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Subgraphs and cycles are often used to characterize the local properties of complex networks. Here we show
that the subgraph structure of real networks is highly time dependent: as the network grows, the density of
some subgraphs remains unchanged, while the density of others increase at a rate that is determined by the
network’s degree distribution and clustering properties. This inhomogeneous evolution process, supported by
direct measurements on several real networks, leads to systematic shifts in the overall subgraph spectrum and
to an inevitable overrepresentation of some subgraphs and cycles.
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Subgraphs, representing a subset of connected vertices @maracterize networks based on the subgraph abundance ob-
a graph, provide important information about the structure otained from a single topological snapshot. We show that a
many real networks. For example, in cellular regulatory netcombined understanding of network evolution and subgraph
works feed-forward loops play a key role in processing reguabundance offers a more complete picture.
latory information[1], while in protein interaction networks Subgraphs We consider subgraphs with vertices and
highly connected subgraphs represent evolutionary com—1+t edges, whose central vertex has linkstel neigh-
served groups of proteing]. In a similar vein, cycles, a bors, which in turn have links among themselvefFig.
special class of subgraphs, offer evidence for autonomous(a)]. The total number ofi-node subgraphs that can pass by
behavior in ecosysteni8], cyclical exchanges give stability a node with degrekis (n‘_‘l). Each of thes@-node subgraphs
to social structuref4], and cycles contribute to reader orien- can have at mosh,=(n-1)(n-2)/2 edges between the
tation in hypertex{5]. Finally, understanding the nature and n-1 neighbors of the central node. The probability that there
frequency of cycles is important for uncovering the equilib-is an edge between two neighbors of a dedgteertex is
rium properties of various network mod¢g]. given by the clustering coefficie@(k). Therefore, the prob-

Motivated by these practical and theoretical questions, reapijlity to obtaint connected pairs and,~t disconnected
cently a series of statistical tools have been introduced t@airs is given by the binomial distribution o, trials with
evaluate the abundance of subgraghs2,7] and cycles probability C(k). The expected number éfi,t) subgraphs in

[8-11], offering a better description of a network’s local or- the network is obtained after averaging over the degree dis-
ganization. Yet, most of these methods were designed to cagipution, resulting in

ture the subgraph structure of a specific snapshot of a net-

work, characterizing static graphs. Most real networks, Kmax k n

however, are the result of a growth process, and continue to ~ Nog=gnN > P(k)< _ 1)( tp>C(k)t[1 -C(]"™, (1)
evolve in time[12]. While growth often leaves some of the k=1 :

network’s global features unchanged, it does alter its |°Calwherekmax is the maximum degree and the geometric factor

subgraph-based structure, potentially modifying everything;  takes into account that the same subgraph can have more
from subgraph densities to cycle abundance. Yet, the cur-

rently available statistical methods cannot anticipate or de-
scribe such potential changes.

In this paper we show that during growth the subgraph
structure of complex networks undergoes a systematic reor-
ganization. We find that the evolution of the relative sub-
graph and cycle abundance can be predicted from the degree
distribution P(k) and the degree-dependent average cluster-
ing coefficientC(k). The results indicate that the subgraph
composition of complex networks changes in a very inhomo- @ ®) ®
geneous manner: while the density of many subgraphs is
independent of the network size, they coexist with a class of G 1. Examples of subgraphs and cycles with a central vertex.
subgraphs whose density increases at a subgraph-dependgfé subgraph shown i) hasn=>5 vertices andi-1+t=5 edges,
rate as the network expands. Therefore, in the thermodyyheret=1 represents the number of edges connecting the neighbors
namic limit a few subgraphs will be highly overrepresentedof the central vertexempty circle together. In(b) we show a
[1], a prediction that is supported by direct measurements ogubgraph witit=3 edges among the neighbors, such that the central
a number of real networks for which time-resolved networkvertex and its neighbors form a cycle of lengith5, highlighted by
topologies are available. This finding questions our ability tothe dotted circle.
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TABLE |. Characteristic exponents of the investigated real net-
works and the deterministic model. The exponents are defined
through the scaling of the degree distributiBtk) ~ k™, the clus-
tering coefficientC(k)=Cok™®, with Cy~NY the largest degree
Kmax~ N, and the number dfi cyclesNp,/ N~ Néh,

Network v @ ) 0 &L s s
Coauthorship 2.4 0.0 0.6 000 06 16 26
Internet 22 075 1.0 020 03 07 1.2
Language 27 1.0 040 068 07 14 20
Model 26 1 063 0 0 0 0

than one central vertex. For instance, a triangle will be
counted three times since each vertex is connected to the
others, thereforegs;=1/3. For networks whereP(k) ~k™

and C(k) ~k™*, wherey and « are the degree distribution
and clustering hierarchy exponerks,,<1, Eq.(1) predicts

the existence of two subgraph clas§ék

2
N ci, n-y-at<0, typell. @

Nt {C})k”m‘a’{“‘, n-y-at>0, typel,
Therefore, for the type | subgraphs ting,/N density in-
creases with increasing network size, afy/N is indepen-
dent ofN for type Il subgraphs. In the following we provide
direct evidence for the two subgraph types in several real
networks for which varying network sizes are available: co-
authorship network of mathematical publicatios], the
autonomous system representation of the Inteftd{15,
and the semantic web of English synonyfi$]. In each of
these networks the maximum degree increasdsg,as- N°.

FIG. 2. Number of(n=5,t) subgraphs for théa) coauthorship,

. . ax” . (b) Internet, and(c) semantic networks, and the) deterministic
We estimated from the scaling of the degree distribution model as a function of. Different symbols correspond to different

moments with the gr«_aph Siz€") ~ N Y)’ with n=2, 3, snapshots of the networks evolution, from early stégjecles to
4. Furthermore, we find that, from C(k)=Cok™ also de-  iqtermediate(squaresand currenti.e., largest (triangles. Ny de-
pends on the network size &~ N’ where6 can be esti- pends strongly on (spanning several orders of magnitideaking
mated usingCy=2-,C(k)/ 2=,k %, giving a better estimate it difficult to observe theN dependence. Thus we normalized all the
than a direct fit ofC(k). The exponents characterizing each quantities(Ns;, Coy, andN) to the first year available. The arrows
network are summarized in Table I. correspond to the phase boundaryo—t=0, with type | and Il

In Fig. 2 we show the density of all five vertex subgraphssubgraphs to the left and right of the arrow, respectively. The insets
(n=5) as a function ot. For the Internet and language net- show the system size dependence were we ploNipgs logN for
works C, increases withN, therefore the subgraph’s density different values ot.
increases with the network size for all subgraphs. This con-
sequence of the nonstationarity of the clustering coefficienélegree-dependent clustering coefficigditk) =Cok @, with
is subtracted by normalizinly,,, by Cf,. For the coauthorship Co=2 and a=1. In Fig. 2d) we show the number of
graph with a=0 (Table |), only type | subgraphs are ob- (n=5,t) subgraphs for different values bfand graph sizes.
served, as predicted b@). In contrast, for the Internet and The arrow indicating the predicted phase transition point
semantic networks >0, therefore the overrepresented typen—y—at=0 clearly separates the type | from the type Il sub-
| phase is expected to end approximately at the phase boungdraphs, a numerical finding that is supported by exact calcu-
ary predicted by2). Indeed, to the left of the arrow denoting lations as well. Note that only one typenk5 subgraph is
the n—y—at phase boundary we continue to observe a syspresent in the deterministic network, due to its particular
tematic increase ilNg/NC), as expected for type | sub- evolution rule.
graphs. In contrast, beyond the phase boundary the subgraph Cycles The formalism developed above can be general-
densities obtained for different network sizes are indepenized to predict cycle abundance as well. Consider the set of
dent of N, collapsing into a single curve. centrally connected cycles shown in Figbll If the central

We compared our predictions with direct counts in avertex has degreke we can form(h'fl) different groups oh
growing deterministic network modgL7] as well, character- vertices,h—1 selected from itk neighbors and the central
ized by a degree exponeng=1+In3/In2=2.6 and a vertex. Each ordering of the—-1 selected neighbors corre-
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bound for the total number df cycles, which also includes
cycles without a central vertex. Depending on the values of
h, y, and @ the sum in(3) may converge or diverge in the
limit k,.— . When it converges, the density lbfcycles is
independent oN (type II), otherwise it grows wittN (type
I). Since in preferential attachment models without clustering
the density oth cycles decreases with increasiNg 18], we
conclude that clustering is the essential feature that gives rise
to the observed high-cycle number in such real networks
such as the Interndt8]. To further characterize the cycle
spectrum, we need to distinguish two different cases,
0<a<1landa=1.

0<a<1. In theky,— o0 limit the cycle density follows

0 . . . : h-2
0 20 40 60 80 100 Nh {Co : h<h,

0.6

02

—h 4
h N | Ciabhho  psp @

FIG. 3. Number ofh cycles as computed frortB), using y
=25, (8) Co=2 and a=1.1, andk,,=500 (dashed-dotted 700  Wheréhc=(y=2a)/(1-a). Therefore, large cyclegh>h)
(dashed and 900(solid), (b) h value at whichN,, has a maximum ~are abundant, their density growing with the network $ize
as a function okmay () Co=1 anda=0.9. As a—1 the thresholch,— «, therefore the range df for
which the density is size independent, expands significantly.

sponds to a different cycle, therefore we multiply with half ~ Direct calculations using3) show thatN, exhibits a

of the number of their permutatiois—1)!/2 (assuming that Maximum at some intermediate value lofsee Fig. 8],

123 is the same as 3RIFinally, to obtain the number d¢f ~ @lready reported for the deterministic mo¢ie0]. The maxi-

cycles we multiply the result with the probability of having MUM represents a finite-size effect, as the characteristic cycle

h-2 edges between consecutive neighb6t&)"2 and sum length h', corresponding to the maximum of,, scales as

over the degree distributioR(k), finding h" ~kKmax [Fig. 3(b)]. Yet, next we show that this behavior is
not generic, but depends on the valueaof

k,
Ni, max (h-1!( k - a=1. For all y>2 only type Il subgraphs are expected
N ghk_Eh_l Pl)— (h _,)Ck 2, (3)  (Ny/N~CI?), as suggested by the divergencehgfin the

a—1 limit. If Cy>1 the number oh cycles continues to
where g,, is again a geometric factor correcting multiple exhibit a maximum and the characteristic cycle length
counting of the same cycle. Note th@&) represents a lower scales ash’ ~kya, If Cy<1, however, the number off

10 (a) co-authorship N (b) Internet

2+ . FIG. 4. Density of all(open
M@ _I symbolg and centrally connected

N mON L L . L (filled symbols cycles withh=3

10 | 10.4I 10.8I 11;2 ) 8 8.2 | 84 8.6 | 8.8 9 | 9.2 (circles, 4 (squares and 5 (dia-
= (c) semantic . (d) model mond cycles as a function of the
graph size. The continuous lines
L51 ® O —® 2 corresponds with our predictions
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cycles decrease with, although a small local minima is seen  Our results offer evidence of a quite complex subgraph
for small cycles. More important, in this cabig/N is inde-  dynamics. As the network grows, the density of the type I
pendent of the network siZsee Fig. &)], in contrast with  subgraphs remains unchanged, being independent of the sys-
the size dependence observed earfléig. 3@ and[10]]. tem size. In contrast, the density of the type | subgraphs
Thus, for networks withe>1 or =1 andCy<1 the cycle increases in an inhomogeneous fashion. Indeed, éadh
spectrum is stationary, independent of the stage of the growtsubgraph has its own growth exponépt which means that
process in which we inspect the network. their density increases in a differentiated manner: the density
Our predictions for the cycle abundance are based on cemf some type | subgraphs will grow faster than the density of
trally connected cycles, in which a central vertex is con-the other type | subgraphs. Thus, inspecting the system at
nected to all vertices of the cyd€ig. 1(b)]. In the following  several time intervals one expects significant shifts in sub-
we show that our predictions capture the scaling ofhall graphs densities. As a group, with increasing network size
cycles as well, and not only those that are centrally conthe type | graphs will significantly outnumber the constant
nected. For this, in Fig. 4 we plot the numberiof3, 4,5  density type Il graphs. Therefore, the inspection of the graph
cycles(i.e., all cycles as well as those that are centrally con-density at a given moment will offer us valuable, but limited,
nected as a function of the graph size for the studied realinformation about the overall local structure of a complex
and model networks, together with our predictidnentinu-  network. HoweverP(k) and theC(k) functions allow us to
ous ling. First we note that in many casés=3 and 4 the  predict with high precision the future shifts in subgraph den-
full cycle density and the density of the centrally connectedksities, indicating that a precise knowledge of the global net-
cycles overlap. In the few casés=5) where there are sys- work characteristics is needed to fully understand the local
tematic differences between the two densities khdepen-  structure of the network at any moment. These results will
dence of the two quantities is the same, indicating that oueventually force us to reevaluate a number of concepts, rang-
calculations correctly predict the scaling of all cycles. ing from the potential characterization of complex networks
For the coauthorship and Internet graphs<l and based on their subgraph spectrum to our understanding of the
h.<3, therefore thén=3, 4, 5 cycles are predicted to be in impact of subgraphs on processes taking place on complex
the type | regime(h>h,). In this caseN,/N~N¢, where networks[19,20.
{h=0(h—2)+8(1-a)(h—-h,). For the language graph=1,
therefore,,=6(h—2). For the deterministic model a direct ACKNOWLEDGMENTS
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