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Subgraphs and cycles are often used to characterize the local properties of complex networks. Here we show
that the subgraph structure of real networks is highly time dependent: as the network grows, the density of
some subgraphs remains unchanged, while the density of others increase at a rate that is determined by the
network’s degree distribution and clustering properties. This inhomogeneous evolution process, supported by
direct measurements on several real networks, leads to systematic shifts in the overall subgraph spectrum and
to an inevitable overrepresentation of some subgraphs and cycles.
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Subgraphs, representing a subset of connected vertices in
a graph, provide important information about the structure of
many real networks. For example, in cellular regulatory net-
works feed-forward loops play a key role in processing regu-
latory informationf1g, while in protein interaction networks
highly connected subgraphs represent evolutionary con-
served groups of proteinsf2g. In a similar vein, cycles, a
special class of subgraphs, offer evidence for autonomous
behavior in ecosystemsf3g, cyclical exchanges give stability
to social structuresf4g, and cycles contribute to reader orien-
tation in hypertextf5g. Finally, understanding the nature and
frequency of cycles is important for uncovering the equilib-
rium properties of various network modelsf6g.

Motivated by these practical and theoretical questions, re-
cently a series of statistical tools have been introduced to
evaluate the abundance of subgraphsf1,2,7g and cycles
f8–11g, offering a better description of a network’s local or-
ganization. Yet, most of these methods were designed to cap-
ture the subgraph structure of a specific snapshot of a net-
work, characterizing static graphs. Most real networks,
however, are the result of a growth process, and continue to
evolve in timef12g. While growth often leaves some of the
network’s global features unchanged, it does alter its local,
subgraph-based structure, potentially modifying everything
from subgraph densities to cycle abundance. Yet, the cur-
rently available statistical methods cannot anticipate or de-
scribe such potential changes.

In this paper we show that during growth the subgraph
structure of complex networks undergoes a systematic reor-
ganization. We find that the evolution of the relative sub-
graph and cycle abundance can be predicted from the degree
distribution Pskd and the degree-dependent average cluster-
ing coefficientCskd. The results indicate that the subgraph
composition of complex networks changes in a very inhomo-
geneous manner: while the density of many subgraphs is
independent of the network size, they coexist with a class of
subgraphs whose density increases at a subgraph-dependent
rate as the network expands. Therefore, in the thermody-
namic limit a few subgraphs will be highly overrepresented
f1g, a prediction that is supported by direct measurements on
a number of real networks for which time-resolved network
topologies are available. This finding questions our ability to

characterize networks based on the subgraph abundance ob-
tained from a single topological snapshot. We show that a
combined understanding of network evolution and subgraph
abundance offers a more complete picture.

Subgraphs. We consider subgraphs withn vertices and
n−1+t edges, whose central vertex has links ton−1 neigh-
bors, which in turn havet links among themselvesfFig.
1sadg. The total number ofn-node subgraphs that can pass by
a node with degreek is s k

n−1
d. Each of thesen-node subgraphs

can have at mostnp=sn−1dsn−2d /2 edges between the
n−1 neighbors of the central node. The probability that there
is an edge between two neighbors of a degreek vertex is
given by the clustering coefficientCskd. Therefore, the prob-
ability to obtain t connected pairs andnp− t disconnected
pairs is given by the binomial distribution ofnp trials with
probabilityCskd. The expected number ofsn,td subgraphs in
the network is obtained after averaging over the degree dis-
tribution, resulting in

Nnt = gntNo
k=1

kmax

PskdS k

n − 1
DSnp

t
DCskdtf1 − Cskdgnp−t, s1d

wherekmax is the maximum degree and the geometric factor
gnt takes into account that the same subgraph can have more

FIG. 1. Examples of subgraphs and cycles with a central vertex.
The subgraph shown insad hasn=5 vertices andn−1+t=5 edges,
wheret=1 represents the number of edges connecting the neighbors
of the central vertexsempty circled together. Insbd we show a
subgraph witht=3 edges among the neighbors, such that the central
vertex and its neighbors form a cycle of lengthh=5, highlighted by
the dotted circle.
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than one central vertex. For instance, a triangle will be
counted three times since each vertex is connected to the
others, thereforeg31=1/3. For networks wherePskd,k−g

and Cskd,k−a, whereg and a are the degree distribution
and clustering hierarchy exponents,kmax!1, Eq.s1d predicts
the existence of two subgraph classesf7g,

Nnt

N
,HC0

t kmax
n−g−at, n − g − at . 0, type I,

C0
t , n − g − at , 0, type II.

s2d

Therefore, for the type I subgraphs theNnt/N density in-
creases with increasing network size, andNnt/N is indepen-
dent ofN for type II subgraphs. In the following we provide
direct evidence for the two subgraph types in several real
networks for which varying network sizes are available: co-
authorship network of mathematical publicationsf13g, the
autonomous system representation of the Internetf14,15g,
and the semantic web of English synonymsf16g. In each of
these networks the maximum degree increases askmax,Nd.
We estimatedd from the scaling of the degree distribution
moments with the graph size,kknl,Ndsn+1−gd, with n=2, 3,
4. Furthermore, we find thatC0 from Cskd=C0k

−a also de-
pends on the network size asC0,Nu, whereu can be esti-
mated usingC0=okù2Cskd /okù2k

−a, giving a better estimate
than a direct fit ofCskd. The exponents characterizing each
network are summarized in Table I.

In Fig. 2 we show the density of all five vertex subgraphs
sn=5d as a function oft. For the Internet and language net-
works C0 increases withN, therefore the subgraph’s density
increases with the network size for all subgraphs. This con-
sequence of the nonstationarity of the clustering coefficient
is subtracted by normalizingNnt by C0

t . For the coauthorship
graph with a=0 sTable Id, only type I subgraphs are ob-
served, as predicted bys2d. In contrast, for the Internet and
semantic networksa.0, therefore the overrepresented type
I phase is expected to end approximately at the phase bound-
ary predicted bys2d. Indeed, to the left of the arrow denoting
the n−g−at phase boundary we continue to observe a sys-
tematic increase inN5t /NC0

t , as expected for type I sub-
graphs. In contrast, beyond the phase boundary the subgraph
densities obtained for different network sizes are indepen-
dent ofN, collapsing into a single curve.

We compared our predictions with direct counts in a
growing deterministic network modelf17g as well, character-
ized by a degree exponentg=1+ln 3/ ln 2<2.6 and a

degree-dependent clustering coefficientCskd=C0k
−a, with

C0=2 and a=1. In Fig. 2sdd we show the number of
sn=5,td subgraphs for different values oft and graph sizes.
The arrow indicating the predicted phase transition point
n−g−at=0 clearly separates the type I from the type II sub-
graphs, a numerical finding that is supported by exact calcu-
lations as well. Note that only one type IIn=5 subgraph is
present in the deterministic network, due to its particular
evolution rule.

Cycles. The formalism developed above can be general-
ized to predict cycle abundance as well. Consider the set of
centrally connected cycles shown in Fig. 1sbd. If the central
vertex has degreek, we can forms k

h−1
d different groups ofh

vertices,h−1 selected from itsk neighbors and the central
vertex. Each ordering of theh−1 selected neighbors corre-

TABLE I. Characteristic exponents of the investigated real net-
works and the deterministic model. The exponents are defined
through the scaling of the degree distributionPskd,k−g, the clus-
tering coefficientCskd=C0k

−a, with C0,Nu, the largest degree
kmax,Nd, and the number ofh cyclesNh/N,Nzh.

Network g a d u z3 z5 z5

Coauthorship 2.4 0.0 0.6 0.00 0.6 1.6 2.6

Internet 2.2 0.75 1.0 0.20 0.3 0.7 1.2

Language 2.7 1.0 0.40 0.68 0.7 1.4 2.0

Model 2.6 1 0.63 0 0 0 0

FIG. 2. Number ofsn=5,td subgraphs for thesad coauthorship,
sbd Internet, andscd semantic networks, and thesdd deterministic
model as a function oft. Different symbols correspond to different
snapshots of the networks evolution, from early stagescirclesd to
intermediatessquaresd and currentsi.e., largestd strianglesd. Nnt de-
pends strongly ont sspanning several orders of magnituded making
it difficult to observe theN dependence. Thus we normalized all the
quantitiessN5t, C0, and Nd to the first year available. The arrows
correspond to the phase boundary 5−g−at=0, with type I and II
subgraphs to the left and right of the arrow, respectively. The insets
show the system size dependence were we plot logN5t vs logN for
different values oft.
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sponds to a different cycle, therefore we multiply with half
of the number of their permutationssh−1d! /2 sassuming that
123 is the same as 321d. Finally, to obtain the number ofh
cycles we multiply the result with the probability of having
h−2 edges between consecutive neighbors,Cskdh−2, and sum
over the degree distributionPskd, finding

Nh

N
= gh o

k=h−1

kmax

Pskd
sh − 1d!

2
S k

h − 1
DCskdh−2, s3d

where gh is again a geometric factor correcting multiple
counting of the same cycle. Note thats3d represents a lower

bound for the total number ofh cycles, which also includes
cycles without a central vertex. Depending on the values of
h, g, anda the sum ins3d may converge or diverge in the
limit kmax→`. When it converges, the density ofh cycles is
independent ofN stype IId, otherwise it grows withN stype
Id. Since in preferential attachment models without clustering
the density ofh cycles decreases with increasingN f18g, we
conclude that clustering is the essential feature that gives rise
to the observed highh-cycle number in such real networks
such as the Internetf8g. To further characterize the cycle
spectrum, we need to distinguish two different cases,
0,a,1 andaù1.

0,a,1. In thekmax→` limit the cycle density follows

Nh

N
,HC0

h−2, h , hc,

C0
h−2kmax

s1−adsh−hcd, h . hc,
s4d

where hc=sg−2ad / s1−ad. Therefore, large cyclessh.hcd
are abundant, their density growing with the network sizeN.
As a→1 the thresholdhc→`, therefore the range ofh for
which the density is size independent, expands significantly.

Direct calculations usings3d show that Nh exhibits a
maximum at some intermediate value ofh fsee Fig. 3sadg,
already reported for the deterministic modelf10g. The maxi-
mum represents a finite-size effect, as the characteristic cycle
length h* , corresponding to the maximum ofNh, scales as
h* ,kmax fFig. 3sbdg. Yet, next we show that this behavior is
not generic, but depends on the value ofa.

aù1. For all g.2 only type II subgraphs are expected
sNh/N,C0

h−2d, as suggested by the divergence ofhc in the
a→1 limit. If C0.1 the number ofh cycles continues to
exhibit a maximum and the characteristic cycle lengthh*

scales ash* ,kmax. If C0,1, however, the number ofh

FIG. 3. Number ofh cycles as computed froms3d, using g
=2.5, sad C0=2 and a=1.1, andkmax=500 sdashed-dottedd, 700
sdashedd, and 900ssolidd, sbd h value at whichNh has a maximum
as a function ofkmax, scd C0=1 anda=0.9.

FIG. 4. Density of all sopen
symbolsd and centrally connected
sfilled symbolsd cycles with h=3
scirclesd, 4 ssquaresd, and 5 sdia-
mondd cycles as a function of the
graph size. The continuous lines
corresponds with our predictions
sTable Id.
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cycles decrease withh, although a small local minima is seen
for small cycles. More important, in this caseNh/N is inde-
pendent of the network sizefsee Fig. 3scdg, in contrast with
the size dependence observed earlierfFig. 3sad and f10gg.
Thus, for networks witha.1 or a=1 andC0,1 the cycle
spectrum is stationary, independent of the stage of the growth
process in which we inspect the network.

Our predictions for the cycle abundance are based on cen-
trally connected cycles, in which a central vertex is con-
nected to all vertices of the cyclefFig. 1sbdg. In the following
we show that our predictions capture the scaling of allh
cycles as well, and not only those that are centrally con-
nected. For this, in Fig. 4 we plot the number ofh=3, 4, 5
cyclessi.e., all cycles as well as those that are centrally con-
nectedd as a function of the graph size for the studied real
and model networks, together with our predictionsscontinu-
ous lined. First we note that in many casessh=3 and 4d the
full cycle density and the density of the centrally connected
cycles overlap. In the few casessh=5d where there are sys-
tematic differences between the two densities theN depen-
dence of the two quantities is the same, indicating that our
calculations correctly predict the scaling of all cycles.

For the coauthorship and Internet graphsa,1 and
hc,3, therefore theh=3, 4, 5 cycles are predicted to be in
the type I regimesh.hcd. In this caseNh/N,Nzh, where
zh=ush−2d+ds1−adsh−hcd. For the language grapha=1,
thereforezh=ush−2d. For the deterministic model a direct
count of theh cycles reveals that they are of type II, i.e., their
density is independent ofNf10g, in agreement with our pre-
dictions for aù1. These predictions are shown as continu-
ous lines in Fig. 4, indicating a good agreement with the real
measurements.

Our results offer evidence of a quite complex subgraph
dynamics. As the network grows, the density of the type II
subgraphs remains unchanged, being independent of the sys-
tem size. In contrast, the density of the type I subgraphs
increases in an inhomogeneous fashion. Indeed, eachsn,td
subgraph has its own growth exponentznt, which means that
their density increases in a differentiated manner: the density
of some type I subgraphs will grow faster than the density of
the other type I subgraphs. Thus, inspecting the system at
several time intervals one expects significant shifts in sub-
graphs densities. As a group, with increasing network size
the type I graphs will significantly outnumber the constant
density type II graphs. Therefore, the inspection of the graph
density at a given moment will offer us valuable, but limited,
information about the overall local structure of a complex
network. However,Pskd and theCskd functions allow us to
predict with high precision the future shifts in subgraph den-
sities, indicating that a precise knowledge of the global net-
work characteristics is needed to fully understand the local
structure of the network at any moment. These results will
eventually force us to reevaluate a number of concepts, rang-
ing from the potential characterization of complex networks
based on their subgraph spectrum to our understanding of the
impact of subgraphs on processes taking place on complex
networksf19,20g.
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