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A h a d .  A stochastic one-dimensional map is introduced to model the steady-state fluctu- 
ations of the surface width in far-from-equilibrium surface roughening. The dynamics of 
the map and the correlations in the time sequence are investigated. In particular, for power 
law distributed noise a non-trivial multi-affine behaviour is observed. 

The ubiquity of self-affinity in nature has attracted much interest recently. Considerable 
progress has been made in understanding the dynamics of non-equilibrium surface 
growth in the context of a variety of models, analytical theories and experiments [ 1.21. 

Kardar, Parisi and Zhang (KPZ) proposed [3] a nonliner Langevin equation which 
successfully explained many aspects of surface dynamics observed in different models. 
The equation describes the temporal development of the height variable h(x ,  1 ) :  

ah A 
- = u V 2 h + - ( V h ) ‘ + . r 7 ( x , t )  
at 2 

where x is a d-dimensional position vector and .r7 is a stochastic driving noise, whose 
correlation is specified by the two-point correlation function 

( ~ ( x ,  f )? (x ’ ,  1 ’ ) )  = 2 D S ( x - x ’ ) S ( f  - t ’ ) .  

Traditionally the noise is assumed to have a Gaussian distribution. 
In (1) the first term on the right-hand side represents the relaxation of the surface 

by a surface tension U, while the second term is attributed to the lateral growth. 
In the absence of noise equation (1) describes the smoothing of a surface: given 

any rough initial configuration the surface will gradually approach a flat shape. 
However, the combined effect of independent noise and the nonlinear interaction in 
(1) makes the interface rough. 

A central problem to be understood is the non-trivial coupling between noise and 
deterministic dynamics associated with different models. 

The relevant physical observable is the average width w(L,  I ) ,  where Lis the linear 
size of the system. It is expected to have the scaling form [l] w ( L ,  1 ) -  Lmf( t /L ’”P) ,  
where Lis  the system size a n d j ( u )  has the asymptotic behaviourf(u + m)=constant, 

The roughness can be characterized by the exponent a. For two-dimensional systems 
n and 0 are known to be exactly [3,4]: a =f ,  p =f. Recent experiments on bacterial 
colony growth [ 5 ]  and immiscible displacement of viscous fluids in porous media [6,7] 
have led to exponents different from these: the results for a are in the range 0.75-0.85. 
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f(u-?O)-uP. 
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A possible explanation for the anomalously large exponents found in these experiments 
has been proposed by Zhang [SI. He suggested that the new exponents arise from the 
fact that the amplitude of the random noise in the experiments has a non-Gaussian, 
power law distribution of the form Pn(v)-l/q’+* where q is the delta correlated 
noice. The p dependence of the exponents (I and p has been observed in numerical 
simulations both in two and three dimensions [9-111. 

Recently numerical evidence has been presented of multi-affine scaling in a model 
of rare events dominated roughening [12]. For multi-affine surfaces the qth-order 
height-height correlation functions should be studied [13, 141 

c,,(x) =(I h ( x ’ )  - h ( x ’ +  x)I”),, - x4”q (2) 

where Hq is an exponent continuously varying with q. In [12] a crossover length has 
been identified below which the qth-order correlation functions showed multiscaling 
behaviour. Although the existence of this crossover length made the situation similar 
to the effect of the intrinsic width on the scaling [IS], the variation of the crossover 
length with the system size showed that the situation here is qualitatively different. 
This multi-affine scaling is specific to rare-events-dominated roughening; the Gaussian 
noise in the KPZ equation results in a constant Hq. 

Extensive simulations have already been carried out to study the temporal develop- 
ment of correlations. The fluctuations of the width are less studied. In the steady state 
f >> La’@ the width w (  L, t) saturates and fluctuates around a constant which scales as 
L“. In a recent paperI6 has been presented numerical and analytical results showing 
l /f” characteristic frequency spectra of the time series of surface width of a ballistic 
deposition model. This result can be understood if we consider that the time series 
generate a self-affine signal. 

In this paper a stochastic one-dimensional map is presented in order to model 
some aspects of the temporal fluctuations in growth models. The model is very sensitive 
to the noise distribution: for bounded noise the time sequence is found to be self-affine 
while for power law distributed noise it shows multi-affine behaviour up  to a critical 
timescale. 

As was pointed out in [3] the determinstic version of the KPZ equation (i.e. with 
~ ( x ,  f )  = O ) ,  describes a smoothing phenomena. In two dimensions the solution in the 
asymptotic regime is composed of paraboloid segments 

This relation is the solution of (1) in the absence of the V’h term. 
Considering such a paraboloid segment in moment to with characteristic width L 

and height h ( L ,  to ) ,  its time evolution can be seen on figure 1. The effect of the 
deterministic KPZ equation on this paraboloid segment is the decrease of its height 
from h ( L ,  to)  to h(L ,  f f f , ) :  

h(L,  10) h ( L ,  f +  to )  = 
kh(L,  f,)+l (4) 

where k = 8 h t / L 2  and h ( L ,  lo) = A. 
Since for a paraboloid segment the width w ( <  t )  is related linearly to the height 

h(k ,  1 ) .  the height fluctuations of the paraboloids correspond to the width fluctuations 
of the surface. 
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z e 
Figure 1. n e  evolution of a paraboloid segmenl in time: The paraboloids heighl decreases 
from h(L, lo)  to h(L,  I +  lo) under the affect of the smoothing described by (3). 

The effect of the noise can he considered as increasing the height of the paraboloid 
by v. In this picture the fluctuations of the paraboloids height are the effect of two 
different factors: the noise increases the height of the paraboloid from h , ( = h ( L ,  to)) 
to h, + 7 and the deterministic dynamics decreases its height to h'+'. This coupled 
phenomenon is described by a one-dimensional map mixed with noise 

A t  thic nnint we Ehniilrl l i k e  tn e h n w  t h m  Aifferenre hnturppn rhiWno thp narnhnlnL4 '_. L... I .... .._".."_.I ....- I" I..".. ...I -...-. " ..-1 "" .I._ _.." ........ ~ I.._. -.-Iy .-.- 
segments and varying their height. The former is incorporated in the constant A in 
(3), which can take values specified by the initial conditions h ( L ,  to) and it has no 
effect on the width. The latter i s  affected by the noise and the smoothing described by 
(4) and it is the quantity of interest. It is defined as h ( L ,  I )  = h , ( c )  - h , ( [ +  L / 2 )  (see 
figure 1). 

In the remainder of this letter we shall study the properties of the map ( 5 )  and the 
effect of k and v on the iteration. 

For 11 = 0 (no noise) the map ( 5 )  has a stable fixed point in zero, so every non-zero 
initial condition converges rapidly to this point. This corresponds to the smoothing 
phenomenon described by  the deterministic KPZ equation: the roughness decreases in 
time leading to a flat surface. For non-zero 1) (we assume that the noise is positive, 
i.e. y 3 0 )  the map has a non-zero fixed pain! 

4 k  

This fixed point is stable so during the iteration h, approaches it. But 7 is a random 
variable s o ' h * ( v )  appears as a fictive fixed point, which changes its position randomly. 
In the k + O  limit for non-zero 7 the expectation value of h * ( v )  scales with k as 
h * - k - ' 1 2 ( - L ) .  Since the derivative off,(x) in h* i s fv (h*)+ l+O(k) ,  in the k+O 
limit this relation predicts a linear convergence to the fixed point. These results can 
be condensed into a simple scaling law similar to that used in surface growth [2]: 
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where the scaling function g ( u  + 0) - up and g ( u  -00) =constant. The scaling 
exponents are a = 1 and p = 1, so the scaling relation a + a / p  = 2 is fulfilled. 

These exponents are independent of the noise distribution. Figure 2 presents 
numerical evidence for this scaling: the inset shows the time evolution of h, for different 
k values; the main figure shows these curves rescaled following the scaling relation (7). 

If t >> k d p  the height h, saturates and fluctuates around a constant value which 
scales as kK1'*. We continue with investigating the correlations in the time dependent 

correlation function applied to time dependent signals: 
-;"-"% -a":n+a.,d mCt- r tLa -nr  .._" ria- U T a I  . . A . r r h ~ - - n l : - n n F t h ~  ^tL -,2--L&-L. L-:.-L& 
n i s i i a t  ICB~DLCICU aIlrl L l l s J a l U l P L f i Y I I .  T I L  .:"U). L L l r  ~ C P L I " ~ V 1  U l C  L j L l l - o L U G l  I n S l & U L - U G I g U L  

c q ( t )  = ( l ~ r + t o - ~ , o I q ) r o  

which is expected to scale as c,,( t )  - tqHq. If H,, is constant the signal is simply self-affine, 
while for q-dependent H,  the signal is called multi-affine. In both cases H, plays the 

If 1) has a Gaussian distribution, cq(f) is found to exhibit a simple scaling law with 
constant H,  = O S 1  *0.02. The measurements on very long signals show that the fluctu- 
ations in h, generate a self-affine function. We note that this value is the same as for 
the corresponding width fluctuations [16]. 

Non-trivial scaling has been observed when the noise 9 had a power law distribution. 
The scaling of the gth-order height-height correlation functions for different values 
of q can be seen on figure 3. The one million length signal used in this analysis was 
generated for the parameter values k = lo-'' and 1.1 = 3. The initial part of the data set 
shows a multi-affine scaling with a scaling exponent H, depending on q. A crossover 
to a self-affine scaling is observed if I exceeds some value f,. A third region, for f > f s m ,  

is present, where the correlation functions saturate. This is the most relevant part of 
our results. We expect that multi-affine scaling might appear in the steady-state 
fluctuations of the width in rare-events-dominated roughening. A similar scaling has 
been observed when the spatial correlations of a such a surface has been investigated 
[12]. We note that for larger values of k the multi-affine scaling is also present but the 
second self-affine part cannot be observed clearly. 

m!e of the rnughnecs exponent [!?J 
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Figure 2. Time evolution of h, for k = IO-', I O P ,  
original C U N ~ S  while the main figure shows them rescaled by (7). 

IO-". The inset shows the 
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Figure 3. The qth-order correlation function for p = 2, k = lo-'" and q = 1,2,5.7,9 

We studied the p dependence of the correlation functions in this model. Figure 4 
shows the scaling of c6( 1 )  for different values of p. The conclusion one can draw from 
this figure is the following: the length of the multi-affine scaling region seems to depend 
very much on the value of /L. In particular, for increasing p the multi-affine region 
seems to disappear and the self-affine part tends to dominate. 

This conclusion is in concordance with the fact that for large p values the noise 
distribution approaches the bounded noise, so the multi-affine part should disappear. 
The mechanism of the transition from multi-affine to self-affine behaviour is very 
interesting here: the variations in p affect the length of the scaling region and slightly 
after the value of the exponents (for large q values the variation of the H, with p is 
very small; this is why it cannot be observed on this figure). In figure 4 we have shifted 
vertically the curves for different p values to see the difference in the scaling regions. 
In order to explain this phenomena, we have to study the effect of the rare events on 
the correlation functions. 

Figure 4. The sixth-order carrelation funclion c d t )  far p = 2.3.4.5 (from right 10 left). 
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Because the fluctuations take place in a very narrow region compared with h * -  
k- ' I2 ,  the response in Ahe = Ih,,, - h,l is linear in the noise q. (This linearity has been 
verified numerically also for the rare events observed in the iteration. For rare events 
larger than k-' a saturation phenomenon takes place, but the frequency of such a rare 
events is of order k'+l so for small k values it has no effect on the scaling.) If a large 
Ahl  appears, the perturbation will decrease in time, converging linearly to the mean 
value of the fluctuations. Thus a perturbation Ahl  has an effect of length T in time, 
where T- A h ,  - q. It can be easily shown that a perturbation with characteristic length 
T affects the scaling of the correlation function c , ( f )  only if T >  I. This assumption is 
valid only if the perturbation is alone, i.e. no more large q appear in the time interval 
7. In the time interval I the expected value of the large fluctuations scales like [17, 181 
qm..- I"", so it affects the scaling of the c , ( I )  only iff ' /"> f which predicts a critical 
timescale f,- (constant)'"w'-". This relation predicts that for f > f ,  the rare events do  
not affect the scaling of the correlation function, so the cumulative affect of the small 
fluctuations will dominate. With increasing p the multiaffine scaling region decrease, 
as has been observed on figure 4. We expect that the constant appearing in the relation 
for I, has some k dependence, as has been observed in [12]. The arguments presented 
do not give the explicit form of this dependence; more detailed numerical studies are 
needed to investigate this problem. 

Since the position of the transition point 1, cannot be extracted exactly from figure 
4, we have only a qualitative agreement between the relation for f ,  and the numerical 
results. Larger simulations are needed to verify numerically this relation. 

Figure 5 shows the Hq spectrum measured for p = 3. 
In [I21 arguments showing a phase transition at q = p were presented. The same 

arguments can be followed here also: the height differences are distributed according 
to the function [ 191 P,,( q) so the 4th moments diverge for q > p. 

"'- t 4 
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Figure 5. The H,, spectrum for p = 3. 

At the end of this letter we should like to discuss the connections of the results 
obtained on this map with the real surface growth phenomena. 

Although related to the KPZ equation, the approximations used in this paper may 
neglect some important phenomena affecting the surface growth. In particular we 
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considered that the surface can be roughly approximated by a paraboloid of width L 
(which is taken to be constant) and height h,  and that the evolution in time affects 
only its height. Really an important role is played by the lateral growth of these 
paraboloid segments. 

In the growth models for power law distributed noise a /L dependence of the scaling 
exponents a and p has been observed. On the other hand, a noise independence of 
the transient part expressed by (7) characterizes the map. 

But with these differences we believe that the coupling observed between the noise 
and the deterministic smoothing dynamics is very interesting and might help us to 
understand the same type of phenomena occurring in surface growth. A non-trivial 
fixed point is introduced by the noise 7. Starting form h,= 0 the height h, approaches 
this fixed point following the scaling relation (7). After the saturation is achieved, in 
the steady-state state, h, fluctuates, its mean value scaling as I c ' ' ~ .  The fluctuations are 
the result of the convergence of the h, to the fixed point, which changes its position 
randomly. The correlations in these fluctuations are very sensitive to the noise distribu- 
tion (which governs the random motion of the fixed point): for power law distributed 
noise the time series shows multi-affine correlations, while for bounded noise they are 
simply self-affine. It is fascinating that qualitatively the same type of scaling has been 
observed in this model and in the spatial fluctuations of the rare-events-dominated 
roughening. In particular the same type of transition from multi-affine to self-affine 
scaling has been observed. We believe that these transitions have the same explanation: 
the insensitivity of the correlation functions c , ( t )  (or c,,(x)) to the fluctuations shorter 
in time (or space) than f (or x). 

We thank T Vicsek for useful discussions. The present research was partially supported 
by the Hungarian Scientific Research Foundation Grant No 693. 
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