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ABSTRACT

Global transcriptome data is increasingly combined
with sophisticated mathematical analyses to extract
information about the functional state of a cell. Yet
the extent to which the results reflect experimental
bias at the expense of true biological information
remains largely unknown. Here we show that the
spatial arrangement of probes on microarrays and
the particulars of the printing procedure signifi-
cantly affect the log-ratio data of mRNA expression
levels measured during the Saccharomyces cere-
visiae cell cycle. We present a numerical method
that filters out these technology-derived contribu-
tions from the existing transcriptome data, leading
to improved functional predictions. The example
presented here underlines the need to routinely
search and compensate for inherent experimental
bias when analyzing systematically collected,
internally consistent biological data sets.

INTRODUCTION

Microarray technology has emerged as a viable and indis-
pensable tool in cell biology, offering information on the
simultaneous activity of virtually all genes within a given
organism (1). Consequently, gene expression profiling is used
in a variety of applications, from uncovering gene function
(2,3) to the molecular classification of cancer phenotypes (4—
12). Owing to the widespread use of microarray technology, it
is of great importance to ensure that the measured gene
expression levels reflect the number of specific mRNA
molecules in the cell (13). Two main types of errors contribute
to inaccuracies in measured gene expression levels: systematic
and non-systematic errors. Systematic errors arise reproduci-
bly as a result of the experimental procedure (14,15), while
non-systematic errors originate from the inherent biological
variability of cells (16—18). Normalization methods have been
widely used to correct for systematic errors (19-22), but the
source of the corrected biases remains largely unexplored.
Here, using publicly available microarray data on synchron-
ized Saccharomyces cerevisiae cell cultures traversing
through the cell cycle (23,24), we uncover a strong technical

component imposed over the gene expression values measured
by microarray. In particular, we show that the printing of the
probes on the microarray results in a major and systematic
contribution to the observed gene expression levels that has a
significant impact on the interpretation of gene expression
measurements. The generality of our results is demonstrated
by the presence of the observed effects in microarray data that
were collected by two different techniques in different
laboratories, one using custom built cDNA arrays and the
other using Affymetrix oligoarrays. We reproduce the
observed experimental bias by computer simulation and by a
simple theoretical model. Based on this model, we develop a
method to filter out the observed bias from the existing
microarray data, thereby improving the classification of genes
into functional categories.

MATERIALS AND METHODS
Data sets

The complete microarray data on synchronized S.cerevisiae
cell cultures traversing through the cell cycle (23,24), which
we refer to as combined data (CD), were downloaded
from http://genome-www.stanford.edu/cellcycle/data/rawdata/
combined.txt. Individual array data (IAD) for three of the four
experiments, available online at http://genome-www.stanford.
edu/cellcycle/data/rawdata/individual.html, contain additional
information about the experimental technology, including the
location of all cDNA samples on the 96-well microtiter plates,
as well as the location of the corresponding probes on the
microarray slides. Moreover, the location of the spots on the
scanned fluorescence images used to calculate the expression
ratios are also provided and the images are available for
download. In the a-factor experiment, unique probe spots
corresponding to 6145 genes were printed from plates 1
through 64 onto the microarray slide (24). The cDNA samples
were arranged on the 64 microtiter plates according to their
chromosomal order (from the centromere to the left telomere
and then from the centromere to the right telomere). The probe
locations on the microarray and the four blocks of 44 X 44
spots apparent on the scanned fluorescence images indicate
that the cDNA samples were printed via a four tip print head
from the 96-well plates onto the microarray two rows at a time
(see also Figs 1 and 2). Therefore, each of the four print tips
deposited 44 X 44 = 1936 probe spots on each microarray.
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Figure 1. Spatial periodicity of temporal mRNA expression profiles correlates with ¢cDNA probe locations on the microarray chip. (a) Average
cross-correlation coefficient of the temporal expression profiles as a function of the inter-gene distance along the chromosomes for the combined data (CD).
The average spatial cross-correlation coefficient C(D) for each of the 16 yeast chromosomes (A-P) following o-factor arrest-induced synchronization are
shown. The inset displays a portion of C(D) obtained for chromosome B to demonstrate the short period (2 gene) spatial periodicity of gene expression.
(b) Average distance of the spotted cDNA probes on the microarray chip as a function of the chromosomal distance D. The inset shows in detail this
dependence for the same portion of chromosome B, as in (a). (¢) Spatial arrangement of deposited cDNA probe spots on the microarray chip. As an example,
a set of 264 consecutive genes (in chromosomal order) is considered. Spots of the same color are printed on the slide by the same print tip. The gradually
darker shades indicate simultaneous printing of 24 spots from two consecutive rows on the 96-well plate. The numbers in this table correspond to both the
spatial order on the chromosome and the position on the 96-well plates from left to right and from top to bottom. (d) The 2 gene and 24 gene periodicities
appear as a consequence of the arrangement of cDNA probes on the microarray chip.

Average spatial cross-correlation coefficient

To study the spatial properties of the gene expression data for
each of the 16 yeast chromosomes we rearranged the CD set
based on the sequential order of genes on the individual
chromosomes from the left to the right telomeres. For each
chromosome the expression log-ratios are organized as a
matrix E(i,f) of Ng rows and N7 columns, where Ng is the

number of genes on the chromosome, while N represents the
total number of experiments (the number of sampling times).
We define the spatial distance D between genes G; and G; as
the difference between their row numbers within the matrix
E(i,¢) (see also Supplementary Material).

The co-expression of any two genes G; and G; is
characterized by the cross-correlation coefficient of their
temporal expression profiles E(i,r) and E(j,t), defined as
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Figure 2. The microarray printing procedure as a source of experimental bias. (a) The location of the printing head with four tips as it transfers samples from
96-well plates onto the microarray slide. The resulting printing pattern defines four groups of spots, labeled 1-4. Each well of a 96-well plate can be labeled
according to the print tip that took the sample from it. (b) The average log-ratio of measured expression levels calculated from the individual array data (IAD)
is shown for each position within the 96-well plates, for time point 10 (i.e. 70 min after release from o-factor arrest). Note the regularity of the pattern within
this 8 X 12 matrix. It can be approximately constructed from the repetition of 2 X 2 matrices (corresponding to print tips 1-4, shown in the bottom left
corner). Averaging over all wells labeled 1-4 results in the 2 X 2 matrix shown under the 8 X 12 matrix. (¢) All samples printed on the microarray yield four
spatially distinct groups of 44 X 44 spots, corresponding to print tips 1-4. Averaging the log-ratios of measured expression levels from the IAD within each of
the four groups of spots results in the 2 X 2 matrix shown below the microarray. The numbers that appear within the 2 X 2 matrices on the left and right are
identical, indicating that printing was performed with a four-tip print head, and each tip contributed a significant bias to the measured expression data.

C(iy) = C(EG,0.EG,0) =
= [(E(l’t)E(]’t)> - <E(l’t)><E(]vt)>] X
X ACLEG) = CEGOPKEG) — EGo)») > 1

where () denotes the temporal average of the quantity within
the angle brackets. To determine how co-expression depends
on the distance between genes, we averaged the cross-
correlations C(i,j) for all genes G; and G; located at distance D
= li — jl from each other. For a chromosome containing N
genes, the average spatial cross-correlation coefficient C(D)
was calculated for distances ranging from D =1 to D = N/2:

C(D) = [1/(N-D)] Y Clii+D) 2

i=1

Spatial arrangement of the probe spots on the
microarray

As described above, during the printing procedure the cDNA
probes are placed on the microarray in a particular pattern, in
accordance with their order on the chromosome. The generic
printing procedure can be best illustrated if we consider 246
consecutive genes from three 96-well microtiter plates (see
Fig. 1c). The four-tip print head takes samples from two
consecutive rows of the plate and prints them on the slide.
Therefore, if Gy, G,, G3, ... are consecutive genes on the
microtiter plate, genes Gy, G,, Gy3, and G4 will be printed
simultaneously on the microarray by print tips 1, 2, 3 and 4,
respectively. The next quadruplet of genes printed on the slide
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will be G3, G4, G15 and Glﬁ, followed by G5, G(,, G17 and G]g,
etc. Due to this procedure, genes G, Gs, Gs, ... G11; Gas, Ga7,
... G3s; Gyo, Gsy, ... Gso; ... will be printed by tip 1 and
affected by the same tip-dependent bias. At the same time,
genes Gy, Gy, ... Gi3; Gog, Gog, ... Gsg; Gsg, Gsa, ... Gegp; ...
will be printed by tip 2 and affected by the same tip-dependent
bias (specific to tip 2, and different from the bias characteriz-
ing tip 1). One can similarly create the list of genes printed by
tips 3 and 4.

To characterize the dependence of cDNA probe position on
the microarray as a function of the chromosomal location of
the corresponding genes, we define the average intergenic
distance on the scanned fluorescence images as

AD) ={(x; = X; + p)* + i —yi + P 3

where x; and y; denote the horizontal and vertical coordinates
(in pixels) of the probe spot corresponding to gene G; on the
microarray, and the average is taken over all possible gene
pairs located at distance D from each other on the chromo-
some.

Simulation of the printing procedure

We generated four groups of time-dependent ‘log-ratios’
(&0, &G0, &G, and &), i = 1, 2, 3, ..., Ng/4] by
choosing uncorrelated random values from a Gaussian distri-
bution. The total number of ‘genes’ in this simulation was Ng
= 400 and the four groups of 100 simulated ‘log-ratios’
corresponded to the four groups of genes printed by each of
the print tips. Additionally, to model the contribution of the
four printing tips to the measured expression, four independent
random values, 17,(¢), 1,(¢), 113(?) and 14(¢), were added to each
gene in the four groups at each time. In the o-factor
experiment, the order of genes in the data table is a function
of the physical location of their corresponding probes on the
microarray. The order of genes in our simulated data table was
determined using the same function, selecting genes from the
four groups as follows: G{, G3, G, G3, ...; Gb _ 1, G, G} .. 1,
Gh+2.Gh+3.Gh s i Glp_ 1, G3p, Ghp 4 1, G3p 4 2 ..
where P = 10 represents the number of wells within one row
on the ‘plate’. The superscripts and subscripts represent the
group (1, 2, 3 or 4) to which the gene belongs and the number
of the gene in the list, respectively. Finally, we calculated the
average cross-correlation of the genes in the list, depending on
the distance D, defined as the difference of their subscripts
[D(GMG") = li — jll. See Supplementary Material for a
theoretical understanding of the observed spatial periodicity of
co-expression.

Correction of the bias introduced by the print tips

To correct for the bias introduced by the print tips, we applied
the method described in Yang et al. (21), i.e. at each time ¢ we
subtracted the average expression (4/Ng)2,;&,(i.1) from all the
‘log-ratios’ within each group g, g =1, 2, 3, 4:

&) = &) — [(4ING)Zi&,(i.)] 4

where the asterisk denotes the corrected values.

We applied the same correction method to the experimental
data, replacing fg(i,t) with E,(i,f) in equation 4. However, for
the experimental data, the bias within an experiment is not

constant, but has a trend as the experiment proceeds (see
Fig. 3a). Therefore, for each of the 64 microtiter plates used in
an experiment, we improved the method described in Yang
et al. (21) by calculating the average log-ratios x,(p,f) =
(1724) >~ &1 corresponding to tip g and plate p at time 7.

Gionp . . . . .
Next, we approximated the increasing trend of the bias at time
t by using a least squares linear fit. Finally, we obtained the
corrected E,**(i,f) as follows:

E5*(i,t) = Eg(i,t) — la(H)p + b(1)] 5

where a(¢) and b(¢) are the coefficients obtained from the linear
fit at time ¢.

Hierarchical clustering and functional classification

We used the algorithms Cluster and TreeView developed by
Eisen et al. (25) to hierarchically cluster the genes based on
the similarity of their expression profiles, both for the original
and the corrected data. Next, we developed our own software
to color the dendrogram produced by the program Cluster
based on the functional classes to which the genes belong (see
Supplementary Material). The 19 functional classes of
S.cerevisiae gene products (see Supplementary Material)
were downloaded from the MIPS database (26): http:/
mips.gsf.de/proj/yeast/catalogues/funcat/.

We define the distance of two genes on the dendrogram as
the minimum number of steps needed to walk from one node
to the other as follows. For each pair of nodes, the list of
superior nodes is determined. If the numbers of steps to the
first superior node common to both are s, and s,, respectively,
then the distance of the nodes on the dendrogram is sy + 5.
The closest neighbor of a gene within a functional class is the
gene from the same functional class located at minimum
distance from it. The average minimum distance is the
arithmetic mean of the distances between all closest neighbors
within a functional class.

RESULTS

Spurious spatial periodicity of co-expression during the
S.cerevisiae cell cycle

We examined the similarity of temporal expression profiles of
individual genes as a function of their spatial separation along
the individual yeast chromosomes. We rearranged the
microarray expression data such that all genes followed their
natural order along the 16 yeast chromosomes. Next, we
calculated the average spatial cross-correlation coefficient
C(D) of the temporal expression profiles of genes located at a
distance D from each other (see Materials and Methods). If the
expression level of neighboring genes did not correlate, C(D)
should be approximately O for any D # 0. As gene expression
requires a locally permissive chromatin structure (27), we
expected C(D) to gradually decay with the distance due to the
fact that neighboring genes have a higher likelihood to be
simultaneously accessible for transcription than those that are
far from each other along the chromosome. In contrast, we
found that C(D) exhibited an unexpected and remarkable
periodicity. As shown in Figure la for o-factor synchronized
yeast cells (24), on average the temporal expression profiles of
genes located at distances that are multiples of 24 have an



increased tendency to correlate in all chromosomes. At higher
resolution (Fig. la, inset) the presence of a second spatial
periodicity with smaller amplitude is also evident with a
remarkably regular 2 gene period superimposed on the 24
gene periodicity.

The observed spatial periodicity was not unique to yeast
cells synchronized by o-factor arrest. Yeast cultures synchron-
ized by elutriation or by arrest of a cdcl5 temperature-
sensitive (ts) mutant displayed a similar periodicity to that
seen for a-factor arrest (24). In contrast, the period for cdc28"
mutants (23) was shorter, involving genes located at distances
that are multiples of 13 (see Supplementary Material). The
source of this difference was not immediately apparent, since
both the synchronization protocols and the yeast strains were
different from the other experiments. However, the data for
cdc28% mutants were collected on Affymetrix oligoarrays
(23), while all others were collected on cDNA microarrays in a
different laboratory (24), suggesting a possible systematic
experimental bias as the source of the observed periodicity.

To assess whether the 2 gene and 24 gene periodicities
correspond to true biological activity or to consistent experi-
mental biases, we examined the properties of the spotted
cDNA microarrays utilized in the o-factor experiment. As the
cDNA probes are deposited on the microarray slides in a
highly regular pattern (see Materials and Methods and Fig. 1c¢),
we studied how the average distance of the cDNA probe spots
on the scanned images depends on the chromosomal distance
of their corresponding genes. The average inter-spot distance
A&D) on the scanned fluorescence images for all genes
separated by a chromosomal distance D is shown in
Figure 1b, with an enlarged section in the inset. It is evident
that the double periodicity present in these graphs is virtually
identical to that seen for the average spatial cross-correlation
coefficient C(D) in Figure la. This indicates that the observed
spatial periodicity of the average spatial cross-correlation
coefficient C(D) in spotted cDNA arrays arises as a conse-
quence of the experimental technology (Fig. 1c and d). A
similar analysis for the Affymetrix oligoarrays was not
possible, because the scanned fluorescence images and the
location of the oligonucleotide groups on the array are not
publicly available.

The experimental source of the spurious periodicity of
co-expression

To uncover the cause of the observed spatial periodicity, we
calculated the average log-ratio of expression for each of the
96 wells on the 64 microtiter plates from which the deposited
cDNA probes originated (Fig. 2a). The images that we
obtained following this calculation displayed a surprising
regularity for all 18 time points of the a-factor experiment, i.e.
they can be viewed as a repetition of a block of four wells
(Fig. 2b). This, together with the arrangement of the features
on the scanned slide images into four distinct blocks, implies
that the observed regularity is a result of tip-specific biases
introduced by the four-tip printing head, as previously
suggested (21).

To further demonstrate this, we averaged the log-ratios
corresponding to each of the four positions within the 4-well
blocks in all o-factor experiments (Fig. 2b). At the same time
we calculated the average log-ratio of all the spots located
within one of the four blocks on the slide (Fig. 2c). The
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average log-ratios calculated in these two ways were identical,
allowing us to label each well on the 96-well plates and each
spot on the microarray slide with 1, 2, 3 or 4, corresponding to
the four printing tips. (The indices 1-4 characterize the
position of the tips within the print head, and not the actual
print tips.)

In Figure 3a we plotted the average log-ratio of all genes
printed by tips 1-4, with blue, red, black and magenta,
respectively, for plates 1-64 progressively used in each of the
18 a-factor experiments. There are three conclusions that can
be drawn from investigating Figure 3a. First, the systematic
difference between the average log-ratios corresponding to
different print tips demonstrates the tip-specific contribution
to the measured gene expression. Second, the experimental
contribution to the measured log-ratio gradually changes as
each of the 18 experiments progresses (from plate 1 through
plate 64). Finally, the abrupt changes of average log-ratio at
the borders between two experiments most likely reflect the
fact that the print tips were manipulated (cleaned and replaced
in the print head in random order) between experiments.

Next we examined if the observed periodicity can arise as
the result of four random, additive time-dependent biases
M), nx(t), m5(¢) and 74(¢), which identically affect all genes
labeled 1, 2, 3 and 4, respectively. To this end, we simulated
the printing procedure (see Materials and Methods) and
calculated the average cross-correlation of the genes in the list,
depending on the distance D between them. The results of this
simulation, shown in Figure 3b and d, were very similar to
those observed in the actual experimental data (Fig. 3a and c).
Thus, it is evident that the print tips introduce a significant bias
to the experimental data. The average standard deviation of a
time series during the o-factor experiment is og = 0.268 *
0.14, while the average standard deviation of the bias
introduced by a print tip is ¢; = 0.095 * 0.0067 (i.e. 36%
of 0g. Due to such a contribution, the cross-correlation
coefficient of any two time series will typically be altered (see
Supplementary Material) by a value up to

AC = [1 + (040,)*1' = 0.1116.

For example, the average cross-correlation coefficient of all
pairs of genes within groups 1 and 2 are 0.1442 * 0.3085 and
0.1338 = 0.3006, respectively. However, the average cross-
correlation of all possible gene pairs between groups 1 and 2 is
only 0.0111 * 0.2903. Moreover, the actual value of the
increase in cross correlation could be much greater, depending
on the standard deviations and the cross-correlation coefficient
of the two time series before correction.

The source of the observed periodicity of C(D) in
Affymetrix oligoarrays remains unclear. However, most
probably the source of this periodicity is not biological either.
To understand it, detailed information is needed about the
manufacture of oligoarrays used in the cdc28" experiment.

Correction of technical bias in microarray data

An obvious approach to correct for the uncovered systematic
bias is to calculate the average expression within each of the
four groups of genes at each time point and subtract it from all
genes in that group. As shown in Figure 3d, this method results
in the complete elimination of the spurious periodicity in the
simulated data. However, when we apply the same technique
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Figure 3. Print tip-related bias across all experiments and the corresponding simulation. (a) Average log-ratios of expression levels of the features printed by
each of the four tips within each 96-well plate used in each experiment (IAD). Blue, red, black and magenta correspond to print tips 1-4, respectively (the
numbers define the spatial position within the print head and not the actual print tip). The abrupt changes of the average log-ratios between experiments are
likely to correspond to cleaning and interchanging the print heads. Notice how the bias gradually changes within each experiment, until the tips are cleaned or
changed. (b) The corresponding simulation: four groups of 10 X 10 uncorrelated Gaussian random numbers were generated in 18 in silico experiments.
Additionally, four independent random numbers were added to each of the four groups within each experiment. The log-ratios of simulated expression levels
of all spots within each ‘experiment’ are shown. To correct for the tip-related bias, the mean log-ratio for tips 1-4 within each experiment is subtracted from
the corresponding group of spots. (¢) The result of the correction: average cross-correlation calculated as in Figure 1, but using all genes instead of those
residing on the same chromosome. The blue, gray and black lines correspond to the original data, the first degree and the second degree correction, respect-
ively. In the second degree correction, a linear trend of the log-ratios is subtracted within each experiment instead of simply subtracting the mean log-ratio.
Notice that the 2 gene and 24 gene periodicities nearly disappear, but a 176 gene periodicity is revealed. (d) Correction of the computationally generated
data. The red, blue and black lines correspond to the original, bias-affected and corrected data, respectively. Notice that the correction algorithm almost
completely recovers the original in silico data after the correction.

to the experimental data (Fig. 3c), the periodicity is reduced in
amplitude, but it does not completely disappear. The explan-
ation for this is that in the experimental data the four bias
values are not constant throughout an experiment. Instead,
they gradually change from the first to the last (64th)

back near a given printing position on the slide (Fig. 2a). The
remainders of the 2 gene and 24 gene periodicities are due to
deviations of the trend from linearity.

Average linkage clustering of the original and corrected

microtiter plate used within each of the 18 o-factor experi-
ments, i.e. they are characterized by a trend as a function of the
plate number. If we correct for this trend as well (using a linear
fit to the expression data within each o-factor experiment), the
2 gene and 24 gene periods disappear almost completely
(Fig. 3c). However, at this time a 176 gene periodicity, which
was initially masked by the other two periods, is revealed. This
176 gene period is not related to the printing tips. Rather, it
indicates the existence of a location-dependent bias for each
spot on the microarray, as it takes 176 = 4 X 44 spots to arrive

microarray data

To determine the biological implication of these data correc-
tion techniques, we studied whether the result of average
linkage clustering (25) is different for the original and the
corrected data sets in the a-factor experiment. For chromo-
some A the resulting dendrograms are qualitatively similar,
but also show local differences (see Fig. 4a and b). To examine
whether the correction technique improved the biological
significance of the results, we assigned functional classes to
the genes based on the functional classification of their
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Figure 4. The consequence of the correction on subsequent analyses. Average linkage clustering of the (a) original and (b) corrected data for chromosome A
in the o-factor experiment (CD). The colors correspond to functional classes downloaded from the MIPS database (http://mips.gsf.de/proj/yeast/catalogues/
funcat/). Notice the visible change in the resulting dendrogram and the closer clustering of genes within the same functional classes. (¢) The average minimum
distance among genes within the same functional class for the original (black bars) and corrected (red bars) data. The minimum distances averaged over all
functional classes are 13.3369 and 12.4067 for the original and corrected data, respectively.

products in the MIPS database (26). Next, we iteratively
colored all nodes of the dendrogram according to the
functional classes to which they belong (see Materials and
Methods). From Figure 4a and b it is apparent that genes
within the same functional class are closer on the dendrogram
when the corrected gene expression data is used. To quantify
this improvement, we calculated the average minimum
distances within each functional class on the dendrogram
(see Materials and Methods). The average minimum distance
in the original dataset was greater for the majority of

functional classes (Fig. 4c): it decreased from 13.3369 to
12.4067 after the correction.

DISCUSSION

The large amount of microarray data that has been collected
over the last several years promises to revolutionize our
understanding of the global transcriptional organization of
cells as well as the classification of clinical entities, such as
various tumor types. A key requirement of this goal, however,
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is to examine biological information rather than technology-
derived systematic bias. Despite the fact that bias introduced
by printing tips within one repeated experiment has been
known and has been corrected before (21), the importance of
this problem in the context of multiple experiment protocols
has never been previously realized. Here we have identified
the source of the systematic technical bias for spotted cDNA
arrays in great detail, and developed an improved method to
correct for the changes in bias as each experiment progresses.
The source of the spatial periodicity for Affymetrix oligo-
arrays is not clear, since the details of oligoarray manufacture
(e.g. the location of oligonucleotide groups) are not publicly
available.

The generality of our results suggests that in addition to the
transcriptome profiles of the yeast cell cycle, many previously
published microarray datasets may be affected by the same
systematic biases. Thus, there is a need to computationally
correct both existing and future microarray data along the lines
suggested here, and to make the corrected data available to the
scientific community. Also, if the outcomes of microarray
experiments are expected to be quantitatively reliable, it will
be necessary to modify the printing protocols, repeat the
experiments several times and take the average as a result. In
particular, care has to be taken that the set of genes printed on
each slide by one printing tip be as different as possible in each
experiment, because two genes printed by the same tip in all
experiments will have a greatly increased cross-correlation
coefficient. Moreover, in multiple experiment protocols the
effect of print tips on the cross-correlation coefficient
becomes increasingly dominant at the expense of biological
information as the number of experiments increases (see
Supplementary Material).

Several recent studies indicate that genes with similar
expression profiles spatially cluster within the genomes of
several organisms (28-33). This information, taken together
with the evidence for a connection between gene expression
and chromatin dynamics (34), underlines the need to search
for the effect of spatial chromatin organization on gene
expression in space and time. Temporal microarray data could
provide the means to uncover the potential spatio-temporal
organization of gene expression. However, the systematic
print tip related bias that we have uncovered indicates that
currently available time series (or multiple experiment) data
on gene expression are not suitable to answer such questions.
Thus, extreme care has to be taken when interpreting
microarray data to uncover the relationship between relative
chromosomal position and co-expression of genes (28,29,31),
since the observed effects are likely to arise due to the printing
procedure and the arrangement of probes on the microarray.

Based on our results, it should be easy to develop a
computer program to serve as a sensitive test and compare the
printing quality across different sets of experiments. For
multiple experiment protocols, the program would calculate
and compare average cross-correlations between a large set
of probe pairs printed by the same tip and probe pairs printed
by different tips. If the average cross-correlation for probe
pairs printed by the same tip is found significantly higher than
for probe pairs printed by different tips, the microarray data
have to be corrected. For single experiment (or repeated
experiment) protocols, the mean and standard deviation of
probes printed by each tip have to be calculated and compared

(21). If the values obtained for probe sets printed by different
tips are significantly different, the microarray data have to be
corrected.

Microarray technology has greatly improved our under-
standing of biological processes and disease entities.
However, the example presented here demonstrates the
indispensability of a routine search for systematic experimen-
tal biases in the analysis of systematically collected, large-
scale biological datasets.

SUPPLEMENTARY MATERIAL
Supplementary Material is available at NAR Online.

ACKNOWLEDGEMENTS

We are grateful to the authors of Spellman et al. (24) for
making the details of their experimental protocol publicly
available. We thank John W. Campbell, Leah B. Shaw and
Janos Kertész for useful suggestions and comments.

REFERENCES

1. Brown,P.O. and Botstein,D. (1999) Exploring the new world of the
genome with DNA microarrays. Nature Genet., 21, 33-37.

2. Hughes,T.R., Marton,M.J., Jones,A.R., Roberts,C.J., Stoughton,R.,
Armour,C.D., Bennett,H.A., Coffey,E., Dai,H., He,Y.D. et al. (2000)
Functional discovery via a compendium of expression profiles. Cell, 102,
109-126.

3. Wu,L.F., Hughes,T.R., Davierwala,A.P., Robinson,M.D., Stoughton,R.
and Altschuler,S.J. (2002) Large-scale prediction of Saccharomyces
cerevisiae gene function using overlapping transcriptional clusters.
Nature Genet., 31, 255-265.

4. Alizadeh,A.A., Eisen,M.B., Davis,R.E., Ma,C., Lossos,L.S.,
Rosenwald,A., Boldrick,J.C., Sabet,H., Tran,T., Yu,X. et al. (2000)
Distinct types of diffuse large B-cell lymphoma identified by gene
expression profiling. Nature, 403, 503-511.

5. Bittner,M., Meltzer,P., Chen,Y., Jiang,Y., Seftor,E., Hendrix,M.,
Radmacher,M., Simon,R., Yakhini,Z., Ben-Dor,A. et al. (2000)
Molecular classification of cutaneous malignant melanoma by gene
expression profiling. Nature, 406, 536-540.

6. Hedenfalk,I., Duggan,D., Chen,Y., Radmacher,M., Bittner,M., Simon,R.,
Meltzer,P., Gusterson,B., Esteller,M., Kallioniemi,O.P. et al. (2001)
Gene-expression profiles in hereditary breast cancer. N. Engl. J. Med.,
344, 539-548.

7. Khan,J., Wei,J.S., Ringner,M., Saal,L..H., Ladanyi,M., Westermann,F.,
Berthold,F., Schwab,M., Antonescu,C.R., Peterson,C. et al. (2001)
Classification and diagnostic prediction of cancers using gene expression
profiling and artificial neural networks. Nature Med., 7, 673-679.

8. Perou,C.M., Sorlie,T., Eisen,M.B., van de Rijn,M., Jeffrey,S.S.,
Rees,C.A., Pollack,J.R., Ross,D.T., Johnsen,H., Akslen,L.A. et al. (2000)
Molecular portraits of human breast tumours. Nature, 406, 747-752.

9. Dhanasekaran,S.M., Barrette,T.R., Ghosh,D., Shah,R., Varambally,S.,
Kurachi,K., Pienta,K.J., Rubin,M.A. and Chinnaiyan,A.M. (2001)
Delineation of prognostic biomarkers in prostate cancer. Nature, 412,
822-826.

10. van’t Veer,L.J., Dai,H., van de Vijver,M.J., He,Y.D., Hart,A.A.,
Bernards,R. and Friend,S.H. (2002) Expression profiling predicts
outcome in breast cancer. Breast Cancer Res., 5, 57-58.

11. Dyrskjot,L., Thykjaer,T., Kruhoffer,M., Jensen,J.L., Marcussen,N.,
Hamilton-Dutoit,S., Wolf,H. and Orntoft,T.F. (2003) Identifying distinct
classes of bladder carcinoma using microarrays. Nature Genet., 33, 90—
96.

12. Rosenwald,A., Wright,G., Wiestner,A., Chan,W.C., Connors,J.M.,
Campo,E., Gascoyne,R.D., Grogan,T.M., Muller-Hermelink,H.K.,
Smeland,E.B. et al. (2003) The proliferation gene expression signature is
a quantitative integrator of oncogenic events that predicts survival in
mantle cell lymphoma. Cancer Cell, 3, 185-197.



13.

14.

15.

16.

17.

19.

20.

21.

22.

23.

Quackenbush,J. (2002) Microarray data normalization and
transformation. Nature Genet., 32 (suppl.), 496-501.

Miller,L.D., Long,P.M., Wong,L., Mukherjee,S., McShane,L.M. and
Liu,E.T. (2002) Optimal gene expression analysis by microarrays.
Cancer Cell, 2, 353-361.

Alter,O., Brown,P.O. and Botstein,D. (2000) Singular value
decomposition for genome-wide expression data processing and
modeling. Proc. Natl Acad. Sci. USA, 97, 10101-10106.
Blake,W.J., Kaern,M., Cantor,C.R. and Collins,J.J. (2003) Noise in
eukaryotic gene expression. Nature, 422, 633-637.

Elowitz,M.B., Levine,A.J., Siggia,E.D. and Swain,P.S. (2002) Stochastic
gene expression in a single cell. Science, 297, 1183-1186.

. Ozbudak,E.M., Thattai,M., Kurtser,I., Grossman,A.D. and

van Oudenaarden,A. (2002) Regulation of noise in the expression of a
single gene. Nature Genet., 31, 69-73.

Tseng,G.C., Oh,M.K,, Rohlin,L., Liao,J.C. and Wong,W.H. (2001) Issues
in cDNA microarray analysis: quality filtering, channel normalization,
models of variations and assessment of gene effects. Nucleic Acids Res.,
29, 2549-2557.

Workman,C., Jensen,L.J., Jarmer,H., Berka,R., Gautier,L., Nielser,H.B.,
Saxild,H.H., Nielsen,C., Brunak,S. and Knudsen,S. (2002) A new non-
linear normalization method for reducing variability in DNA microarray
experiments. Genome Biol., 3, research0048.1-0048.16.

Yang,Y.H., Dudoit,S., Luu,P., Lin,D.M., Peng,V., Ngai,J. and Speed, T.P.
(2002) Normalization for cDNA microarray data: a robust composite
method addressing single and multiple slide systematic variation. Nucleic
Acids Res., 30, el5.

Yang,H., Haddad,H., Tomas,C., Alsaker,K. and Papoutsakis,E.T. (2003)
A segmental nearest neighbor normalization and gene identification
method gives superior results for DNA-array analysis. Proc. Natl Acad.
Sci. USA, 100, 1122-1127.

Cho,R.J., Campbell,M.J., Winzeler,E.A., Steinmetz,L., Conway,A.,
Wodicka,L., Wolfsberg,T.G., Gabrielian,A.E., Landsman,D.,
Lockhart,D.J. et al. (1998) A genome-wide transcriptional analysis of the
mitotic cell cycle. Mol. Cell, 2, 65-73.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Nucleic Acids Research, 2003, Vol. 31, No. 15 4433

Spellman,P.T., Sherlock,G., Zhang,M.Q., Iyer,V.R., Anders,K.,
Eisen,M.B., Brown,P.O., Botstein,D. and Futcher,B. (1998)
Comprehensive identification of cell cycle-regulated genes of the yeast
Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell,
9, 3273-3297.

Eisen,M.B., Spellman,P.T., Brown,P.O. and Botstein,D. (1998) Cluster
analysis and display of genome-wide expression patterns. Proc. Natl
Acad. Sci. USA, 95, 14863-14868.

Mewes,H.W., Frishman,D., Guldener,U., Mannhaupt,G., Mayer,K.,
Mokrejs,M., Morgenstern,B., Munsterkotter,M., Rudd,S. and Weil,B.
(2002) MIPS: a database for genomes and protein sequences. Nucleic
Acids Res., 30, 31-34.

Horn,P.J. and Peterson,C.L. (2002) Chromatin higher order folding—
wrapping up transcription. Science, 297, 1824-1827.

Cohen,B.A., Mitra,R.D., Hughes,J.D. and Church,G.M. (2000) A
computational analysis of whole-genome expression data reveals
chromosomal domains of gene expression. Nature Genet., 26, 183—186.
Mannila,H., Patrikainen,A., Seppanen,J.K. and Kere,J. (2002) Long-
range control of expression in yeast. Bioinformatics, 18, 482-483.
Lercher,M.J., Urrutia,A.O. and Hurst,L.D. (2002) Clustering of
housekeeping genes provides a unified model of gene order in the human
genome. Nature Genet., 31, 180-183.

Spellman,P.T. and Rubin,G.M. (2002) Evidence for large domains of
similarly expressed genes in the Drosophila genome. J. Biol., 1, 5.
Blumenthal,T., Evans,D., Link,C.D., Guffanti,A., Lawson,D.,
Thierry-Mieg,J., Thierry-Mieg,D., Chiu,W.L., Duke K., Kiraly,M. et al.
(2002) A global analysis of Caenorhabditis elegans operons. Nature,
417, 851-854.

Florens,L., Washburn,M.P., Raine,J.D., Anthony,R.M., Grainger,M.,
Haynes,J.D., Moch,J.K., Muster,N., Sacci,J.B., Tabb,D.L. et al. (2002) A
proteomic view of the Plasmodium falciparum life cycle. Nature, 419,
520-526.

Heun,P., Laroche,T., Shimada,K., Furrer,P. and Gasser,S.M. (2001)
Chromosome dynamics in the yeast interphase nucleus. Science, 294,
2181-2186.



