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Multifractal spectra of multi-affine functions

Albert-Laszl6 Barabasi
Department of Atomic Physics. Eéwvés University, P.O. Box 327, Budapest, 1445 Hungary

Péter Szépfalusy

Institwte for Solid-State Physics, Eotvos University, P.O. Box 327, Budapest, 1445 Hungary
and Central Research Institute for Physics. P.O. Box 49, Budapest. 1525 Hungary

Tamas Vicsek

Department of Atomic Physics, Eotvos University. P.O. Box 327. Budapest. 1445 Hungary
and Institute for Technical Physics. P.O. Box 76. Budapest, 1325 Hungary

Received 15 June 1991

Self-affine functions F(x) with multiscaling height correlations ¢, (x) ~ x% are described in
terms of the standard multifractal formalism with a modified assumption for the partition. The
corresponding quantities and expressions are shown to exhibit some characteristic differences
from the standard ones. According to our calculations the f(a) type spectra are not uniquely
determined by the H, spectrum, but depend on the particular choice which is made for the
dependence of N on x, where N is the number of points over which the average is taken. Our
results are expected to be relevant in the analysis of signal type data obtained in experiments
on systems with an underlying multiplicative process.

1. Introduction

Self-affine [1] fractals have been shown to be useful not only in describing
the surfaces of clusters generated in various growth models like ballistic
deposition or the Eden model [2], but they can be applied in the analysis of a
number of fractal growth phenomena [3, 4] of practical importance, including
thin film growth by vapor deposition, two phase viscous flow in porous media,
formation of biological patterns and sedimentation of granular materials [5]. In
addition, the time dependence of experimentally recorded quantities (signals)
may exhibit self-affine scaling as well.

In nature many processes lead to fractal measures [6-8], which are charac-
terized by an infinite hierarchy of fractal dimensions. In the multifractal
formalism the fractal support and the measure defined on it is thought of as
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consisting of many interwoven fractal sets. all of them characterized by their
own exponent «, and the fractal dimension of these sets being f{«).

Recently the idea of more than one characteristic exponent has been applied
to self-affine functions, and it has been shown [9] that the gth order height-
height correlation function may exhibit a non-trivial multiscaling behaviour
characterized by a continuously changing exponent H . These functions will be
called multi-affine fractals.

In this paper we discuss a modified way of extending the standard multifrac-
tal formalism to the description of multi-affine fractals in order to obtain a
more complete characterization of their scaling properties. In section 2 we deal
with continuous self-affine functions and calculate the 4(y) spectrum, which is
an analogue of the well known f(e) spectrum. We shall show that the relation
between Hq and f(«) depends on the choice for the partition. At the end of the
section we shall apply these results to a deterministic model which was found to
exhibit multi-affine behaviour. The conclusions are given in section 3.

2. Continuous multi-affine functions

2.1. General formalism

According to their definition, single valued self-affine functions of a single
variable satisty the relation

Fx)= A "F(x), (1)

where A is a parameter and H is the roughness or Hélder exponent [1, 10, 11].
For stochastic systems (1) holds only statistically. Alternatively, the height—
height correlation function

c(x) = {|F(x")— F(x'+ )|},

of a self-affine function scales with x as c(x) ~x” as x—0.

There are systems, however, whose height—height correlation function can-
not be characterized by a single roughness exponent and for a more complete
description one has to introduce an infinity hierarchy of characteristic expo-
nents [7,9]. This can be done by the introduction of the gth order height-
height correlation function, defined as

[ <
¢ = 5 2 [F(x) = Fl + 0|7, (2)
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where N> 1 is the number of points over which the average is taken. For a
continuous signal F(x), which without loss of generality can be considered as
x€[0,1], ¢,(x) can be computed as follows: Make a partition of the [0, 1]
interval in N equal parts and sum the gth powers of the height differences
AF = |F(x;) — F(x, + x)|. For this partition x ~ 1/N. However, a more general
approach requires that the limits x— 0 and N— % are taken independently.
(Earlier studies [7] implicitly assumed the special case x ~1/N.) In the limit
x— 0 (which corresponds to N— ) one expects that

¢, (x) ~ x| (3)
where H, is a continuously changing exponent with g for multi-affine objects
and it is constant for ordinary self-affine sets. Note that in our case gl is the
natural choice for the exponent in the right-hand-side of eq. (3) (instead of
(g — 1)H, as for fractal measures).

As mentioned above we shall assume that, when evaluating (2), x and N may
be related in a way different from x ~1/N. Let us consider the dependence
N ~x~* For the commonly used partition we have ¢ =1. For ¢ <0 in the
x— () limit N — 0, which violates the condition that N has to be large. The case
when the number of points N over which the average is taken is fixed, is
equivalent to ¢ = 0. The formalism for this special value of ¢ will be discussed
in the appendix. Throughout this paper we shall be concerned with the ¢ >0
case when N— = for x — (. The choice of a particular partition has no effect on
the H, spectrum. However, as will be shown, ¢ enters the relations between
the multifractal spectra.

In many cases nontrivial multiplicative processes can generate nonuniform
surfaces having infinitely many singularities. These singularities appear in the
scaling of AF in the vicinity of different points on the signal, and this scaling
can be different from point to point [7]. This property can be described by an
exponent y, through the following relation:

|F(x;) = F(x; + x)| ~x™ (4)

in the limit x— 0.

The noninteger exponent y corresponds to the strength of the local singulari-
ty of the signal. Although y depends on the actual position, there are many
intervals of size x with the same index 7y, and their number is expected to scale
with x as

G B el 5)
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where h(y, ¢) for ¢ =1 is viewed as the fractal dimension of the subset of the
points with the same exponent y. For other ¢ values A(y, ¢) simply describes
the scaling of the number of places with a given local singularity.

In analogy with the standard multifractal formalism [7, 8], in the limit N —
the correlation function (2) can be written as

1 . ;
e == | # Iy dy

For continuous systems with the above described partition for x—0, N~x ¢

so the above integral will be dominated by the value y' which makes
¢+ vy'qg— h(y’, ) smallest, provided that p(y') is nonzero. Thus, we replace
v by v(g), which is defined by the external conditions

|

d ’ [
d—_yi [(}b + (ﬂ’ = h(')/ £ d’)]’y’=y(_q} :O

and

-

d-

o [¢+agy' — Ay ), —yp=>0.

Then it follows that
H(y)=q. (6)
h'(y) <0, (7)
and from comparison with (3)
qH, = ¢ + qv(q) — h(v(q), &) (8)
and
(@)=~ (qH ©)
W= g, (H)-
The relations (8), (9) and (6), (7) are the main results of this paper for the
continuous multi-affine functions. The meaning of (8) is that the h(g) spectrum
takes its maximum value at y(g =0), and in this point its value is equal to

h(y(g=0), ¢) = ¢. As ¢ is varied from o to 0 parts of the A(y, ¢) spectrum
become negative until finally #(y, ¢ = 0) < 0. Before proceeding to examples it
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is important to point out the differences and similarities of these relations with
those used in the standard multifractal formalism for fractal measures to link
the generalized dimensions D, and the f(a) spectrum.

First, a similarity between the correlation function ¢ (x) and the generating
function y(gq) =X, p! for a measure p, is obvious; however the scaling of the
latter is described by an exponent (¢ — 1)D,, where (g — 1) appears due to the
normalized condition of p,, but in the former such a normalization does not
exist, since the scaling exponent is gH, .

Another difference is the term ¢ in relation (8), which appears as a result of
the scaling of N with x in the limit x— 0. However, the general technique is
very similar: like in the case of the multifractal formalism, H, is related to
h(y, ¢) by a Legendre transformation.

2.2. Normalized height difference distribution, f(a, &) spectrum

An f(a, ¢) spectrum can be also associated to the hierarchy of AF(x) values,
by introducing a normalization. Consider the [0, 1] interval partitioned into N
intervals and consider the following measure:

pa‘(x) = 5 |F(Xl) i F(x" - ‘t)l

S |FOo) — Fog + 0] t

This can be viewed as a probability measure, satisfying E;\;I p(x)=1 and
p,(x) =0, and one can construct the corresponding generating function

N
X(0)=2 p{(x)
i=1
and introduce the corresponding exponent D (¢) through the expression

X, (x) ~ x'77 VP i the limit x— 0. Using (10) the scaling of x,(x) can be
written as

3
F i

Ex) = Fx 2] g(H,—H)~(g~1)d
X~ )~ Fo o) ‘

which gives the relation between the generalized dimensions D, (¢) of the
normalized height differences and the multi-affine exponents H:

(¢ —1)D(¢)=q(H,— H)+(g-1)é. (11)

A special case of this relation was obtained in ref. [12]. Using the well known
Legendre transformations linking D, and the corresponding f(«) function,



o]
(5]
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: d
(¢ —1)D, = qa(q) — flalq)) . a(q)za;f [(¢ -1)D,],

1 i
q= ;—q fle(q)) .

one finds with (8) the relations between the corresponding quantities:

a(q, d)=v(q)—H +é,  flalq. d), )= h(¥(q), $).

The above telations show that there is only a small difference between the
fla, ¢) and h(y. ¢) spectra. the former is shifted to the right by a constant
value (¢ — H,). but the shape and the range of values of f and 4 are unchanged
during the transformation.

For ¢, (x) the jumps are not normalized so the monotonicity conditions which
are valid for D, (¢) do not hold for H . On the other hand, using the relation
between D, (¢) and H, and from the two monotonicity conditions existing for
fractal measures [13]

D, (4)=D, ()

]
if ¢ >¢q’, and

—a "_l
q qu(d)]%{Hq

D, ()

q’ p

if g <<g' and ggq’ >0, one finds that the following two functions have to be
decreasing:

=i _ ¢
gl(q)_F(Hq_Hl)’ gl(q)_Hq—’_E“

in the sense that g (g)=g,(q') if g=¢q’, and g,(¢)=g.(¢') if g=¢' and
gg' =1.

2.3. A deterministic multi-affine model

Let us examine the above derived relations on an exactly solvable de-
terministic model introduced ref. [9]. The iteration procedure, which is a
generalization of the construction [10] proposed by Mandelbrot, is demon-
strated in fig. 1. In each step of the recursion the intervals obtained in the
previous step are replaced by the properly rescaled version of the generator,
which has the form of an asvmmetrical z made of four intervals. During this
procedure every interval is regarded as a diagonal of a rectangle becoming
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Fig. 1. Construction of a deterministic multi-affine function.

more and more elongated as the number of iterations & increases. The basis of
the rectangle is divided into four parts and the generator replaces the intervals
in such a way that its turnover are always at analogous positions (at the first
generator and the middle of the basis). The function becomes multi-affine in
the k— ¢ limit. Depending on the parameter b, very different structures can
be generated, the b, is fixed to be 0.5.

The H, spectrum can be calculated for this construction exactly assuming
that the scaling properties are entirely determined by the behaviour of the
function over intervals of length 4%, Denoting with N(A/k) the number of
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boxes in which |A(x) — h(x + Ax)| = Ah, we have N(b|b5 ")=2*C}, where
n=0,...,k Thus c (Ax)=1X,_,27"C;b{*b{ ™ with Ax=4"" Since this

n=0
equation can be written as ¢, (Ax) =[3(b{ + b4]* we have

_ In[3(b?+bY)]
7 gln(})

In the present approach the roughness exponent introduced earlier is H = H|,
In ref. [9] we discussed the aspects of numerical computation of this quantity.
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Fig. 2. Dependence of the exponents y( g) (a) and A{ g) (b) on ¢ (in (b) ¢ =1.0. 0.5 and 0.0 from
top to bottom).
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Fig. 3. The multifractal spectrum k(. &) as a function of the local strength of the singularities y
for three selected values of ¢ =1.0, 0.5 and 0.0 (from top to bottom).

Relations (8) and (9) with (13) allow us to plot y(g) and k(g) (fig. 2) as well
as h(y, ¢) in fig. 3.

It is simple to make the normalization for the given model, providing the
possibility of the computation of the corresponding D, (¢) spectrum through
relation (11). Using the usual f(«) formalism one can compute through
Legendre transformations the corresponding f(«. ¢) spectrum (figs. 4a and b).

3. Conclusions

We have investigated the multifractal aspects of self-affine functions with a
non-trivial spectrum of exponents characterizing the scaling behaviour of the
moments of its height—height correlation function. With some modifications of
the standard multifractal formalism the corresponding multifractal spectra and
the expressions among them have been obtained. Self-affine functions and
fractal measures exhibit several different characteristics, thus our expressions
are not exactly the same as those of the standard multifractal formalism. On
the other hand, the absolute value of the derivative of a multi-affine function is
expected to behave the same way as a fractal measure; this is why the standard
approach can be easily applied to the affine case.
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Fig. 4. If the distribution of height differences is normalized, the multifractal spectra D, (¢) and
flee, p) obtained in our approach (shown in parts (a) and (b), respectively) are in complete analogy
with the corresponding spectra of the standard multifractal formalism for ¢ = 1.0. This figure
demonstrates the differences for other values of ¢ (which are the same as in figs. 2 and 3).

We have shown that for multiaffine functions the f(«) type multifractal
spectra are not uniquely defined; they depend on the partition which is used
during the procedure of establishing relationships among the spectra. In
particular. if we assume that N ~ x*, the exponent ¢ is a simple additive term
in the expressions.

Our results are expected to be relevant in the analysis of various kinds of
data related to systems with an underlying multiplicative process. A typical
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application is the analysis of the results for the distribution of the passive scalar
[14] or the velocity [15] in experiments on turbulent flows. In these experi-
ments the spatial or temporal dependence of the actually measured quantities
can be considered as a multi-affine function. This fact has been indicated by
calculations of the moments of various quantities related to the coarse grained
derivative of the above-mentioned distributions.
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Appendix

For ¢ =0 the number of points N over which the average is taken in (2) is
constant if our multiaffine function is considered only on the unit interval. On
the other hand. for a complete multifractal analysis it is required that N — o
This can be achieved by considering the function on the whole axis and taking
the limit x— = in our expressions (instead of x— 0). The reason for discussing
this case is that in the experiments it is tvpical to record a continuously
changing quantity at discrete time steps or at discrete positions in space.

Changing the limit x—0 to x—=2 does not result in any change in the
formulae involving the multifractal spectra H, and /(&) only. In fact, in ref.
[9], it was shown that for the deterministic construction of fig. 1 H  is the same,
either it is calculated for ¢ =1 exactly, or for ¢ =0 numerically. However, if
we take the x— < limit, the expressions connecting the multifractal spectra D,
and /, are changed. This is due to the fact that in this case the correct form of

" (g—11D & e .
the expression x,(x) ~x'? """ used in the limit x—0 is

X(,(x)““l‘_{'q 1D () )

where an extra minus sign had to be introduced. Thus. the relations presented
in section 2.2 remain the same except that D, has to be replaced by — D, .
The case when both the function and the sampling points are discrete is
qualitatively different. An example for such a signal is the distance of a
randomly diffusing particle on a one-dimensional lattice as a function of time.
Numerical simulation and scaling arguments show [9] that in this case the
behaviour of H,_ for g<—1 is entirely dominated by the existence of the
smallest possible jump in the function. Obviously, our formalism, which is
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strictly for continuous signals with no cutoff for small differences, is not
applicable to this situation.
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