral is taken over the region R of all

points at which the deposited energy contributes to

EO, UðrÞ is a local correction to the uniform flux J

due to variation of the local slopes, and the ma-

terial constant p depends on the surface binding

energy and scattering cross-section [69,70] as

p ¼ 3

4p2

1

NU0C0

; ð20Þ

where U0 is the surface binding energy and C0 is a
constant proportional to the square of the effective

radius of the interatomic interaction potential.

While the predictions of Sigmund�s theory have

been checked on many occasions, it also has well

known limitations. Next we list two, that will limit

our theory of the surface morphology as well: (a)

the assumption of random slowing down and ar-

bitrary collisions works satisfactorily only at in-
termediate and high energies, i.e. when � 	 1–100

keV, but may break down at low energies; (b) the

assumption of a planar surface may influence the

magnitude of the yield, since surface roughness has

a tendency to increase the yield [97,98].

5. Continuum equation for the surface height

Sigmund�s theory, while offering a detailed de-

scription of ion bombardment, is not able to pro-

vide direct information about the morphology of

ion-sputtered surfaces. While Eq. (19) provides the

erosion velocity, in the present form it cannot

be used to make analytical predictions regarding
the dynamical properties of surface evolution. To

achieve such a predictive power, we have to elim-

inate the nonlocality contained in the integral (19)

and derive a continuum equation describing the

surface evolution depending only on the local

surface morphology. The main goal of this section

is to provide a detailed derivation of such an

equation starting from Eq. (19). The properties of
the obtained equation will be discussed in the

following sections.

We start by summarizing the main steps that we

follow in the derivation of the equation for the

surface morphology evolution:

(i) Using Eq. (19), we calculate the normal

component of the erosion velocity VO at a generic

point O of the surface. This calculation can be
performed in a local frame of reference ðbXX ; bYY ; bZZÞ,
defined as follows: the bZZ axis is chosen to be

parallel to the local normal to the surface at point

O. The bZZ axis forms a plane with the trajectory of

an ion penetrating the surface at O. We choose thebXX axis to lie in that plane and be perpendicular tobZZ . Finally, bYY is perpendicular to the ðbXX ; bZZÞ plane

and completes the local reference frame, as shown
in Fig. 3.

Fig. 3. Illustration the local reference frame (bXX ; bYY ; bZZ ). The bZZ
axis is parallel to the local normal to the surface n̂n. The ions

arrive to the surface along �m̂m. The bXX axis is in the plane de-

fined by bZZ and m̂m, while the bYY axis is perpendicular to this plane.

The laboratory coordinate frame (x̂x; ŷy; ĥh) has its ĥh axis perpen-

dicular to the flat substrate, ĥh and m̂m define the ðx̂x; ĥhÞ plane and ŷy
is perpendicular to it. The incidence angle measured in the local

reference frame is u, and h in the laboratory frame.
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(ii) Next we relate the quantities measured in

the local frame ðbXX ; bYY ; bZZÞ to those measured in the

laboratory frame ðx̂x; ŷy; ĥhÞ. The latter is defined by

the experimental configuration as follows: ĥh is the
direction normal to the uneroded flat surface. The

ion direction together with the ĥh axis define

the ðx̂x; ĥhÞ plane. Finally, the ŷy axis is perpendicular

to the ðx̂x; ĥhÞ plane (see Fig. 3 and Appendix A).

Furthermore, we have to take into account the fact

that the local angle of incidence u, which is the

angle between the ion trajectory and the local

normal to the surface, changes from point to point
along the surface. Consequently, u is a function of

the local value of the slope at O (as measured in

the laboratory frame), and the angle h between the

ion trajectory and the normal n̂n to the uneroded

surface.

(iii) Finally, to obtain the equation of motion

for the surface profile hðx; y; tÞ, we have to project

the normal component of the velocity of erosion
onto the global ĥh axis. The time derivative of

hðx; y; tÞ at any point O on the surface is propor-

tional to the surface erosion velocity VO at that

point and the local normal is defined by the gra-

dient of the surface profile hðx; y; tÞ at O.

Having defined our objectives and outlined the

strategy, we move on to the description of the

calculations. We consider point O to be the origin
of the local system of coordinates ðbXX ; bYY ; bZZÞ. To

describe the surface profile in a neighborhood of O

we assume that the surface can be described in

terms of a smooth analytical infinitely differentia-

ble function, i.e. there are no singularities and

overhangs, and thus we can approximate the sur-

face profile at an arbitrary point ðX ; Y ; ZÞ by: 3

ZðX ; Y Þ ’ D20X 2

a
þ D02Y 2

a

þ
X4

m;n¼0;nþm¼3;4

Dnm

amþn�1
XnY m; ð21Þ

where, for later convenience, we introduced the

following notations:

Dnm ¼ anþm�1

n!m!
onþmZðX ; Y Þ
onXomY

: ð22Þ

Here D20 and D02 are proportional to the principal

curvatures of the surface, i.e. to the inverses of the

principal radii of curvature, RX and RY . It must be

noted that, in our approximation, bXX and bYY (see

Fig. 3) are the two principal directions of the
surface at O, along which the curvatures are ex-

tremal. This implies the absence in Eq. (21) of

cross-terms of the type 	 XY , i.e. we neglected the

term o2ZðX ; Y Þ=oXoY at O.

Due to its exponential nature, the deposited

energy distribution (17) decays very fast and,

consequently, only particles striking the surface

at a point ðX ; Y ; ZÞ such that X=a, Y =a are of
order unity, contribute nonnegligibly to the energy

reaching the surface at O. We further assume that

the surface varies slowly enough so that RX , RY
and the inverses of the higher order derivatives are

much larger than the energy deposition depth a,

i.e. the surface is smooth on length scales close to a

(this fact is supported by nearly all experimental

results). Now we can calculate the various factors
appearing in the integral (19).

To proceed with Eq. (19) we note that, with

respect to local surface orientation, only the nor-

mal component of the incident flux contributes to

ion erosion. Fig. 4 illustrates the calculation of the

3 It has been recently shown by [99], that incorporation of

terms of higher order than those appearing in Eq. (21) does not

substantially change the qualitative conclusions to be discussed

in 6.1.1 to 6.1.2.

Fig. 4. Illustration of the calculation of the local correction to

the average flux J due to the surface curvature. Points (X ; Y ;Z),
N and L are all on the surface, at small distances from one

another. The angle of incidence u is as computed in the local

coordinate system, as are the coordinates of the first point.

Parameters a, l and n are defined in the text.
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normal component of the flux. In the figure we

consider a point at the surface ðX ; Y ; ZÞ, and two

other points also on the surface, at infinitesimal

distances L and N away from the former. We can
estimate the correction to the average flux J due to

the surface slopes by projecting a square perpen-

dicular to the ion beam with area n� l onto the

surface area element intersected by the ion trajec-

tories. The result is

UðrÞ ’ J
ln
LN

; ð23Þ

where J is the average flux. From Fig. 4,

Du ¼ tan�1 oZ
oX


 �
’ oZ

oX
ð24Þ

and

‘

L
¼ cosðu þ DuÞ ’ cosu � oZ

oX
sinu: ð25Þ

On the other hand, we also have (see Fig. 4)

n
N

¼ cos a ’ 1� 1

2

oZ
oY


 �2

’ 1; ð26Þ

so that, combining Eqs. (23)–(26) and neglecting

powers of derivatives of the height, we obtain the

correction to the flux

UðrÞ ’ Jðcosu þ ðoXZÞ sinuÞ: ð27Þ
Within the same approximation, the surface

element dr in Eq. (19) can be obtained in the local

coordinate system ðbXX ; bYY ; bZZÞ as

dr ’ dX dY : ð28Þ
Next we determine the distances X 0, Y 0, Z 0 ap-

pearing in the exponential distribution (17), eval-

uating them in the local coordinate system. Using

Fig. 5, we have

X 0 ¼ X cosu þ Z sinu;

Y 0 ¼ Y ;

Z 0 ¼ aþ X sinu � Z cosu:

ð29Þ

Using these expressions, the correction to the ion

flux (27), the deposited energy distribution (17)
and the expression for the surface area element dr
(28), we can calculate the integral (19) providing

the erosion velocity VO. Introducing the di-
mensionless variables fX ¼ X=a, fY ¼ Y =a and

fZ ¼ Z=a, and extending the integration limits to

infinity, we obtain the following expression for the

erosion velocity in the laboratory coordinate

frame:

VO ¼ �pJa2

rl2ð2pÞ3=2
expð�a2r=2Þ

�
Z 1

�1

Z 1

�1
dfX dfY cosu



þ ofZ
ofX

sinu

�
� expð�f2Y L

2Þ expð�fXAÞ exp


� 1

2
B1f

2
X

�
� expð�4Df2ZÞ expð�2CfX fZÞ expðB2fZÞ;

ð30Þ

where we used the following notations:

A ¼ a2r sinu; ð31aÞ

B1 ¼ a2r sin
2 u þ a2l cos

2 u; ð31bÞ

B2 ¼ a2r cosu; ð31cÞ

Fig. 5. Reference frame for the calculation of the erosion ve-

locity at a point O on the surface. Following a straight trajec-

tory (thick solid line) the ion penetrates the surface at point P0

and travels an average distance a inside the solid (dotted line)

after which it completely spreads out its kinetic energy at point

P. The energy released contributes to erosion velocity at O. The

laboratory reference frame (x; y; h) is shown, together with the

angle of incidence as measured in that reference frame, h, and in

the local frame, u. The distances X 0, Y 0 and Z 0 are defined in the

text. The inset shows a side view for Y 0 ¼ 0.
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C ¼ 1

2
ða2l � a2rÞ sinu cosu; ð31dÞ

D ¼ 1

8
ða2l sin

2 u þ a2r cos
2 uÞ; ð31eÞ

L ¼ alffiffiffi
2

p : ð31fÞ

It must be noted that Eq. (30) coincides with the

two-dimensional version of the local erosion ve-

locity derived in [38]. Now we use the approxi-

mation for the surface profile given by Eq. (21).

Taking a small Dnm (see Eq. (22)) expansion of the

C and B2 coefficients in Eq. (30) and evaluating the

Gaussian integrals over fX and fY , we obtain

VO ¼ �pJa2

rl
ffiffiffiffiffiffi
2p

p expð�a2r=2Þ exp
A2

2B1

� �
1ffiffiffiffiffi
B1

p

� ½cosu þ C20D20 þ C02D02 þ C30D30

þ C21D21 þ C40D40 þ C22D22 þ C04D04�:
ð32Þ

The expressions for the coefficients Cnm can be

found in Appendix B.

Next we have to rewrite VO in terms of the

laboratory coordinates ðx; y; hÞ, which we perform

in two steps. First, we write the angle u as a

function of h and the slopes of the surface at O as

measured in the laboratory frame. Second, we

perform the transformation between the local and
the laboratory coordinates. For both steps we will

have to make expansions in powers of derivatives

of hðx; y; tÞ. In line with our earlier assumption on

the smoothness of the surface, we will assume that

h varies smoothly enough so that we can neglect

products of derivatives of h for third and higher

orders. In the laboratory frame, the neglect of

overhangs allows us to describe a generic point
at the surface, such as O, with coordinates ðx; y;
hðx; yÞÞ. Considering now the unit vectors n̂n, m̂m
shown in Fig. 3, the angle u is given by

cosu ¼ m̂m � n̂n ¼ cos h � ðoxhÞ sin hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðoxhÞ2 þ ðoyhÞ2

q ; ð33aÞ

sinu ¼ ðsin2 h þ 2ðoxhÞ sin h cos h þ ðoxhÞ2 cos2 h

þ ðoyhÞ2Þ1=2ð1þ ðoxhÞ2 þ ðoyhÞ2Þ�1=2
:

ð33bÞ

Thus far, expressions (33a) and (33b) are exact,

and the values of oxh and oyh are already evaluated

in the laboratory frame of reference. To implement

our approximations, in principle we have to sep-

arate the cases for normal ðh ¼ 0Þ and off-normal

ðh 6¼ 0Þ incidence. Nevertheless, it can be shown
that the former case can be obtained as a smooth

limit of the latter. Therefore in the following we

give the expressions pertaining to the off-normal

incidence and refer the reader to Appendix C for

details on the h ¼ 0 limit. Expanding Eqs. (33a)

and (33b) in powers of the surface height deriva-

tives, we obtain

cosu ’ cos h � ðoxhÞ sin h

� 1

2
ððoxhÞ2 þ ðoyhÞ2Þ cos h; ð34aÞ

sinu ’ sin h þ ðoxhÞ cos h � 1

2
ðoxhÞ2 sin h

þ 1

2
ðoyhÞ2

cos2 h
sin h

: ð34bÞ

Note that these expressions are invariant under the
coordinate transformation y ! �y, but not under
x ! �x, a consequence of h being nonzero and of

our choice of coordinates. Naturally, the h ! 0

limit restores the symmetry in the x direction.

Having obtained the expressions (34a) and

(34b), we can return to Eq. (32) to calculate the

dependence of VO on the slopes at O. Finally, all

derivatives in (22) have to be expressed in terms of
the laboratory coordinates. This can be accom-

plished given the relation between the base vec-

tors of the local frame ðbXX ; bYY ; bZZÞ and those of

the laboratory frame ðx̂x; ŷy; ĥhÞ, derived in Appendix

A. If the coordinates of a generic vector r are given

by

r ¼ X bXX þ Y bYY þ ZbZZ local frame;

r ¼ xx̂xþ yŷy þ zẑz laboratory frame;
ð35Þ

then these quantities are related to each other

through
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x
y
z

0@ 1A ¼ M
X
Y
Z

0@ 1A; ð36Þ

where M is a matrix which has as columns the

components of the ðbXX ; bYY ; bZZÞ set of vectors in terms

of the ðx̂x; ŷy; ẑzÞ (see Appendix A). To obtain the

expression for the erosion velocity, analogous to

(32), in the laboratory frame, we use Eqs. (34a)
and (34b) and M along with the chain rule for

differentiation, and perform expansions in powers

of derivatives of hðx; y; tÞ. After some algebra we

obtain in the laboratory frame,

onþmh
onX omY

’ onþmh
onxomy

; ð37Þ

up to fourth order in products of derivatives of

hðx; yÞ. To summarize our results thus far, within

the approximations leading to (32) and neglecting
nonlinearities of cubic and higher orders in deriv-

atives of h in the laboratory frame, we obtained

Eq. (37), providing the relation between the de-

rivatives in the two reference frames, and relations

(34a) and (34b) for the angle of incidence mea-

sured in the local frame as a function of the angle

of incidence h and of the surface slopes.

To relate the velocity of erosion VO, which is
normal to the surface at O, to the velocity of

erosion of the surface along the h axis, oh=ot, we

have to project the former onto the latter, ob-

taining

oh
ot

¼ �VO

ffiffiffi
g

p
; ð38Þ

where the negative sign accounts for the fact that

VO is the rate at which the surface is eroded, i.e. the

average height decreases. Furthermore, taking into

account surface diffusion effects, together with the

fluctuations (shot noise) in the flux of the bom-

barding particles, as discussed in Section 4.3, we
complete (38) by adding these physical effects

oh
ot

¼ �VO

ffiffiffi
g

p � Kr4hþ gðr; tÞ: ð39Þ

Finally, we have to write down the contribution of

the �VO

ffiffiffi
g

p
term to the evolution Eq. (39). Per-

forming a small slope expansion and using Eqs.

(32), (34a) and (34b), we obtain

oh
ot

¼ �v0 þ c
oh
ox

þ nx
oh
ox


 �
o2h
ox2


 �
þ ny

oh
ox


 �
o2h
oy2


 �
þ mx

o2h
ox2

þ my
o2h
oy2

þ X1

o3h
ox3

þ X2

o3h
oxoy2

� Dxy
o4h

ox2oy2

� Dxx
o4h
ox4

� Dyy
o4h
oy4

� Kr4hþ kx
2

oh
ox


 �2

þ ky
2

oh
oy


 �2

þ gðx; y; tÞ; ð40Þ

where the coefficients are given by the following

expressions:

v0 ¼ Fc; ð41Þ

c ¼ F
s
f 2

fa2ra2lc2ða2r � 1Þ � a4rs
2g; ð42Þ

mx ¼ Fa
a2r
2f 3

f2a4rs4 � a4ra
2
ls

2c2 þ a2ra
2
ls

2c2 � a4lc
4g;

ð43Þ

kx ¼ F
c

2f 4
fa8ra2ls4ð3þ 2c2Þ þ 4a6ra

4
ls

2c4

� a4ra
6
lc

4ð1þ 2s2Þ � f 2ð2a4rs2

� a2ra
2
lð1þ 2s2ÞÞ � a8ra

4
ls

2c2 � f 4g; ð44Þ

my ¼ �Fa c
2a2r
2f

; ð45Þ

ky ¼ F
c

2f 2
fa4rs2 þ a2ra

2
lc

2 � a4ra
2
lc

2 � f 2g; ð46Þ

nx ¼ Fa
a2rsc
2f 5

f�6s6a8r þ a8ra
2
ls

4ð4þ 3c2Þ � a8ra
4
lc

2s2

þ a6ra
4
lc

2s2ð4� 6s2Þ þ a6ra
2
ls

4ð�3þ 15s2Þ

þ a4ra
4
l3c

2s2ð4þ 3s2Þ � a4ra
6
l3c

4ð1þ s2Þ

þ a2ra
6
lc

4ð9� 3s2Þ � 3a8lc
6g; ð47Þ

ny ¼ Fa
a2rsc
2f 3

f�a4ra2lc2 þ a4rs
2ð2þ c2Þ � a4lc

4

þ a2ra
2
lc

2ð3� 2s2Þg; ð48Þ
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X1 ¼ �Fa2 3
6

1

f 2

s
a2l

ff 2 � fa4rc
2

� ða2l � a2rÞc2ðf þ a4rs
2Þg; ð49Þ

X2 ¼ Fa2
1

6

1

f 4
f�3sf 2ðf þ a4rs

2Þ

þ a2rc
2ð3a2rsf þ a6rs

3Þf
þ 2ða2l � a2rÞc2ð3f 2sþ 6a4rs

3 þ a8rs
5Þg; ð50Þ

Dxx ¼ F
a3

24

1

f 5
f�4ð3a2rs2f þ a6rs

4Þf 2

þ a2rc
2ð3f 2 þ 6a4rs

2f þ a8rs
4Þf

þ 2ða2l � a2rÞc2ð15a2rs2f 2 þ 10a6rs
4f þ a10r s

6Þg;
ð51Þ

Dyy ¼ F
a3

24

1

f 5

3a2r
a2l

ff 4c2g; ð52Þ

Dxy ¼ F
6a3

24

1

f 5

f 2

a2l
f�2ða2rs2Þf 2

þ a2rc
2ðf 2 þ a4rs

2f Þ
þ 2ða2l � a2rÞc2ð3a2rs2f þ a6rs

4Þg: ð53Þ

In the above expressions, we have defined

F � J�pa
rl

ffiffiffiffiffiffiffiffi
2pf

p e�a
2
ra

2
lc

2=2f ð54Þ

and, as introduced in Appendix B,

ar � a
r
; al � a

l
; s � sin h;

c � cos h; f � a2rs
2 þ a2lc

2: ð55Þ

Eq. (40) with the coefficients (41)–(55), fully de-

scribe the nonlinear time evolution of sputter
eroded surfaces, provided that the leading relax-

ation mechanisms are thermally activated surface

diffusion and ion-induced ES. Due to its highly

nonlinear character, Eq. (40) can predict rather

complex morphologies and dynamical behaviors.

In the remainder of the paper we will focus on the

physical interpretation of the coefficients (41)–(55),

uncovering their dependence on the experimental
parameters, and we discuss the morphologies de-

scribed by Eq. (40). Consistent with the symme-

tries imposed by the geometry of the problem, the

coefficients in Eq. (40) are symmetric under the

transformation y ! �y but not under x ! �x,
while for h ! 0 the system is isotropic in the x and

y directions, specifically c ¼ nx ¼ ny ¼ X1 ¼ X2 ¼
0, kx ¼ ky , mx ¼ my and Dxx ¼ Dyy ¼ 1

2
Dxy . For ge-

neric values of h, the expressions for the coeffi-

cients v0, c, mx and my are the same as those

obtained by BH [38].

6. Analysis of the growth equations

This section is devoted to the study of the

morphological properties predicted by Eq. (40).
This is not a simple task, due to large number of

linear and nonlinear terms, each of which influence

the surface morphology. The complexity of the

problem is illustrated by some special cases of Eq.

(40), for which the behavior is better understood.

For example, when nonlinear terms and the noise

are neglected (nx ¼ ny ¼ kx ¼ ky ¼ 0, g ¼ 0), Eq.

(40) reduces to a linear generalization of BH the-
ory, which predicts ripple formation. It is also

known that the isotropic KS equation, obtained by

taking mx ¼ my , Dxx ¼ Dyy ¼ Dxy=2 and kx ¼ ky , as-
ymptotically predicts kinetic roughening, with

morphology and exponents similar to those seen

experimentally in ion sputtering [28,29]. For posi-

tive mx and my , Eq. (40) reduces to the anisotropic

KPZ equation, whose scaling behavior is con-
trolled by the sign of the product kx � ky [53]. Fi-

nally, recent integration by Rost and Krug [65] of

the noiseless anisotropic KS equation (i.e. when

g ¼ 0) showed that when kx � ky < 0, ripples un-

accounted for by the linear theory appear, their

direction being rotated with respect to the ion di-

rection.

To predict the morphology of ion-sputtered
surfaces, we need to gain a full understanding of

the behavior predicted by Eq. (40) in the physically

relevant two dimensional case, going beyond the

special cases. Help is provided by the recent nu-

merical integrations of Eq. (40), recently reported

by Park et al. [100], that indicates a clear separa-

tion in time of the linear and nonlinear behaviors.

The results show that before a characteristic time
tc has been reached, the morphology is fully de-

204 M.A. Makeev et al. / Nucl. Instr. and Meth. in Phys. Res. B 197 (2002) 185–227



scribed by the linear theory, as if nonlinear terms

were not present. However, after tc the nonlinear

terms completely determine the surface morphol-

ogy. These results offer a natural layout for our
discussion. In Subsection 6.1, we will limit our

discussion to the linear theory. However, even in

this case we have to distinguish four different

cases, depending on whether the surface diffusion

in the system is thermally activated or of the ef-

fective type associated with the ion erosion pro-

cess. Consequently, in Subsections 6.1.1 and 6.1.2,

we discuss the high temperature case, when relax-
ation is by thermal surface diffusion, treating sep-

arately the symmetric (r ¼ l) and asymmetric

(r 6¼ l) cases. Next we turn our attention to the

low temperature ripple formation, when surface

relaxation is dominated by erosion, and we again

distinguish the symmetric and asymmetric cases

(Subsections 6.1.3 and 6.1.4). Finally, Subsections

6.2.1 – 6.2.4 are devoted to the effect of the non-
linear terms, addressing such important issues as

ripple stabilization, rotated ripples and kinetic

roughening.

6.1. Linear theory

6.1.1. Ripple formation at high temperatures: sym-

metric case

In this section we discuss the process of ripple

formation in the symmetric case r ¼ l, when the

relaxation is by thermally activated surface diffu-

sion. Thus, we assume that the magnitude of the

thermally activated surface diffusion coefficient, K,

is much larger than Dxx, Dxy , Dyy , generated by the

ion bombardment process. This is always the

case for high temperatures since K increases as
ð1=T Þ expð�DE=kBT Þ with T, while ion induced ES

terms are independent of T. Dropping the non-

linear terms in Eq. (40), we obtain

oh
ot

¼ �v0 þ c
oh
ox

þ mx
o2h
ox2

þ my
o2h
oy2

þ X1

o3h
ox3

þ X2

o3h
oxo2y

� Kr4hþ gðx; y; tÞ; ð56Þ

where the coefficients can be obtained from Eqs.

(41)–(54) by taking r ¼ l,

v0 ¼ Fc;

c ¼ Fsða2rc2 � 1Þ;

mx ¼
Fa
2
f2s2 � c2 � a2rs

2c2g;

my ¼ � Fa
2
c2;

X1 ¼ � Fa2s
2a2r

ð1� a2rc
2Þ;

X2 ¼
Fa2

6a2r
sfa2rð3c2 � 3s2Þ þ a4rc

2s2 � 3g:

ð57Þ

Since the surface morphology depends on both

the signs and absolute values of the coefficients in

Eq. (56), in the following we discuss in detail their

behavior as functions of the angle of incidence h
and the reduced energy deposition depth ar.

6.1.1.1. Erosion velocity v0. The v0 term describes

the erosion velocity of a flat surface. This term

does not affect the ripple characteristics, such as

ripple wavelength and ripple amplitude, and can

be eliminated from the surface evolution equation

by the coordinate transformation ~hh ¼ hþ v0t. This

corresponds to a transformation to the coordinate

frame moving with the eroded surface. However,
since v0 is the largest contribution to the erosion

rate and is the only one that contributes in the

linear theory, it is worthwhile to investigate its

dependence on h and ar. Fig. 6 shows the v0 de-

pendence on the angle of incidence, h, for three

different values of the reduced energy deposition

depth ar. From Eq. (57), v0 is positive for all h and

ar. In the experiments, v0ðhÞ corresponds to the
secondary ion yield variation with the inci-

dence angle h, i.e. v0ðhÞ ¼ JYflatðhÞ=n, where n is the

density of target atoms. Note that v0 has the

characteristic increasing part for small h, followed

by saturation, and decreases for large h, similar to

the measured yield [2].

6.1.1.2. Traveling ripples c, X1, X2. If we consider a
periodic perturbation, with a wave vector ðqx; qyÞ,
in the form

h ¼ �v0t þ A exp½iðqxxþ qyy � xtÞ þ rt�; ð58Þ
from Eq. (56) we obtain the mode velocity
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x ¼ �cqx þ X1q3x þ X2qxq2y ð59Þ

and the growth rate

r ¼ �ðmxq2x þ myq2y þ Kðq2x þ q2yÞ
2Þ: ð60Þ

Thus the coefficients c, X1, X2 contribute to the

Fourier mode velocity x in an anisotropic way

that reflects the asymmetry of the x and y direc-

tions for oblique ðh 6¼ 0Þ ion incidence. The coef-

ficients mx, my , K, on the other hand, contribute to

the growth rate of the mode amplitude. Carter
[99,101] pointed out that dispersive terms, such as

X1 and X2, destroy the translational invariance

of the periodic morphology because the different

modes travel with different velocities. Note, how-

ever, that the existence of a ripple structure means

that there is essentially only one Fourier mode

describing the surface morphology, which will,

thus, move across the surface with velocity x.
The coefficient c contributes only to the velocity

of the ripples along the x direction, leaving un-

affected the y component of the ripple velocity.

Thus, as expected, c ¼ 0 for normal incidence

(h ¼ 0). Similarly to the v0 term, c does not af-

fect the ripple characteristics and can actually be

eliminated using the transformation ~hh ¼ hðx�
ct; tÞ. As can be seen in Fig. 7, c can change sign

with h, indicating that ripples travel in both posi-
tive and negative directions along the x coordi-

nate, depending on the angle of incidence and the

energy deposition depth: ripples travel in the pos-

itive x direction for small h and in the negative x

direction for larger h. Traveling ripples were ob-

served in numerical simulations of Koponen et al.

[90].

As discussed above, the terms X1, X2 contribute
merely to the traveling of the ripples, and have no

further effect on the surface morphology. Fig. 8

shows the coefficients X1 and X2 as functions of the

angle of incidence h. We find that the absolute

values of these coefficients at small angles is small

compared to c (see Fig. 7), and, thus, the main

contribution to the ripple velocity comes from the

ðcoh=oxÞ term. On the other hand, for angles
h P 60�, these terms are comparable to or even

larger than c.

Fig. 7. The coefficient c=P as a function of the angle of inci-

dence h for three reduced energy deposition depths: ar ¼ 1

(solid line); ar ¼ 2 (dotted line); ar ¼ 3 (dashed line).

Fig. 6. The erosion velocity, v0=P as a function of h. The three

curves correspond to the reduced energy deposition depth

ar ¼ 1 (solid line), ar ¼ 2 (dotted line), ar ¼ 3 (dashed line).

The velocity has been normalized by a factor P ¼ p�J=ð
ffiffiffiffiffiffi
2p

p
aÞ,

independent of h.
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6.1.1.3. The coefficients mx and my . As we discussed

above (see Subsection 4.2), the negative surface

tension coefficients are the origin of the instability

responsible for ripple formation. Consequently,

they play a particularly important role in deter-

mining the surface morphology. The coefficients mx
and my are not equal to each other due to the fact
that the direction of the ion beam breaks the

symmetry along the surface. As seen in Eq. (57), my
is always negative, while mx can change sign as h
and ar vary, as shown in Fig. 9. The sign and the

magnitude of mx and my determine both the wave-

length and the orientation of the ripples.

6.1.1.4. Ripple wavelength and orientation. The
experimental studies of ripple formation have

mainly focused on the measurement of the ripple

characteristics, such as the ripple wavelength and

amplitude. Thus, a successful theory must address

and predict these quantities. In the following

we outline the method for calculating the ripple

wavelengths ‘x and ‘y . Taking into account the

noisy character of Eq. (56), the experimentally
observed ripple wavelength corresponds to the

unstable Fourier mode which yields the maximum

value of the structure factor. The structure factor,

Sðq; tÞ, is calculated from the Fourier transform of

the instantaneous surface profile, hðq; tÞ, and is

defined as

Sðq; tÞ ¼ hhð�q; tÞhðq; tÞi; ð61Þ

where

hðq; tÞ ¼
Z

dr

ð2pÞ3
expðiqrÞðhðr; tÞ � �hhðtÞÞ: ð62Þ

Fourier transforming Eq. (56) and inserting the
expression for the Fourier transforms of hðr; tÞ into
Eq. (61), we obtain

Sðq; tÞ ¼ hhð�q; tÞhðq; tÞi ¼ � J
2

1� expðrðqÞtÞ
rðqÞ ;

ð63Þ
where r is the growth rate of the mode q. It is given
by Eq. (60), and is positive for all unstable Fourier

modes in the system. We find that, depending on

the sign of mx and the relative magnitude of mx and
my , we can distinguish two cases:

(i) For mx < my < 0, which, according to Eq.

(57), holds when

ar >

ffiffiffiffi
2

c2

r
; ð64Þ

the ripple structure is oriented in the x direction,
with ripple wavelength,

‘x ¼ 2p

ffiffiffiffiffiffiffiffiffi
2K
jmxj

:

s
ð65Þ

This means that the maximum of Sðq; tÞ is at
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmxj=2K

p
; 0Þ. To illustrate this, in Fig. 10 we

show the dependence of the structure factor on the

Fig. 9. The surface tension coefficients mx=P (a) and my=P (b) as

functions of the angle of incidence h for three reduced energy

deposition depths: ar ¼ 2 (solid line); ar ¼ 3 (dotted line);

ar ¼ 4 (dashed line).

Fig. 8. The reduced third order coefficients X1=P (a) and X2=P
(b) as functions of the angle of incidence h for three reduced

energy deposition depths: ar ¼ 2 (solid line); ar ¼ 3 (dotted

line); ar ¼ 4 (dashed line).
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wavevectors qx and qy . The contour plot indicates

the existence of a global maximum at ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmxj=2K

p
;

0Þ, indicating that the ripples are oriented along
the x direction.

(ii) For mx > my , which holds when

ar <

ffiffiffiffi
2

c2

r
; ð66Þ

the ripple structure is oriented along the y-direc-

tion, with ripple wavelength

‘y ¼ 2p

ffiffiffiffiffiffiffiffiffi
2K
jmy j

:

s
ð67Þ

Fig. 11 shows an example of this regime, indi-

cating the existence of a global maximum at point

ð0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmy j=2K

p
Þ, corresponding to the ripple struc-

ture oriented along the y direction.

6.1.1.5. Phase diagram for ripple orientation. The
results obtained on ripple formation can be sum-

marized in a (h, ar) morphological phase diagram,

shown in Fig. 12, which has the following regions:

Region I: For small h both mx and my are nega-

tive and such that mx < my . Thus the ripples are

oriented along the x direction. Their wavelength is
given by ‘x ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K=jmxj

p
. The amplitude of the

ripples is expected to be weakly modulated by

the larger wavelength ‘y ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K=jmy j

p
. The rip-

ple amplitude grows as h0 	 expðrxtÞ, where rx ¼
rð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmxj=2K

p
; 0Þ (see Eq. (58)). The boundary of this

region is defined by mxðar; hÞ ¼ myðar; hÞ, i.e.

ar ¼
ffiffiffiffi
2

c2

r
: ð68Þ

Region II: This region is characterized by

my < mx. The ripples are directed along the y di-

rection and have wavelength ‘y ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K=jmy j

p
.

Note that Region II extends down to small values

of the incidence angle h for small enough reduced

energy deposition depth ar. This somewhat un-

physical result is a consequence of the assumption

of a symmetric (r ¼ l) distribution of deposited

energy. We will see in the next section that the

more physical asymmetric case with r > l leads, in

most cases, to ripples oriented only along the x

Fig. 10. Contour plot of the structure factor 2Sðqx; qyÞ=J as a function of the two dimensionless wavevectors qxa and qya calculated for

the angle of incidence h ¼ 30�. The reduced coefficients mx=P and my=P are obtained using Eq. (57), their values being mx=P ¼ �0:057

and my=P ¼ �0:0418, while K=P is taken to be 0.01. These parameter values correspond to Region I in Fig. 12.
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direction for small enough angles of incidence, as

generally observed.

Fig. 13 shows the h dependence of the ripple

wavelengths along the x and y directions. In the

framework of this model, where thermal surface

diffusion is the only smoothing mechanism, the

observed ripple orientation corresponds to the

direction featuring the smallest value of ‘, and
changes when ‘x ¼ ‘y . The prediction for the ripple

wavelength close to 90� is questionable since re-

flection [69,70] and shadowing [102], not incorpo-

rated in the model, start to play an important role

during ion bombardment at the large angles of

incidence.

6.1.1.6. Summary. The dependence of ‘ on the main
physical parameters characterizing the sputtering

process is given by

‘ ¼ 2p

ffiffiffiffiffiffi
2K
jmj

s
	

ffiffiffiffiffiffi
2K
Fa

r
: ð69ÞFig. 12. Ripple orientation phase diagram for the isotropic case

r ¼ l ¼ 1. Region I: mx < my < 0; Region II: mx > my .

Fig. 11. Contour plot of the structure factor 2Sðqx; qyÞ=J as a function of the two dimensionless wavevectors qxa and qya calculated for

the angle of incidence h ¼ 60�. The reduced coefficients mx=P and my=P are obtained using Eq. (57), their values being mx=P ¼ 0:0758

and my=P ¼ �0:0379, while K=P is taken to be 0.01. These parameter values correspond to Region II in Fig. 12.
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This prediction has a number of consequences,

some of which have been verified experimentally

(see Section 7):

(a) Since the energy deposition depth, a, is pro-
portional to �2m (see 4.5), and r 	 l 	 a,
we have ar 	 constant, and F 	 ð�aÞ=ðrlÞ 	
�1�2m, which is independent of �, when

m ¼ 1=2. Consequently,

‘ 	 ��1=2; ð70Þ
i.e. the ripple wavelength is expected to de-

crease with the ion energy.

(b) Taking into account that K is independent of

the ion flux and m 	 J , we obtain that the rip-
ple wavelength is also a decreasing function of

the incident ion flux, given by

‘ 	 1

J 1=2
: ð71Þ

(c) As was mentioned above, the negative surface

tension is the origin of the instability leading to

ripple formation. When both mx and my are neg-

ative the experimentally observed ripple struc-

ture has the direction for which the growth rate

r is largest. However, in general, we expect a
superposition of both wavelengths, where the

long wavelength will appear as a modulation

of the ripple amplitude. Indeed, such modula-

tions have been observed both experimentally

and numerically [100].

(d) An important prediction of this model, illus-

trated in Fig. 13, is the existence of the critical

angle hc where the ripple orientation changes.
In the case when surface diffusion is thermally

activated, this transition coincides with the

condition mx ¼ my .

6.1.2. Ripple formation at high temperatures:

asymmetric case

The results of the previous section were derived

for the isotropic case, r ¼ l. While this approxi-
mation considerably simplifies our discussion,

most systems present some anisotropy in the de-

posited energy distribution. In this section we

demonstrate that the existence of anisotropy does

not modify the overall qualitative result on the

existence of the two parameter regions, corre-

sponding to ripples oriented along the x or y di-

rections. However, anisotropy does change the
numerical value of the ripple wavelength and the

exact boundary between the two morphological

regions: we demonstrate that, for large enough

anisotropies, if the incidence angle is small only

ripples oriented along the x direction are possible.

Fig. 14 shows the coefficients mx and my , given by

Eq. (57), as functions of the angle of incidence h,
for three different degrees of asymmetry s ¼ r=l,
in the physically relevant [38,69,70] s > 1 range.

As one can observe, the qualitative behavior of mx
and my is similar to that observed in the symmetric

case. One interesting feature, however, must be

emphasized: the increasing asymmetry leads to

larger ripple wavelength, since the absolute values

of mx and my decrease.

With respect to the third order linear terms X1

and X2, their behavior as functions of the angle

of incidence can be also seen to be qualitatively

analogous to the symmetric case. Thus the asym-

metry does not change our conclusions regarding

the traveling ripples.

Fig. 13. Ripple wavelengths ‘x (solid line) and ‘y (dotted line) as

functions of the angle of incidence h for Kp�J=ð
ffiffiffiffiffiffi
2p

p
aÞ ¼ 0:01.

The reduced energy deposition depth is taken as ar ¼ 2.

210 M.A. Makeev et al. / Nucl. Instr. and Meth. in Phys. Res. B 197 (2002) 185–227



6.1.2.1. Ripple wavelength. The calculation of

ripple characteristics in the asymmetric case is

identical to the one used in the symmetric case.

Therefore, we limit ourselves to the presentation of

the results. Again, there are two possible ripple
directions, and the dominant one can be found

from the maximum of the structure factor (63) or,

as can be shown to be equivalent, from the maxi-

mum of the growth rate (60),

(i) When mx < mx < 0, i.e.

ar >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ð2þ c2Þ þ s2c2ð1þ 2c2Þ � s4c4

s2c2

r
; ð72Þ

the ripple structure is oriented along the

x-direction with ripple wavelength ‘x ¼
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K=jmxj

p
.

(ii) When my > my , i.e.

ar <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ð2þ c2Þ þ s2c2ð1þ 2c2Þ � s4c4

s2c2

r
; ð73Þ

the ripples are oriented along the y-direction,

with ripple wavelength ‘y ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K=jmy j

p
.

6.1.2.2. Phase diagram for ripple orientation. To

consider the effect of asymmetry on the different

regimes in ion sputtering, we have studied the

ripple orientation phase diagram for different val-

ues of s. As s changes, we find a smooth evolution

which does not uncover any new morphological

regime. However, the topology of the phase dia-

gram does change as s increases. For s <
ffiffiffi
3

p
the

topology of the phase diagram is similar to the
symmetric case (see Fig. 12). As Fig. 15 illustrates,

for sP
ffiffiffi
3

p
the ripples oriented along the y direc-

tion, predicted by the linear theory for small en-

ough h and ar, are absent, which is consistent with

most experimental observations. The characteris-

tics of Region I and Region II of the phase dia-

gram are the same as in the symmetric case.

6.1.3. Ripple formation at low temperatures: sym-

metric case

In Subsections 6.1.1 and 6.1.2, we discussed the

process of ripple formation when the origin of

surface smoothing is surface diffusion, described

by the �Kr4h term. However, in the series ex-

pansion of the erosion velocity we found linear

fourth order terms of the form �Dxxo
4
xh, �Dxyo

2
xo

2
yh

and �Dyyo
4
yh, which are formally equivalent to the

thermally induced surface diffusion terms. These

terms arise as a higher order correction to the local

Fig. 15. Ripple orientation phase diagram for the asymmetric

case with asymmetry parameter s ¼ 2 and ar ¼ 2. Region I:

mx < my < 0; Region II: mx > my .

Fig. 14. The effective surface tensions mx=P (a) and my=P (b)

plotted as functions of the incidence angle h in the asymmetric

case. The curves correspond to values of the asymmetry pa-

rameter s ¼ 1:5 (solid line), s ¼ 2 (dotted line), s ¼ 3 (dashed

line), with ar ¼ 2.
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surface curvature, being fully determined by the

process of surface erosion. Consequently, these

terms do not imply actual mass transport along the

surface, as thermal surface diffusion does. In this
section we show that, in some parameter regions,

these terms have a smoothing effect that counter-

acts the erosion instability, in such a way that they

can also lead to ripple formation. We believe this

explains the ripples observed at low temperatures

both experimentally [12] and in computer simula-

tions [90].

Neglecting the thermally induced relaxation
terms (i.e. taking K ¼ 0), nonlinear terms and the

terms v0, c, X1 and X2, that do not affect the ripple

characteristics, from Eq. (40) we obtain the linear

equation

oh
ot

¼ mx
o2h
ox2

þ my
o2h
oy2

� Dxx
o4h
ox4

� Dxy
o4h

ox2oy2

� Dyy
o4h
oy4

þ gðx; y; tÞ: ð74Þ

The expressions for the coefficients of the ion-in-

duced effective smoothing terms can be obtained

from Eqs. (51)–(53) using r ¼ l,

Dxx ¼
Fa3

24a2r
a4rs

4c2
�

þ a2rð6c2s2 � 4s4Þ

þ 3c2 � 12s2
�
;

Dxy ¼
Fa3

24a2r
6 a2rs

2c2
�

þ c2 � 2s2
�
;

Dyy ¼
Fa3

24a2r
3c2:

ð75Þ

From Eq. (75), Dyy is always positive, while Dxy

andDxx change sign with h. As we discuss below, the

positive Dxx and Dyy coefficients play a role similar

to thermally activated surface diffusion. Further-

more, the absolute value of Dxx is comparable with

the thermally activated surface diffusion coefficient
even at high temperatures (see Section 7).

6.1.3.1. Ripple wavelength and orientation. The

ripple wavelength and orientation can be calcu-

lated following the arguments presented in Sub-

section 6.1.1, being determined by the maxima of

the structure factor Sðq; tÞ. The growth rate r is

now given by

rðqx; qyÞ
¼ �ðmxq2x þ myq2y þ Dxxq4x þ Dxyq2xq

2
y þ Dyyq4yÞ: ð76Þ

In principle, the asymmetry of the Dij coefficients

may lead to maxima of Sðq; tÞ at nonzero qx and

qy values, which correspond to ripples forming a
nonzero angle with both the x and y directions.

However, straightforward calculations indicate

that the following condition holds:

Dxymy ¼ 2mxDyy ; ð77Þ
for all values of ar and h in (57) and (75). This

identity implies that no extrema ðq�x ,q�yÞ of Sðq; tÞ
exist other than of the form ðq�x ; 0Þ or ð0; q�yÞ. Of
these two solutions the one with the largest posi-

tive value of rðqx; qyÞ corresponds to the observed

ripple structure. For small angles of incidence, so

that Dxx P 0 (Region I in Fig. 16), it can be easily

seen that mx < 0, and the absolute maximum of

Sðq; tÞ is at ðq�x ; 0Þ with q�x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmxj=2Dxx

p
, thus the

ripple structure is aligned along the x direction (see

Fig. 16. Morphological phase diagram in the symmetric case

r ¼ l ¼ 1. Different regions correspond to: Region I: mx < 0,

my < 0, Dxx > 0, Dyy > 0 and rx > ry ; Region II: mx < 0, my < 0,

Dxx < 0, Dyy > 0; Region III: mx > 0, my < 0, Dxx < 0 and

Dyy > 0.
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for example Fig. 17). Crossing the Dxx ¼ 0 line into

Region II in Fig. 16 the ðq�x ; 0Þ solution disappears,

the structure factor having an extremum at ð0; q�yÞ,
with q�y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmy j=2Dyy

p
. However, this extremum is

not a global maximum, see for example Fig. 18.

The lower boundary of Region II is provided by

the condition mx ¼ 0. When we cross it (entering

Region III in Fig. 16), we have Dxx < 0 and mx > 0.

Under this condition, again, there exists an extre-

mum of Sðq; tÞ at ðq�x ; 0Þ, with q�x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mx=2jDxxj

p
.

However, the structure factor takes its absolute
maximum at ð0; q�yÞ.

6.1.3.2. Phase diagram for ripple orientation. In

summary, three different regions can be deter-

mined in the morphological phase diagram shown

in Fig. 16 for the case of ion-induced ES in the

symmetric r ¼ l case.

Region I: In this region, the surface tension
coefficients mx and my are negative, while Dxx and

Dyy are both positive. The observed ripple struc-

ture corresponds to the maximum of Sðq; tÞ, which

indicates that the ripple structure is oriented along

the x direction. The lower boundary of this region,

separating it from Region II, is given by the

Dxxðar; hÞ ¼ 0 line or, equivalently, by

ar ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2s2 � 3c2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6c4 þ 4s4

p

s2c2

s
: ð78Þ

Region II: In this region both Dxx and mx are

negative. This region is bounded below by the

mxðar; hÞ ¼ 0 line, given by

ar ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2s2 � c2Þ

s2c2

r
: ð79Þ

In a continuum description, the maximum of
rðqÞ is at infinite q, thus our theory possibly breaks

down in the sense that not even nonlinear effects

can be expected to stabilize the surface, under such

conditions. In such a case, a higher order Taylor

expansion should be carried out in Section 5 in

order to be able to describe our system. Additional

effects, such as shadowing, could also start to play

a role under such conditions.
Region III: In this region Dxx is negative and mx

is positive. Thus the instability given by the neg-

ative Dxx is smoothed out by the positive mx. Since

Fig. 17. Contour plot of the structure factor 2Sðqx; qyÞ=J shown as a function of the two dimensionless wavevectors qxa and qya
calculated for the angle of incidence h ¼ 30�. The reduced coefficients mx=P and my=P are obtained using Eq. (57), their values being

mx=P ¼ �0:0578 and my=P ¼ �0:0418. These parameter values correspond to Region I in Fig. 16.
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the structure factor takes on its absolute maximum

at the finite wave vector (0, q�y ), in principle there is

still a ripple structure oriented along the y direc-

tion. However, remarks similar to those made in
Region II might apply here, since we still have

Dxx < 0.

6.1.3.3. Summary. In the presence of ion-induced

ES, the dependence of the ripple wavelength on the

physical parameters is different from the case of

thermal surface diffusion (see Section 6.1.1). Here

we summarize some of the differences.
(a) The dependence of ‘ on the ion energy is

given by

‘ ¼
ffiffiffiffiffiffi
2D
jmj

s
	

ffiffiffiffiffiffiffi
Fa3

Fa

r
	 a 	 �2m; ð80Þ

indicating that the ripple wavelength depends lin-

early on the energy deposition depth a. This is very

different from the behavior predicted by Eq. (56),

derived for thermal surface diffusion, and indicates

that monitoring the ripple wavelength depen-

dence on � can be used to identify the dominant

smoothing mechanism. Such a linear behavior of

‘ on � has, indeed, been seen experimentally (see

Subsection 3.1).

(b) From Eq. (80) it also follows that the ripple
wavelength is independent of the incident ion flux.

This prediction is again quite different from the

case dominated by thermal surface diffusion, given

by Eq. (71). Such a flux independent behavior has

been observed experimentally (see Subsection 3.1).

Finally, analogues of characteristics (c) and (d),

discussed in Subsection 6.1.1, apply here as well.

6.1.4. Ripple formation at low temperatures: asym-

metric case

In this section we discuss the effect of asym-

metry (r 6¼ l) of the energy distribution on the

morphological regimes predicted by Eq. (74). We

find that the coefficients of Eq. (74) vary slowly

with the asymmetry, but this does not change the

qualitative picture presented in the previous sec-
tion, regarding the ripple wavelength and orien-

tation, or the major morphological regimes found

in the isotropic case, including the conditions of

Fig. 18. Contour plot of the structure factor 2Sðqx; qyÞ=J shown as a function of the two dimensionless wavevectors qxa and qya
calculated for the angle of incidence h ¼ 30�. The reduced coefficients mx=P and my=P are obtained using Eq. (57), their values being

mx=P ¼ �0:0758 and my=P ¼ �0:0379. These parameters values correspond to Region II in Fig. 16.
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validity of our continuum theory. Specifically, we

find that the asymmetry enlarges the region in h
where Dxx and Dyy are positive, thus shifting Re-

gion II to larger values of h.

6.1.4.1. Phase diagram for ripple orientation. The

topology of the morphological phase diagram and

the characteristics of the three main regions are

not changed by the asymmetry. We find that

the only effect of the asymmetry is to move the

boundaries smoothly to larger values of h, as s
increases. The condition Dðar; hÞ ¼ 0 (see Eq. (78))
now takes the form

ar ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2 þ s2c2Þ ð2s

2 � 3s2c2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6s4c4 þ 4s4

p

s2s2c2

s
ð81Þ

and the condition mxðar; hÞ ¼ 0 (see Eq. (79)) be-

comes

ar ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s4 þ s2c2s2 � s4c4

s2s2c2

r
: ð82Þ

6.2. Nonlinear theory

As we demonstrated in Section 6.1, linear the-

ory can predict many features of ripple formation,

such as the ripple wavelength and orientation,

both at high and low temperatures. However, a

number of important experimental features are

incorrectly predicted by the linear theory. They

include the stabilization of the ripple amplitude

(according to the linear theory the amplitude in-
creases indefinitely at an exponential rate) or the

presence of kinetic roughening (completely unac-

counted for by the linear approach). To account

for these features, we have to consider the effect of

the nonlinear terms. Consequently, this section is

devoted to the effect of the nonlinear terms on the

surface morphology. There is an important differ-

ence between the linear and nonlinear theories:
while all predictions of the linear theory can be

calculated analytically (as we demonstrated in the

previous section), the discussion of the nonlinear

effects requires a combination of analytical and

numerical tools. Even with these tools, the un-

derstanding of the nonlinear effects is far less

complete than that of the linear theory.

6.2.1. High temperature morphology: symmetric

case

In the high temperature regime, where thermal

surface diffusion dominates over ion-induced ES,

the nonlinear equation of the interface evolution

has the form

oh
ot

¼ �v0 þ c
oh
ox

þ nx
oh
ox


 �
o2h
ox2


 �
þ ny

oh
ox


 �
o2h
oy2


 �
þ mx

o2h
ox2

þ my
o2h
oy2

þ kx
2

oh
ox


 �2

þ ky
2

oh
oy


 �2

þ X1

o3h
ox3

þ X2

o3h
oxoy2

� Kr4hþ gðx; y; tÞ; ð83Þ

where the coefficients of the linear terms, v0, c, mx,
my , X1, X2 and K have been discussed in Subsec-

tions 6.1.1 and 6.1.2. The coefficients of the non-

linear terms in the symmetric case (r ¼ l) are

kx ¼
F
2
c a2rð3s2
�

� c2Þ � a4rs
2c2
�
;

ky ¼ � F
2
c a2rc

2
� �

;

nx ¼
Fa
2
sc
�
� a4rc

2s2 þ a2rð4s2 � 3c2Þ þ 6
�
;

ny ¼
Fa
2
sc 2
�

� a2rc
2
�
:

ð84Þ

Next we discuss the physical interpretation and the

behavior of these coefficients as functions of h and

ar.

6.2.1.1. The coefficients nx and ny . Fig. 19 shows the

nonlinear coefficients nx and ny as functions of the

angle of incidence h. As the numerical analysis of

Eq. (83) shows, these nonlinearities are responsible

for the development of overhangs on the surface

[103]. Even though the nx and ny terms are ex-

pected not to determine the asymptotic scaling

behavior, they can play a relevant role at inter-
mediate time scales, after the development of the

ripple structure, particularly in the region of large

h. The precise contribution of these nonlinearities

M.A. Makeev et al. / Nucl. Instr. and Meth. in Phys. Res. B 197 (2002) 185–227 215



to the surface dynamics is currently under inves-

tigation [103].

6.2.1.2. The coefficients kx and ky . As we discussed

in Subsection 4.1.2, the morphology of the surface

described by Eq. (83) depends on the relative signs

of the nonlinear terms kx and ky . As it is evident
from Eq. (84), ky is negative for all angles of in-

cidence and energy deposition depths. However, as

shown in Fig. 20, the sign of kx depends on h and

ar: kx is negative for small h and changes sign for

larger angles of incidence.

In principle, the nonlinear terms completely de-

termine the surface morphology. Since the non-

linear terms are always present, an important

question is whether the linear regimes are relevant
at all. Recent results by Park et al. [100] indicate

that, while the nonlinear effects indeed change the

surface morphology, the regime described by the

linear terms is still visible for a wide range of pa-

rameters. By numerically integrating Eq. (83), they

have shown that there is a clear separation of the

linear and nonlinear regimes in time: for times up

to a crossover time tc the surface erodes as if the
nonlinear terms would be completely absent, fol-

lowing the predictions of the linear theory. After

tc, however, the nonlinear terms take over and

completely determine the surface morphology. The

transition from the linear to the nonlinear regime

can be seen either by monitoring the surface width

(which is proportional to the ripple amplitude) or

the erosion velocity. The simulations indicate that
the width increases exponentially with time, as

predicted by the linear theory, until tc, after which

the width growths at a much slower rate [100].

This transition is typically accompanied by the

disappearance of ripples, predicted by the linear

theory, and the appearance of either kinetic

roughening or of a new rotated ripple structure.

The erosion velocity is constant in the linear re-
gime (before tc), while it increases or decreases

after tc, depending on the relative signs of the

nonlinear terms.

6.2.1.3. Crossover time. The crossover time tc from

the linear to the nonlinear behavior can be esti-

mated [100] by comparing the strength of the lin-

ear terms with that of the nonlinear terms. Let the
typical surface width at the crossover time tc be

W0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 2ðL; tcÞ

p
. Then from the linear equation

we obtain

W0 	 expðmtc=‘2Þ; ð85Þ

while from oth 	 kðrhÞ2 we estimate

W0=tc 	 kW 2
0 =‘

2: ð86Þ

Combining these relations we obtain

tc 	 ðK=m2Þ lnðm=kÞ: ð87Þ

Fig. 20. The reduced coefficients kx=P (a) and ky=P (b) shown

as functions of h. The different curves correspond to different

values of the reduced energy deposition depth: ar ¼ 2 (solid

line); ar ¼ 3 (dotted line); ar ¼ 4 (dashed line).

Fig. 19. The reduced coefficients nx=P (a) and ny=P (b) shown

as functions of h for different values of the reduced energy de-

position depths: ar ¼ 2 (solid line); ar ¼ 3 (dotted line); ar ¼ 4

(dashed line).
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In this expression, m, K and k correspond to the

direction parallel to the ripple orientation. The

predicted k dependence of tc has been confirmed by
numerical simulations [100].

6.2.1.4. Surface morphology. The surface mor-

phology in the nonlinear regime depends on the

relative signs of mx, my , kx and ky . The different

morphological regimes can be summarized in a

phase diagram, shown in Fig. 21. Next we discuss

each of the phases separately.
Region I: For small h, the nonlinear terms kx

and ky have the same (negative) sign, the boundary

of this region being given by the condition that

kxðar; hÞ ¼ 0, or equivalently

ar ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3s2 � c2

c2s2

r
: ð88Þ

In this region both mx and my are negative, thus at

short time scales (t6 tc), the linear theory (see

Subsection 6.1.1) predicts ripples oriented along

the direction (x for large ar and y for small ar) for

which the absolute value of m is largest, with ripple

wavelength ‘ ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K=jmj

p
. On the other hand, at

long times (t 
 tc), the ripple structure disappears

and the surface undergoes kinetic roughening
[100]. Since kx � ky > 0, we expect the dynamics of

the kinetic roughening regime to be described by

the KPZ equation, i.e. the surface width follows

W 	 La, W 	 tb, where the scaling exponents are

a ’ 0:38 and b ’ 0:25 (see Subsection 4.1.1).

Region II: In this region both the mx and the my
coefficients are still negative, but in contrast with

Region I the product kx � ky is negative. Recent
studies by Park et al. [100] have shown that in time

three morphological regimes can be distinguished.

For short times, t6 tI, the ripple structure pre-

dicted by the linear theory is observed, with ripples

oriented along the direction which has the largest

value of jmj. For intermediate times tI 6 t6 tII, the
surface is rough. If this roughness would follow

kinetic roughening, one would expect logarith-
mic scaling, described by the Edwards–Wilkinson

equation, since kx � ky < 0. However, this transient

regime is somewhat different from what we expect

during kinetic roughening. The numerical simula-

tions often show the development of individual

ripples, which soon disappear, and no long-range

order is present in the system. However, at a

second crossover time, tII, a new ripple structure
suddenly forms, in which the ripples are stable and

rotated at an angle hc with respect to the x direc-

tion. Rost and Krug [65] have shown (for the de-

terministic limit of Eq. (83)) that, by defining

am ¼ mx=my and bk ¼ kx=ky , the fact that am > 0 and

bk < 0 throughout Region II implies the existence

of ‘‘cancellation modes’’ which dominate the dy-

namics and lead to this rotated ripple morphology.
(Note the parameter ratios am and bk are not to be

confused with the roughness and growth expo-

nents a and b, introduced in Section 2.) The angle

hc, calculated by Rost and Krug, has the value

hc ¼ tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�kx=ky

p
(see also Appendix D), and

can be obtained by moving to a rotated frame of

coordinates that cancels the nonlinear terms in the

transverse direction. The boundary of Region II is
given by the condition mxðar; hÞ ¼ 0, Eq. (79).

Region III: This region is characterized by a

positive mx and a negative my . At short time scales,

t6 tc, the periodic structure associated with the

instability is oriented along the y direction and has

Fig. 21. Phase diagram for the isotropic case r ¼ l ¼ 1. Region

I: mx < 0, my < 0, kx < 0, ky < 0; Region II: mx < 0, my < 0,

kx > 0, ky < 0; Region III: mx > 0, my < 0, kx > 0, ky < 0.
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wavelength ‘y ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K=jmy j

p
. Much less is known,

however, about the nonlinear regime. Such an

anisotropic and linearly unstable equation is un-

explored in the context of growth equations. The
analysis by Rost and Krug [65] for the corre-

sponding deterministic equation predicts that,

given that bk < am < 0 does hold all over Region

III, again cancellation modes induce a rotated

ripple morphology.

6.2.1.5. Summary. Even though several aspects of

the scaling behavior predicted by Eq. (83) remain
to be clarified, we believe that this equation con-

tains the relevant ingredients for understanding

roughening by ion bombardment. To summarize,

at short time scales the morphology consists of a

periodic structure oriented along the direction,

determined by the largest in absolute value of the

negative surface tension coefficients [38]. Modify-

ing the values of ar or h changes the orientation of
the ripples [38]. At long time scales, we expect two

different morphological regimes. One is charac-

terized by the KPZ exponents, which might be

observed in Region I in Fig. 21. Indeed, the values

of the exponents, reported by Eklund et al. [28,29],

are consistent within the experimental errors with

the KPZ exponents. In Region II kinetic rough-

ening is not expected. Rather, nonlinear terms lead
to a new ripple structure that is rotated with re-

spect to the ion direction. Region III is less un-

derstood; analysis of the deterministic equation

[65] again predicts a rotated ripple structure. By

tuning the values of h and/or ar one may induce

transitions among these morphological regimes.

6.2.2. High temperature morphology: asymmetric

case

In this section we discuss the effect of asym-

metry on the scaling regimes of Eq. (83). Here,

again, we obtain that the effect of asymmetry does

not bring in new qualitative features. Specifically,

we find that the qualitative behavior of nx and ny is
not affected by the asymmetry. As the asymmetry

grows, the absolute value of the coefficients in the
region of small angles decreases and the peaks at

large h increase. Similarly, while the numerical

values of kx and ky are affected by the asymmetry,

s, their qualitative features are not.

Finally, we find that the morphological diagram

is topologically equivalent to the phase diagram

obtained in the symmetric case (see Fig. 21), the

only difference being in the position of the
boundaries. As s changes, we find a smooth evo-

lution of the boundaries, which does not uncover

any new regimes. Since the morphological prop-

erties of the system in the three regimes are the

same as those discussed in the symmetric case, we

will not discuss them again.

6.2.3. Low temperature morphology: symmetric

case

In this section we discuss the effect of the ef-

fective surface smoothing on the surface mor-

phology in the nonlinear regime. In the absence

of thermally activated surface diffusion, from Eq.

(40), we obtain the following equation governing

the morphology evolution:

oh
ot

¼ �v0 þ c
oh
ox

þ nx
oh
ox


 �
o2h
ox2
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þ ny

oh
ox


 �
o2h
oy2
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þ mx

o2h
ox2

þ my
o2h
oy2

þ kx
2

oh
ox


 �2

þ ky
2

oh
oy


 �2

þ X1

o3h
ox3

þ X2

o3h
oxoy2

� Dxx
o4h
ox4

� Dxy
o4h

ox2oy2

� Dyy
o4h
oy4

þ gðx; y; tÞ: ð89Þ

The terms c, mx, my , X1, X2, nx, ny , kx, ky , as well

as the ion-induced effective smoothing coefficients

Dxx, Dxy and Dyy have been discussed in the previ-

ous sections. In the following we discuss the

morphological phase diagram predicted by Eq.
(89) and shown in Fig. 22. The different regimes

have the following characteristics:

Region I: The surface tensions mx and my are

negative, while Dxx and Dyy are positive and kx, ky
are both negative. This regime has been previously

described in Subsection 6.2.1 (Regime I in Fig. 21),

the only difference being that here the ion-induced

effective surface smoothing plays the role of K. The
boundary of this region is given by Dxxðar; hÞ ¼ 0,

Eq. (78).
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Region IIa: Here mx, my , kx and ky are still neg-
ative, Dyy is positive, while Dxx < 0. Consequently,

along the x direction the surface is unstable, all

modes growing exponentially. However, the non-

linear terms kx and ky have the same sign. The

nonlinear regime in this parameter region has not

yet been explored numerically, thus its morphol-

ogy is unknown. The boundary of this region is

given by kxðar; hÞ ¼ 0, Eq. (88).
Region IIb: In this region Dxx is negative, Dyy is

positive, mx < 0, my < 0 and kx > 0, ky < 0. Thus,

the only difference of this region, with respect to

Region IIa, is that the nonlinear terms have dif-

ferent signs. Similarly to Region IIa, nothing

is known about the nonlinear behavior. The

boundary of this region is given by mxðar; hÞ ¼ 0,

Eq. (79).
Region III: Here we have mx > 0, my < 0,

Dxx < 0, Dyy > 0, kx > 0 and ky < 0. This region

has similar features to Region III in the phase di-

agram of Fig. 21, except for the negative value of

the Dxx coefficient.

6.2.4. Low temperature morphology: asymmetric

case

In this section we discuss the effect of asym-

metry on the long distance properties of Eq. (89).

The effect of the asymmetry on the coefficients,

appearing in the equation, were discussed ear-

lier. Therefore we concentrate here merely on the

morphological phase diagram predicted by Eq.

(89) for the asymmetric case, which is displayed
in Fig. 23. As before, asymmetry (s 6¼ 1) leads to

a smooth shift of the boundaries of the re-

gions provided by the lines where the coefficients

Dxxðar; hÞ, mxðar; hÞ and kxðar; hÞ change sign. In the

presence of effective smoothing, however, asym-

metry in the deposited energy distribution induces

the appearance of a fifth morphological regime.

Fig. 22. Nonlinear phase diagram for the isotropic case

r ¼ l ¼ 1 at low temperatures. Region I: mx < 0, my < 0, Dxx >

0, Dyy > 0 and kx < 0, ky < 0; Region IIa: mx < 0, my < 0, Dxx <

0, Dyy > 0 and kx < 0, ky < 0; Region IIb: mx < 0, my < 0,

Dxx < 0, Dyy > 0 and kx > 0, ky < 0; Region III: mx > 0, my < 0,

Dxx < 0, Dyy > 0 and kx > 0, ky < 0.

Fig. 23. Nonlinear phase diagram for the anisotropic case with

s ¼ 2 and ar ¼ 2. Different regions in the diagram correspond

to: Region I: mx < 0, my < 0, Dxx > 0, Dyy > 0 and kx < 0, ky <
0; Region IIa: mx < 0, my < 0, Dxx < 0, Dyy > 0 and kx < 0,

ky < 0; Region IIb: mx < 0, my < 0, Dxx < 0, Dyy > 0 and kx >
0, ky < 0; Region IIc: mx < 0, my < 0, Dxx > 0, Dyy > 0 and

kx > 0, ky < 0; Region III: mx > 0, my < 0, Dxx < 0, Dyy > 0 and

kx > 0, ky < 0.
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This is caused by the smooth motion of the

boundary determined by kxðar; hÞ ¼ 0, which in-

tersects for some value of s the boundary defined

by Dxxðar; hÞ ¼ 0. Comparison of Figs. 22 and 23
illustrates how the boundaries move with s. Re-

gions I, IIa, IIb and III are analogous of those

shown in Fig. 22. Region II in the phase diagram,

on the other hand, is analogous of Region II of the

high temperature phase diagram, shown in Fig. 21,

and all the conclusions obtained in that section

regarding the morphological properties in this re-

gime also apply here.

7. Comparison with experiments

In this section we compare the predictions of

the theory, presented in this paper with experi-

mental results on ripple formation and surface

roughening. For a better presentation, we choose
to structure the material around well known fea-

tures of the morphological evolution, present the

theoretical predictions and discuss to which extent

are they supported by the available experimental

data. We also discuss predictions that have not

been tested in sufficient detail but could offer fu-

ture tests of the theory.

7.1. Ripple amplitude

A key quantity in ripple formation is the time

evolution of the ripple amplitude. As we have

shown in Subsection 6.1.1, at early times (t6 tc)
the ripple amplitude grows exponentially, follow-

ing h 	 expðrðq�x ; q�yÞtÞ, where r is the growth rate

of the most unstable mode ðq�x ,q�yÞ. According to
the linear theory, this growth continues indefi-

nitely. In contrast, the nonlinear theory predicts

that the amplitude should stabilize after time tc,
where tc is given by Eq. (87). This is consistent with

the experimental investigations [18,20]. On the

other hand, recently Erlebacher et al. [19] also

found that at initial stages the ripple morphology

is growing exponentially. Furthermore, they ob-
served that at some time tc the exponential growth

stops and the ripple amplitude saturates. Mea-

suring the temperature dependence of the satura-

tion curves, they found that rescaling the time t

with a factor m2=4K and the amplitude h withffiffiffiffiffiffiffiffiffiffiffi
m=2K

p
, the different curves representing the am-

plitude as a function of time collapse onto a single

one. This result is in excellent agreement with
our prediction that suggest that plotting the re-

sult in terms of the rescaled parameters, t=tc and

h
ffiffiffiffiffiffiffiffiffiffiffi
m=2K

p
, the different curves should collapse [100].

They also offer direct proof that the nonlinear

terms play a major role in determining the ampli-

tude of the ripples, indicating that the incorpora-

tion of the nonlinear mechanisms in the theory of

ripple formation is essential.

7.2. Temperature dependence of the ripple wave-

length

A key quantity that provides direct information

about the nature of the relaxation mechanism is

the temperature dependence of the ripple wave-

length. Our results indicate that there are two
mechanisms contributing to surface relaxation:

thermally induced surface diffusion (Subsections

6.1.1 and 6.1.2) and ion-induced smoothing (Sub-

sections 6.1.3 and 6.1.4). At high temperatures,

thermal surface diffusion is rather intensive, thus it

is the main mechanism determining the relaxation

process, the ripple wavelength being given by Eq.

(65) or Eq. (67). Since the surface diffusion con-
stant K decreases with T as ð1=T Þ expð�DE=kBT Þ,
the ripple wavelength is also expected to decrease

exponentially with T. Indeed, such an exponential

temperature dependence of ‘ has been observed by

various groups [12,13]. However, in Subsection

6.1.3 we demonstrated the existence of ion induced

smoothing, that is present at any temperature.

Thus, up to some inessential numerical factors, the
total surface diffusion constants have a form

DT ¼ K þ D, where D is independent of tempera-

ture. Since K decreases exponentially with T, at

low enough temperatures we have K � D, indi-

cating that the main relaxation mechanism is ion-

induced. Consequently, below a certain critical

temperature Tc, given by KðTcÞ ¼ D, one expects

the ripple wavelength to be independent of T.
Support for this scenario has been provided by the

experiments in [12] and [13] and the molecular

dynamics simulations of Koponen et al. [90].

Consequently, as the theoretical results in this
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paper indicate, the temperature dependence of ‘
can be used to identify the relaxation mecha-

nism: when ‘ increases exponentially with T, we

are dealing with relaxation by thermal surface
diffusion, while a temperature independent wave-

length is an indication of ion induced smoothing.

7.3. Ripple orientation

An important feature of ripple formation is

that, as the linear theory predicts, the ripple ori-

entation depends on the angle of incidence h. The
dependence of the ripple orientation on the ex-

perimental parameters has been summarized in the

phase diagrams shown in Figs. 12, 15, 16, 21–23.

In general, for physical values of the asymmetry

parameter (i.e. for s > 1), we find that for small

angles the ripples are oriented in the x direc-

tion (along the incoming ions), and they change

orientation to the y direction for large h. The
boundary separating these two morphological re-

gions depends on the parameters characterizing

the sputtering process, such as the ion energy de-

position depth and the geometry of the deposited

energy distribution. Such transition in the ripple

orientation has been found in the simulations of

[88], where for h6 45� the observed ripples were

oriented along the x direction, while for hP 45�,
they changed their orientation to y. Furthermore,

the nonlinear theory predicts that, after the non-

linear terms take over, new ripples, with orienta-

tion different from both x and y directions, might

appear (see Subsection 6.2.1). To the best of our

knowledge, such rotated ripples have not been

observed experimentally as yet. Nevertheless, this

morphology might also lead to additional effects,
such as shadowing, which have been neglected in

our approach.

7.4. Ripple wavelength dependence on the flux

Depending on the nature of the relaxation

mechanism, the linear theory has two different

predictions on the flux dependence of the ripple
wavelength: for high temperatures, when thermal

surface diffusion dominates, one expects ‘ 	 J�1=2

(see Eq. (71)), while at low temperatures, charac-

terized by ion induced smoothing, we expect the

wavelength to be independent of flux (see Sub-

section 6.1.3). Consequently, due to its strong de-

pendence on the relaxation mechanism, the flux

dependence of the ripple wavelength can also be
used to identify the relaxation mechanism. Indeed,

a number of experiments [13,18] are compatible

with the prediction of a flux independent wave-

length. Other aspects of ripple characteristics (such

as energy or temperature dependence) also lead to

the same conclusion. However, support for the

relevance of thermal surface diffusion comes from

the experiments of [19], wherein the ‘ 	 J�1=2 be-
havior has been reported, and those of Mayer et al.

[16], who reported that the growth rate rðq�x ; q�yÞ as

a function of flux follows the predictions of the

linear theory with thermal surface diffusion.

7.5. Ripple wavelength dependence on the ion energy

The linear theory indicates that the ion energy
dependence of the ripple wavelength can be used

to distinguish between the two relaxation mecha-

nisms: at high temperatures, we expect ‘ 	 ��1=2

(see Eq. (70)), i.e. the wavelength decreases with

the energy, while at low temperature we have ‘ 	
�2m 	 � (see Eq. (70)), i.e. the wavelength should

increase with energy, strikingly different predic-

tions. A number of experimental groups have
found that the ripple wavelength increases linearly

with the ion energy [7,9,18]. However, while we are

not aware of any direct observation of a decreasing

ripple wavelength with increasing ion energy, the

growth rate dependence on the ion energy mea-

sured by Chason et al. [17] provided results which

are in agreement with the predictions based on

thermal surface diffusion.

7.6. The magnitude of the effective surface diffusion

constant

Since the transition between the low and high

temperature regimes is determined by the relative

magnitude of Dxx, Dxy , Dyy (ion induced smooth-

ing), and K (thermal surface diffusion), we need to
estimate the magnitude of these constants. In the

following we give an order of magnitude estimate

for the effective surface diffusion constant Dxx and

compare it to K, using data from [18,19] for
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Si(0 0 1). Taking Y ¼ 2:6, J ¼ 670 lA/cm2, � ¼ 9

keV, a ¼ 100 �AA, ar ¼ 2, al ¼ 4 and h ¼ 40�, Eq.

(51) gives Dxx ’ 12� 10�28 cm4/s. For comparison,

at T ¼ 550 �C, it is estimated [19] that K ’ 34�
10�28 cm4/s. Hence, since K decreases exponen-

tially with temperature, ion induced smoothing

can be significant at low temperatures (including

room temperature), in some cases being compa-

rable or more relevant than thermal surface diffu-

sion.

7.7. Kinetic roughening

An important feature of our theory is that it

goes beyond the linear approach, handling sys-

tematically the nonlinear effects as well. As we
demonstrated in Section 6.2, the presence of the

nonlinear terms can affect both the dynamics and

the morphology of the surface. The first and the

most dramatic consequence is the stabilization of

the ripple amplitude, discussed above. Further-

more, after the stabilization of the ripple ampli-

tude, the surface morphology is rather different

from the morphology predicted by the linear the-
ory. In particular, depending on the signs of kx and
ky , different morphological features can develop.

When kx � ky is positive, at large times the surface

undergoes kinetic roughening, following the pre-

dictions of the KPZ equation. This behavior has,

indeed, been observed experimentally [28,29] and

numerically [91], providing direct support for the

predictions of the nonlinear theory. When kx � ky is
negative, direct numerical integration of the non-

linear theory [65,100] indicated the existence of a

new, rotated ripple structure. The absence of ex-

perimental data on this phase might be due to the

required large sputtering times: the simulations

indicate [100] that between the linear regime and

the formation of the rotated ripple structure there

is a rather long transient regime with an appar-
ently rough surface morphology. The above pre-

dictions apply when the surface diffusion terms,

ion or thermally induced, act to smooth the sur-

face (i.e. DT P 0). However, at low temperatures,

when ion induced smoothing dominates, surface

diffusion can generate an instability that can fur-

ther modify this behavior (see Subsection 6.2.3). In

general, while rather detailed experimental data

are available describing the linear regime of ion

sputtering, explanation of the nonlinear regime is

only at its beginning, hiding the possibility of new

interesting phases and behaviors.

8. Conclusions

In this paper we investigated the morphological

properties of surfaces eroded by ion bombard-

ment. Starting from the expression for the erosion

velocity derived in the framework of Sigmund�s
theory of sputtering of amorphous targets, we

derived a stochastic partial differential equation

for the surface height, which involves up to fourth

order derivatives of the height, and incorporates

surface diffusion and the fluctuations arising in the

erosion process due to the inhomogeneities in the

ion flux. In some special cases the derived non-

linear theory reduces to the much studied KS or
the KPZ equations, well known descriptions of

dynamically evolving surfaces. However, in con-

trast with these theories, which have been derived

using symmetry and conservation considerations

[37], here we derived the continuum theory directly

from a microscopic model of sputtering, and thus

all coefficients can be explicitly expressed in terms

of the physical parameters (such as angle of
incidence, ion energy deposition depth, etc.) char-

acterizing the ion bombardment process. An

important feature of the derived nonlinear con-

tinuum theory is that the linear and the nonlinear

regimes are separated in time. As a result, they can

be discussed separately, the former controlling the

behavior at early times, the latter at late times.

Furthermore, an important result of our calcula-
tions is that higher order effects of the sputtering

process can smooth the surface. This effective

mechanism was necessary to explain ripple forma-

tion at low temperatures, when thermally induced

surface diffusion is not relevant. Consequently,

based on these two ingredients (separation of

time scales between linear and the nonlinear re-

gimes and the existence of two different relax-
ation mechanisms) we have discussed four different

cases. In the linear high temperature regime the

equations are reduced to the linear theory of BH,

predicting ripple formation, and explaining such
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experimentally observed phenomenon as ripple

orientation (and its change with ar and h), expo-

nential increase in ripple amplitude (valid for short

times), or flux and energy dependence of the ripple
wavelength. On the other hand, phenomena not

explained by this approach, such as the stabiliza-

tion of the ripple amplitude, can be explained by

considering the nonlinear terms as well. We also

show that, depending on the sign of the coefficients

of the nonlinear terms, the late time morphology

of the surface is either rough, or dominated by new

rotated ripples. The rough phase is expected to be
described by the KPZ equation, which has its own

significance: while the introduction of the KPZ

equation has catalyzed an explosion in the study of

the morphological properties of growing surfaces,

there are very few actual surfaces that are de-

scribed by it (and not by one of its offsprings, such

as the MBE or related equations [37]). The sput-

tering problem provides one of the first systems
that is convincingly described by this contin-

uum theory. Many of the previous mysteries of

low temperature ripple formation have also been

solved by the present theory. By deriving the

higher order ion-induced ES terms, we can ex-

plain the existence of ripples at temperatures

where thermally induced surface diffusion is not

active. We showed that the derived ES affects both
the linear and the nonlinear regimes, governing

the early time ripple formation, and the late time

nonlinear behavior. The coexistence of thermal and

ion induced smoothing can explain the stabiliza-

tion of the ripple wavelength at low temperatures,

in contrast with its exponential T dependence at

higher temperatures. On the other hand, our the-

ory has limitations, most of which can be already
identified in Sigmund�s and BH�s theories, with

which it is related. Namely, it is devised for

amorphous substrates, whereupon it neglects ef-

fects such as viscous relaxation, 2 which might

be the cause for the failure of the theory to predict

the inexistence in many experiments of ripples

at low (but nonzero) angles of incidence. This

issue should constitute one of the most impor-
tant extensions of our present theory. Perhaps re-

lated with this, we have seen that there exist

parameter regions at low temperatures within

which our theory breaks down, due to the unstable

higher order derivative terms that occur. A rele-

vant issue is thus to determine the correct con-

tinuum description of the surface under these

conditions.
Most of the predictions offered by the presented

continuum theory have been already verified ex-

perimentally. However, many unexplained pre-

dictions remain at low temperatures both in the

linear and the nonlinear regimes, as well as re-

garding the nonlinear regime at high temperatures.

We hope that the derivations offered in this paper

will guide such future experimental work. Fur-
thermore, some of the morphologies expected in

the nonlinear regime need further theoretical un-

derstanding as well, allowing for the continuation

of this inquiry. With the dramatic advances in

computer speed, the understanding of some of

these questions, either through numerical integra-

tion of the continuum theory or through discrete

models, might be not too far.
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Appendix A

The algebraic relation between the coordinates

of the laboratory frame and the local frame, de-
picted in Fig. 3, follows from the definitions given

in point (i) of Section 5. Accordingly, the unit

vector along the bZZ axis is the normal at point O

bZZ � n̂n ¼ ð�oxh;�oyh; 1Þffiffiffi
g

p ; ðA:1Þ

where g � 1þ ðoxhÞ2 þ ðoyhÞ2. The vector m̂m drawn
on Fig. 3 has components

m̂m ¼ ðsin h; 0; cos hÞ: ðA:2Þ
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Therefore, the unit vector along the bYY axis reads

bYY � n̂n� m̂m
jn̂n� m̂mj ¼

1ffiffiffi
g

p
sinu

ð�ðoyhÞ cos h; sin h

þ ðoxhÞ cos h; ðoyhÞ sin hÞ ðA:3Þ
and finally (A.1) and (A.3) yield for the unit vector

along the bXX axis,

bXX ¼ bYY � bZZ ¼ 1

g sinu
ðsin h þ ðoxhÞ cos h

þ ðoyhÞ2 sin h; ðoyhÞ cos h

� ðoxhÞðoyhÞ sin h; ðoxhÞ sin h

þ ððoxhÞ2 þ ðoyhÞ2Þ cos hÞ: ðA:4Þ
The matrix M defined in Eq. (36) and which re-

lates the coordinates in the local and laboratory

frames reads

M ¼

sþcoyhþsðoyhÞ2ffiffi
g

p
r � coyh

r � oxhffiffi
g

p

coyh�soxhoyhffiffi
g

p
r

sþcoxh
r � oyhffiffi

g
p

soxh�cððoxhÞ2þðoyhÞ2Þffiffi
g

p
r

soyh
r � 1ffiffi

g
p

0BB@
1CCA; ðA:5Þ

where s ¼ sin h, c ¼ cos h, and r � ððsþ coxhÞ2 þ
ðoyhÞ2Þ1=2.

Appendix B

If we perform a small Dnm expansion in Eq. (30)

we obtain

VO ¼ �pJa2

rlð2pÞ3=2
expð�a2r=2Þ

�
Z 1

�1

Z 1

�1
dfX dfY expð�fY L

2Þ

� expð�fXA� 1

2
f2XB1Þ

� ½cosuð1þ B2D20f
2
X þ B2D02f

2
Y

þ B2D30f
3
X þ B2D12fX f2Y þ B2D22f

2
X f2Y

þ B2D40f
4
X þ B2D04f

4
Y � 2CD20f

3
X

� 2CD02f
2
Y fX � 2CD30f

4
X � 2CD12f

2
X f2Y

� 2CD22f
3
X f2Y � 2CD40f

5
X � 2CD04fX f4Y Þ

þ sinuð2D20fX þ 3D30f
2
X þ D12f

2
Y

þ 2D22fX f2Y þ 4D40f
3
X Þ�: ðB:1Þ

Evaluating the Gaussian integrals in this for-

mula we obtain Eq. (32), where the coefficients

CnmðuÞ are given by

C20ðuÞ ¼ � 2A
B1

sinu þ B2

B1

1

�
þ A2

B1

�
cosu

þ 2AC
B2

1

3

�
þ A2

B1

�
cosu;

C02ðuÞ ¼ 2
l2

a2
cosu

B2

2



þ AC
B1

�
;

C30ðuÞ ¼ sinu
1

B1



þ A2

B2
1

�
� B2 cosu

3A
B2

1



þ A3

B3
1

�

� 2C cosu
3

B2
1



þ 6A2

B3
1

þ A4

B4
1

�
;

C12ðuÞ ¼ 2
l2

a2
sinu

�
� B2 cosu

A
B1

� 2C cosu
1

B1



þ A2

B2
1

��
;

C40ðuÞ ¼ 4 sinu
�3A
B2

1


�
� A3

B3
1

�

þ B2 cosu
3

B2
1



þ 6A2

B3
1

þ A4

B4
1

�

þ 2C cosu
15A
B3

1



þ 10A3

B4
1

þ A5

B5
1

��
;

C22ðuÞ ¼ 2
l2

a2

�
� 2 sinu

A
B1

þ B2 cosu
1

B1



þ A2

B2
1

�

þ 2C cosu
3A
B2

1



þ A3

B3
1

��
;

C04ðuÞ ¼ 3
l4

a4
B2 cosu

�
þ 2C cosu

A
B1

�
:

ðB:2Þ

Taking into account Eqs. (33a) and (33b) relating

the local (u) and the global (h) angles of incidence

through the surface slopes oxh, oyh, a small slope
approximation leads to
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eA
2=2B1 ’ ea

4
rs

2=2f 1þ a4r
2f

a2l
f
sðoxhÞ

"(
þ
a2l
f
c2ðoyhÞ2

þ
a2l
f 2

ðoxhÞ2 a2lc
2ð1

 
þ 2s2Þ � a2rs

2ð1þ 2c2Þ

þ
a4ra

2
l

f
s2c2

!#)
;

B�1=2
1 ’ 1ffiffiffi

f
p 1

(
�
a2r � a2l

f
scðoxhÞ

þ
a2r � a2l
2f 2

ðoxhÞ2ða2rs2ð1þ c2Þ

� a2lc
2ð1þ s2ÞÞ �

a2r � a2l
2f

c2ðoyhÞ2
)
:

ðB:3Þ
Also, we have

C20ðhÞ ¼ Cð0Þ
20 ðhÞ þ Cð1Þ

20 ðhÞðoxhÞ;
C02ðhÞ ¼ Cð0Þ

02 ðhÞ þ Cð1Þ
02 ðhÞðoxhÞ;

Cð0Þ
20 ðhÞ ¼

a2r
2f 3

(
� 2a6rs

4c2 þ 2a4rs
4ðs2 � 2c2Þ

þ a4ra
2
ls

2c2ðs2 � c2Þ þ a2ra
2
ls

2c2ð7s2 � 5c2Þ

þ a4lc
4ð5s2 � c2Þ

)
;

Cð1Þ
20 ðhÞ ¼

a2rsc
f 4

(
� 2a6rs

4 � a6lc
4 þ a6ra

2
lðs2 þ s2c2Þ

� a4ra
4
lðc2 þ c2s2Þ þ a4ra

2
lð5s2 � 3s2c2Þ

þ 4a2ra
4
lc

2

)
;

Cð0Þ
02 ðhÞ ¼ � c2a2r

2f
;

Cð1Þ
02 ðhÞ ¼

a4rcs
f 2

:

ðB:4Þ

In the above expressions we used the notations

ar � a
r
; al � a

l
; s � sin h;

c � cos h; f � a2rs
2 þ a2lc

2: ðB:5Þ

Appendix C

Eqs. (34a) and (34b) relating the incidence angle
as measured in the local and laboratory reference

frames apply only in the off-normal incidence case

(h 6¼ 0). In the following we derive the correct ex-

pressions for the normal incidence case (h ¼ 0).

Indeed, if h ¼ 0, the vectors n̂n and m̂m shown in Fig.

3 are given by

n̂n ¼ ð�oxh;�oyh; 1Þffiffiffi
g

p ; m̂m ¼ ð0; 0; 1Þ: ðC:1Þ

Proceeding now as in (33a) and (33b), we obtain

cosu ¼ 1ffiffiffi
g

p ;

sinu ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðoxhÞ2 þ ðoyhÞ2

g

s
;

ðC:2Þ

which are the h ! 0 limit of Eqs. (33a) and (33b).

The small gradient expansion performed on Eq.

(C.2) now gives

cosu ’ 1� 1

2
ððoxhÞ2 þ ðoyhÞ2Þ;

sinu ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðoxhÞ2 þ ðoyhÞ2

q
:

ðC:3Þ

Using Eq. (C.3) in the expansions leading to Eq.

(40), it can be seen that the expressions obtained
for the coefficients indeed are the h ! 0 limit of

Eqs. (41)–(55).

Appendix D

The solution corresponding to a rotated ripple

structure follows from Eq. (83). Indeed, in the
absence of the nx and ny terms, if we consider a

solution of (83) of the form hðx; y; tÞ ¼ gðx� vy; tÞ
with v an arbitrary constant, the surface mor-

phology evolution equation takes the form

otg ¼ �v0 þ colg þ ðmx þ v2myÞo2
l g

þ 1

2
ðkx þ v2kyÞðolgÞ2 þ ðX1 þ v2X2Þo3

l g

� Kð1þ v2Þ2o4
l g; ðD:1Þ

where gðlÞ ¼ gðx� vyÞ is the steady wave solution

[104]. From (D.1) it follows that the nonlinearity
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vanishes when kx þ v2ky ¼ 0, or v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�kx=ky

p
. In

this case we obtain an exponentially growing

ripple structure with ripples forming an angle hc ¼
tan�1 ðvÞ ¼ tan�1 ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�kx=ky

p
Þ with respect to the x

axis.
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