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Abstract. Most complex networks serve as conduits for various dynamical processes, ranging from mass
transfer by chemical reactions in the cell to packet transfer on the Internet. We collected data on the
time dependent activity of five natural and technological networks, finding evidence of orders of magnitude
differences in the fluxes of individual nodes. This dynamical inhomogeneity reflects the emergence of
localized high flux regions or “hot spots”, carrying an overwhelming fraction of the network’s activity. We
find that each system is characterized by a unique scaling law, coupling the flux fluctuations with the total
flux on individual nodes, a result of the competition between the system’s internal collective dynamics and
changes in the external environment. We propose a method to separate these two components, allowing
us to predict the relevant scaling exponents. As high fluctuations can lead to dynamical bottlenecks and
jamming, these findings have a strong impact on the predictability and failure prevention of complex
transportation networks.

PACS. 89.75.-k Complex systems – 89.75.Da Systems obeying scaling laws – 05.40.-a Fluctuation
phenomena, random processes, noise, and Brownian motion

1 Introduction

Research on the structure of complex networks has greatly
benefited from the availability of detailed topological maps
describing various complex systems [1]. Yet, advances in
uncovering the mechanisms shaping the topology of com-
plex networks [2–5] are overshadowed by our lack of under-
standing of common organizing principles governing net-
work dynamics. Focusing on the dynamics of few selected
nodes resulted in a series of important discoveries, such
as self-similar traffic patterns on Internet routers [6–9] or
long range correlations in biological or economic time se-
ries [10,11] have been made. Less is known, however, about
how the collective behavior of often millions of nodes con-
tribute to the observable dynamical features of a complex
system. In particular, we continue to search for dynami-
cal organizing principles that are common to a wide range
of complex networks. To succeed, we need to complement
the topological maps of complex networks with data on
the time resolved activity of each node and link. Indeed,
to uncover a cell’s dynamical behavior we must access the
time dependent concentrations of hundreds of proteins and
metabolites, or to study the dynamics of the Internet we
must monitor traffic simultaneously on hundreds of thou-
sand routers.

a e-mail: mdemenez@nd.edu

2 Quantifying network dynamics on real
systems

In complex dynamical systems with many components
(nodes) each node i is characterized by a time depen-
dent variable fi(t) (i = 1, . . . , N) (as fi(t) often de-
scribes transport across node i, we will refer to it as flux).
Even within the same system the flux on different nodes
can differ widely. For example, both the average traffic
〈fi〉 = 1/T

∑
t=1...,T fi(t) and the fluctuations about the

average σi =
√
〈f2

i 〉 − 〈fi〉2 of four Internet routers on
the same network differ by orders of magnitude (Fig. 1a).
Natural systems, such as highway networks, show similar
characteristics: both the average traffic on a given highway
and traffic fluctuations span several orders of magnitude
on different points of a highway network (Fig. 1b).

To quantify these visually apparent flux differences for
four complex networks we recorded the relevant dynami-
cal variable fi(t) over an extended time interval from hun-
dreds to thousands of accessible nodes. We find that for
each of these systems the time averaged flux 〈fi〉 on differ-
ent nodes spans four (microchip, Fig. 3c) to six (Internet,
Fig. 3a) orders of magnitude, leading to a wide P (〈f〉)
flux distribution. The wide range of 〈f〉 values indicate
that while most nodes have relatively small fluxes, in each
system there are groups of nodes for which 〈f〉 takes ex-
traordinary large values, orders of magnitude higher than
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Fig. 1. The dynamics of a few individual nodes of
the Internet. Time dependent traffic on four Inter-
net routers of the Mid-Atlantic Crossroads (MAX) net-
work (http://www.maxgigapop.net), whose activity is mon-
itored by the Multi Router Traffic Grapher software
(http://people.ee.ethz.ch/∼oetiker/webtools/mrtg/). The
figure shows the number of bytes per second for each of the
routers in five minutes intervals for a two day period. (b) Av-
erage traffic on four different Colorado highways segments,
measured in number of cars per second in the year of 2001.
Traffic recorded in hourly resolution by the US Department
of Transportation (http://dot.state.co.us). On the right of
both plots we show the time average of the flux 〈f〉 displayed
as horizontal dotted lines superposed on the graphs, and the
dispersion, σ, for each of the shown signals, indicating orders
of magnitude differences in both flux and dispersion between
nodes of the same network.

the flux on typical nodes, generating highly active regions,
or “hot spots”. These hot spots are responsible for a con-
siderable fraction of the system’s activity: in the Internet
we find that the top 20% of the nodes carry 95% of to-
tal traffic. A similar unbalance is present in all studied
systems, our measurements indicating that the top 20%
of nodes carry 73%, 76% and 54% of the activity on the
World Wide Web, highways and computer chip, respec-
tively. While the existence of such high flux regions is a
well known problem in Internet traffic [12–14], their emer-
gence in each of the studied systems suggests that hot
spots are a generic feature of transport on complex net-
works. Indeed, such wide link strength distributions have
been observed lately in a wide range of systems, from stock
markets [15] to metabolic networks [16].

Traditional dynamical approaches to complex systems
focus on the long time behavior of at most a few dynam-
ical variables, characterizing either a single node or the
system’s average behavior. To simultaneously character-
ize the dynamics of thousands of nodes we focus on the
coupling between the average flux and the fluctuations
around the average. In many dynamical systems the time
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Fig. 2. Characterizing systems belonging to the driven
(α = 1) universality class. (a, b): Daily visitations on
several thousand websites were collected using the Nedstat
(http://www.nedstatbasic.net) web monitor, which keeps track
of the daily access to thousands of web pages. We analyzed
daily traffic on each web page for a 30 day period, calculating
the average flux for 1, 000 sites on USA (blue circles), 1, 000
on Brazil (black squares) and 1, 000 on Japan (green trian-
gles). In (a) we show the distribution of the average visitation
〈f〉 for each of the monitored web sites, the common enve-
lope of the curves suggesting an asymptotic power-law behav-
ior. The drop in P (〈f〉) for small 〈f〉 reflects the fact that for
each country we have access only to the 1, 000 most visited
sites, thus the less visited small 〈f〉 sites are undersampled.
On (b) we show the dependence of the dispersion on the aver-
age flux, measured for each of the nodes separately. (c, d): Daily
traffic on Colorado and Vermont highways, provided by the
Colorado Department of Transportation and Vermont Agency
of Transportation, respectively (http://dot.state.co.us and
http://aot.state.vt.us). We used the data on the daily
number of cars passing through observation points on 127 high-
ways from 1998 to 2001 to determine the average flux distri-
bution (c), as well as the relationship between the dispersion
and flux (d). The drop in P (〈f〉) for small 〈f〉 again likely re-
flects the incomplete sampling of the small traffic roads. In (b)
and (d) the red dashed line has slope α = 1.

average 〈f〉 of the relevant dynamical variable, f(t), and
its fluctuations around the average, σ, are decoupled. Con-
sider for example an unbiased random walker, for which
the fluctuations around the average position increase as
σ ∼ t1/2, while its average position 〈f〉 is independent of
time, resulting in a decoupling between 〈f〉 and σ [17,18].
In contrast, our measurements indicate that in complex
networks there is a characteristic coupling between the
average flux 〈fi〉 and dispersion σi of individual nodes
(Fig. 1). To quantify this observation we plot σi for each
node i in function of the average flux 〈fi〉 of the same node
(Figs. 2 and 3). We find that for four systems for which
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Fig. 3. Characterizing systems belonging to the endogenous
(α = 1/2) universality class. (a, b): We collected time re-
solved information for 374 Internet links of the Mid-Atlantic
Crossroads (MAX) (http://www.maxgigapop.net) and the
ABILENE (http://www.abilene.iu.edu) networks, MIT
routers (http://web.mit.edu/mrtg/www), UNAM routers
(ww.unam.edu.ar/mrtg), all Brazilian RNP backbones
(http://www.rnp.br), and dozens of smaller routers on the
Internet, obtaining for each link two days of activity with five
minute resolution. The distribution of the average fluxes (a)
indicates a power-law dependence P (〈f〉) ∼ 〈f〉−1, while
the dependence of the dispersion on the flux for individual
nodes (b) indicates αI = 1/2. (c, d): The activity on of the 462
signal carriers of the 12-bit Simple12 microprocessor, recorded
and analyzed when the processor is given the task of finding
the smallest number of an array, requiring 8, 862 clock cycles.
At each clock cycle each signal carrier is either active f = 1 or
inactive f = 0. The flux distribution (c) can be approximated
with a power-law P (〈f〉) ∼ 〈f〉−0.7, and the dependence of
the dispersion on the flux for the individual nodes (d) again
follows αm = 1/2.

extensive dynamical data is available the dispersion de-
pends on the average flux as

σ ∼ 〈f〉α . (1)

Most intriguing, however, is the finding that for the stud-
ied systems the dynamical exponent α is in the vicinity of
two distinct values, α = 1 (Fig. 2) and α = 1/2 (Fig. 3),
suggesting that diverse real systems can display two dis-
tinct dynamical behaviors [19]. Next we discuss the evi-
dence for each of these systems separately.

The α � 1 systems (Fig. 2): The WWW, an extensive
information depository, is a network of documents linked
by URLs [20–23]. As many websites record individual vis-
its, surfers collectively contribute to a dynamical variable
fw

i (t) that represents the number of visits page i receives
during day t. We studied the daily breakdown of visitation
for 30 days for 3, 000 sites scattered over three continents,
determining for each node i the average 〈fw

i 〉 and disper-

sion σw
i . As Figure 2 shows, σw

i and 〈fw
i 〉 follow (1) over

five orders of magnitude with dynamical exponent αw = 1.
The highway system is an example of a transportation
network, the relevant dynamical variable being the traffic
at different locations. We analyzed the daily breakdown
of traffic measurements at 127 locations on Colorado and
Vermont highways. The results, shown in Figure 2f, again
document a strong coupling between

〈
fh

i

〉
and σh

i , the
scaling spanning over five orders of magnitude indicating
αh = 1.

The α � 1/2 systems (Fig. 3): The Internet, viewed
as a network of routers linked by physical connections,
serves as a transportation network for information, carried
in form of packets [24–27]. Daily traffic measurements of
374 geographically distinct routers indicate that while the
relationship between traffic and dispersion follows (1) for
close to seven orders of magnitude, in contrast with the
previous systems we have αI = 1/2 (Fig. 3b). In a micro-
processor, in which the connections between logic gates
generate a static network, information is carried in the
form of electric currents [28]. At each clock cycle a certain
subset of connections i are active, the relevant dynami-
cal variable fi(t) taking two possible values, 0 or 1. The
activity during 8, 862 clock cycles on 462 nodes of the
Simple12 microprocessor indicates that the average flux
and fluctuations follow (1), with αm = 1/2 (Fig. 3d). The
distinct nature of the exponents and the quality of scal-
ing documented in Figures 2 and 3 indicate the existence
of common organizing principles across different network
topologies.

3 Modelling network dynamics – Internal
dynamics vs. external fluctuations

To understand the origin of the observed dynamical scal-
ing law (1) we study a simple dynamical model that incor-
porates some key elements of the studied systems. While
the topology of these systems vary widely, from exponen-
tial (highway network) to a scale-free network (WWW,
Internet), a common feature of the studied systems is the
existence of a transportation network that channels the
flux toward selected nodes. Therefore, we start with a net-
work of N nodes and L links, described by an adjacency
matrix Mij , which we choose to describe either a scale-
free or a random network [29,30]. As the dynamics of the
studied systems varies widely, we study two different dy-
namical rules. Model 1 considers the random diffusion of
W walkers on the network, such that each walker that
reaches a node i departs in the next time step along one
of the links the node has. Each walker is placed on the
network at a randomly chosen location and removed af-
ter it performs M steps, mimicking in a highly simplified
fashion a human browser surfing the Web for informa-
tion. To probe the collective transport dynamics counters
attached to each node record the number of visits by in-
dividual walkers. To capture the day to day fluctuations
on individual nodes we repeat the diffusion of W walkers
D times on a fixed network and denote by fi(t) the num-
ber of visits to node i on day t = 1, . . . , D. As Figure 4a
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Fig. 4. Modeling network dynamics. To understand the in-
terplay between the internally and the externally driven dy-
namics we studied the dynamics of two models on a scale-
free network [4] with γ = 3 and 104 nodes. In Model 1
on each “day” t we release W (t) = 〈W 〉 + ξ(t) walkers on
random positions of the network, and allow each of them
to perform M = 103 random diffusive steps along the net-
work, where ξ(t) is a uniformly distributed random variable
between −∆W and ∆W and 〈W 〉 = 104. For each node i we
record the number of times it has been visited by a walker,
fi(t), repeating the same procedure for t = 30 days. Note
that longer t runs generate identical results. The time av-
erage of fi(t) provides 〈fi〉, and allows us to study the re-
lation between the average flux 〈fi〉 and fluctuations about
the average σi. (a) The figure shows the σ(〈f〉) curves for
∆W = 0, 10, 20, 40, 80, 100, 200, 500, 1000, 2000, 4000, 5000 and
10000 from top to bottom, demonstrating a crossover between
the σ ∼ 〈f〉1/2 (α = 1/2) and σ ∼ 〈f〉 (α = 1) behavior as
∆W increases. (b) The dependence of the exponent α on W ,
obtained by fitting the σi versus 〈fi〉 curves shown in (a) for
different values of ∆W . Note that while the figure shows a
gradual transition, most likely the intermediate α values rep-
resent finite size effects, and the transition in infinite systems
should be sharp between α = 1/2 and 1. (c) Average fluctua-
tions 〈σi〉, obtained by averaging σi over all nodes i in the sys-
tem, shown in function of the amplitude of the external driving
force ∆W . While under ∆W ≈ 103 the magnitude of 〈σi〉 is
independent of ∆W , for large ∆W the fluctuations increase
rapidly with ∆W , indicating that the network dynamics is ex-
ternally driven. (d–f) The same as in (a–c), but for Model 2,
where the diffusive dynamics was replaced by message passing.
In the model, each “day” t we choose W pairs of nodes, send-
ing a message between them along the shortest path. W was
again chosen from an uniform distribution of width ∆W and
average 〈W 〉 = 104.

indicates, the average flux and fluctuations follow (1) with
α = 1/2. Similar results are obtained for Model 2, in which
we replaced the random diffusive dynamics with a directed
flow process. In this case each day t we pick W randomly
selected pairs of nodes, designating one node as a sender
and the other as a recipient, and send a message between
them along the shortest path. Counters placed on each

node count the number of messages passing through. This
dynamics mimics, in a highly schematic fashion, the low
density traffic between two nodes on the Internet. As Fig-
ure 4d shows, we find that Model 2 also predicts α = 1/2,
indicating that the α = 1/2 exponent is not a particular
property of the random diffusion model, but it is shared
by several dynamical rules.

We can understand the origin of the α = 1/2 expo-
nent if we inspect the origin of fluctuations in Model 1.
In the M = 1 limit walkers arrive to randomly selected
nodes but fail to diffuse further, reducing the dynamics to
random deposition, a well known model of surface rough-
ening [31,32]. Therefore, the average visitation on each
node grows linearly with time, 〈f〉 ∼ t, and the dispersion
increases as σ ∼ t1/2, providing α = 1/2 [31,32]. If M > 1,
since the connections between nodes are random, one can
still interpret the random arrival of walkers and further
diffusion as a random deposition process [33], each node i
receiving a fraction ri ∝ ki of the total number of steps
W ×M performed on the network, and the average visita-
tion 〈fi〉 again scaling with fluctuations σi as 〈fi〉 ∼ σ

1/2
i .

Real systems are often exposed to changes in the exter-
nal environment that makes the amount of material flow-
ing through the network to vary. To incorporate the effect
of such externally induced fluctuations we allow W , which
represents the number of walkers in Model 1 and the num-
ber of messages in Model 2, to vary from one day to the
other. Assuming that the day to day variations of W (t)
are a dynamic variable randomly chosen from an uniform
distribution in the interval [W − ∆W, W + ∆W ], we re-
cover α = 1/2 for ∆W = 0. However, when ∆W exceeds a
certain (model dependent) threshold, in both models the
dynamical exponent changes to α = 1 (Figs. 4b and e).

To understand the origin of the α = 1 exponent we
notice that on each node the observed day to day fluctua-
tions have two sources. For ∆W = 0 we have only internal
fluctuations, coming from the fact that under random dif-
fusion (or random selection of senders and receivers in
Model 2) the number of walkers (messages) that pass by
a certain node fluctuates from day to day. For ∆W �= 0
the fluctuations have an external component as well, as
when the total number of walkers (messages) change from
one day to the other, they proportionally alter the visita-
tion of the individual nodes as well. If the magnitude of
the day to day fluctuations is significant, they can over-
shadow the internal fluctuations σint

i . Indeed, if in a given
time frame the total number of walkers or messages dou-
bles, the flux on each node is expected to grow with a
factor of two, a change that could be much larger than
changes induced by potential internal fluctuations. There-
fore, for ∆W �= 0 the external driving force, determined by
the time dependent W (t), contributes to the daily fluctua-

tions with a dispersion σdr(∆W ) =
√

〈W (t)2〉 − 〈W (t)〉2,
which is a monotonic function of ∆W . The total fluctua-
tions for node i are therefore given by σi = σint

i + σext
i ,

where σext
i = Aiσ

dr(∆W ), Ai being a geometric factor
capturing the fraction of walkers channeled to node i, and
depends only on the position of node i within the network.
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When ∆W = 0, the external component σdr vanishes, re-
sulting in σint

i = ai 〈fi〉1/2, as discussed earlier. When
∆W is sufficiently large, so that Aiσ

dr(∆W ) � σint
i ,

then the fluctuations are dominated by the changes in
the external driving force, allowing us to approximate
the flux at node i with fi(t) = AiW (t). In this case we
have 〈fi〉 = Ai 〈W (t)〉 and

〈
fi

2
〉

= Ai
2
〈
W (t)2

〉
, giving

σi =
√〈

fi
2
〉− 〈fi〉2 = Aiσ

dr. As σdr and 〈W (t)〉 are
time independent characteristics of the external driving
force, we find σi = σext

i = σdr

〈W (t)〉 〈fi〉, providing the ob-
served coupling (1) with α = 1. Note that this derivation
is independent of the network topology or the details of
the particular transport process, predicting that any sys-
tem for which the magnitude of fluctuations in the exter-
nal driving force exceeds the internal fluctuations will be
characterized by (1) with an α = 1 exponent.

These calculations imply that the fluctuations on a
given node can be decomposed into an internal and an
external component as

σi = ai 〈fi〉1/2 +
σdr

〈W (t)〉 〈fi〉 . (2)

Therefore, gradually increasing the amplitude of fluctua-
tions ∆W in the studied models we should induce a change
from the α = 1/2 intrinsic or endogenous to the α = 1
driven behavior. To confirm the validity of this prediction,
in Figures 4c and f we show the average fluctuation σ̄i over
all nodes in function of the amplitude ∆W of the driving
force. For both models we find that for small ∆W values σ̄i

remains unchanged, as in this regime σ̄i ∼ σint
i > σext

i ,
independent of ∆W . However, after ∆W exceeds a cer-
tain threshold, σ̄i rapidly increases with ∆W . In this sec-
ond regime the fluctuations are driven by external forces,
σ̄i ∼ σext

i ∼ Āiσ
dr, and according to (2) we should observe

α = 1. Indeed, we find that in both models the transition
from the constant to the increasing σ̄i (Figs. 4c, f) coin-
cides with the crossover from the α = 1/2 to the α = 1
regime (Figs. 4b, e). To understand to what degree our
findings depend on the specific simulation and model de-
tails we altered most assumptions in both models, chang-
ing the topology from scale-free to random networks and
from undirected to directed networks, as well as altering
the nature of the external fluctuations by keeping W con-
stant in Model 1 but forcing the number of steps, M , to
play the role of the stochastic external driving force. For
each modified version of the models we recover the tran-
sition between the α = 1/2 and α = 1 behavior when the
amplitude of the external fluctuations exceeds a certain
threshold.

4 Separating internal and external
contributions to network dynamics

The results of the previous section indicate that two
different mechanisms are responsible for the flux fluc-
tuations in complex networks. The α = 1/2 exponent

captures an endogenous behavior, characterizing the
system’s internal collective fluctuations. In contrast,
the α = 1 exponent indicates that the fluctuations of
individual nodes are driven by time dependent changes in
the external forces. To connect this prediction with the
empirical results, next we introduce a method that allows
us to separate the intrinsic and the external fluctuations
in the experimental data. We start by separating the
dynamical variable fi(t) into two components,

fi(t) = f int
i (t) + fext

i (t), (3)

the first describing the contribution from the internal dy-
namics, the second being the externally driven component.

To determine fext
i (t) let us consider the case when

internal fluctuations are absent, and therefore the total
traffic in the system is distributed in a deterministic
fashion among all components. In this case component i
captures a time independent fraction Ai of the total traf-
fic. For different components i, Ai can differ significantly,
being determined by the component’s centrality [34].
The challenge is to extract Ai from the experimentally
available data without knowledge of the system’s internal
topology or the dynamical rules governing its activity.
For this we write Ai as the ratio of the total traffic going
through the component i in the time interval t ∈ [0, T ]
and the total traffic going over all observed components
during the same time interval

Ai =
∑T

t=1 fi(t)∑T
t=1

∑N
i=1 fi(t)

. (4)

At any moment t the amount of traffic expected to go
through node i is therefore given by the product of Ai and
the total traffic in the system in moment t (i.e.

∑N
i=1 fi(t)),

providing the magnitude of the traffic expected if only ex-
ternal fluctuations contribute to the activity of node i as

fext
i (t) = Ai

N∑
i=1

fi(t). (5)

Equation (5) describes the case in which changes in the
system’s overall activity are reflected in a proportional
fashion on each component. Real systems do display, how-
ever, internal fluctuations, which will generate local and
temporal deviations from the expected fext

i (t), a conse-
quence of the internal time dependent redistribution of
traffic in the system. Using (1− 3) we obtain this internal
component as

f int
i (t) = fi(t) −

( ∑T
t=1 fi(t)∑T

t=1

∑N
i=1 fi(t)

)
N∑

i=1

fi(t), (6)

which, by definition, has zero average, as it captures the
deviations from the traffic expected to go through compo-
nent i. Given the experimentally measured dynamic sig-
nal fi(t) on a large number of components, (5) and (6)
allow us to separate each signal fi(t) into two contribu-
tions fext

i (t) and f int
i (t), the first capturing changes in the

system’s overall activity, providing a measure of the exter-
nal fluctuations and the second describing the fluctuations
characterizing the system’s internal dynamics.
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Fig. 5. Distribution of ηi = σext
i /σint

i ratios of external and
internal fluctuations for model (a, b) and selected real systems
(c,d). Distribution of the ηi ratios for the random walk model:
(a) For smaller external fluctuations, the distribution is cen-
tered around a small value of η � 1, indicating that internal
fluctuations overcome external ones, dominating the system’s
dynamics. (b) When ∆M is increased, however, such fluctu-
ations overshadow the system’s internal dynamics, and the
P (η) distribution shifts towards larger values of η (right curve).
(c) P (η) distributions for the Internet and the microchip, cen-
tered around η ∼ 0.1, indicate that external fluctuations do
not affect the system’s overall dynamics significantly. (d) The
World Wide Web and the Highway networks, with P (η) peaked
around η ∼ 1, are strongly influenced by fluctuations in the to-
tal number of web surfers and the number of cars, respectively.

From f int
i (t) and fext

i (t) we can calculate ηi =
σint

i /σext
i for each node, and from that the P (η) distri-

bution, which gives a measure of the impact of external
fluctuations on the internal dynamics of the system. In-
deed, as we vary ∆M towards larger values in the model,
we obtain that the P (η) curve also shifts towards larger
σint

i /σext
i ratios (Figs. 5a–b).

Doing the same analysis on the empirical systems,
we find that majority of nodes for the Internet and the
computer chip (for which α � 1/2) have σint

i /σext
i 	 1

(Fig. 5c), indicating that internal fluctuations dominate
over external ones. In contrast, for systems displaying the
α � 1 exponent (WWW, highway) the P (η) curve is cen-
tered about η ∼ 1 (Fig. 5d), indicating that external and
internal fluctuations are comparable. These results offer
experimental support to our earlier findings that the dy-
namical exponent α is determined by the relative magni-
tude of the external and internal fluctuations in both the
model and empirical systems.

5 Conclusions

The wide range of 〈fi〉 values, as captured by the broad
P (〈fi〉) distribution, indicates that in transportation net-
works a few nodes emerge as hot spots with exception-
ally high fluxes. To avoid bottlenecks or slowdown induced

failures in transportation networks, the capacity of the in-
dividual nodes must be adjusted to accommodate these
high flux regions [12,13], each node’s capacity exceeding
the expected maximum flux on that node [35]. There are
significant differences, however, in our ability to predict
the maximal flux for systems driven by internal or exter-
nal fluctuations. An important quantity for predicting the
potential demand on a given node i is the relative fluctua-
tion, wi = σi/ 〈fi〉. For α = 1/2 we have w ∼ 〈f〉−1/2, i.e.
the relative fluctuations decrease for the critical high flux
nodes. Therefore, these systems require less resources on
the hot spots, and carry less risk for breakdowns due to
fluxes that temporarily exceed the node’s capacity. This is
good news for the Internet and the computer chip, as the
α = 1/2 exponent indicates that one can offer reasonable
bounds on the maximum capacity, potentially avoiding
bottlenecks. In contrast, for driven systems (α = 1) w is
independent of flux, i.e. fluctuations on the hot spots in-
crease linearly with the flux. To accommodate temporary
flux peaks, the capacity of the high flux nodes needs to
be significantly higher than the average flux. Therefore,
the maximum number of visitors on popular websites or
the maximal traffic on some highways is expected to vary
widely, requiring significant infrastructural investments to
avoid accidental bottlenecks and challenging our ability to
plan for maximal usage.

A wide range of complex networks, from the
cell [36–40] to economic systems [41–43], support rapidly
fluctuating transport processes, such as chemical reactions
in the cell or monetary transfers in the economy. Our re-
sults indicate that the relative magnitude of these fluctu-
ations depends on the system’s collective dynamics and
is captured by the dynamical exponent α, which in turn
is determined by the relative magnitude of the external
and internal fluctuations. Distinguishing between intrin-
sic and extrinsic noise has been found useful in gene ex-
pression [44,45], and localized high activity regions are
encountered in random resistor networks [46–49] and the
Internet [14]. Our results indicate that these are not iso-
lated system specific findings, but represent signatures of
dynamic mechanisms that are common for a wide range
of complex networks.

We are indebted to János Kertész for fruitful discussions. This
research was supported by grants from NSF, NIH and DOE.
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