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Abstract

Novel aspects of human dynamics and social interactions are investigated by
means of mobile phone data. Using extensive phone records resolved in both
time and space, we study the mean collective behavior at large scales and focus
on the occurrence of anomalous events. We discuss how these spatiotemporal
anomalies can be described using standard percolation theory tools. We also
investigate patterns of calling activity at the individual level and show that the
interevent time of consecutive calls is heavy-tailed. This finding, which has
implications for dynamics of spreading phenomena in social networks, agrees
with results previously reported on other human activities.

PACS number:

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Mobile phones are becoming increasingly ubiquitous throughout large portions of the world,
especially in highly populated urban areas and particularly in industrialized countries, where
mobile phone penetration is almost 100%. Mobile phone providers regularly collect extensive
data about the call volume, calling patterns, and the location of the cellular phones of their
subscribers. In order for a mobile phone to place outgoing calls and to receive incoming calls,
it must periodically report its presence to nearby cell towers, thus registering its position in
the geographical cell covered by one of the towers. Hence, very detailed information on the
spatiotemporal localization of millions of users is contained in the extensive call records of any
mobile phone carrier. If misused, these records—as well as similar datasets on buying habits,
e-mail usage and web-browsing, for instance—certainly pose a serious threat to the privacy of
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the users. However, the use of privacy-safe, anonymized datasets represent a huge scientific
opportunity to uncover the structure and dynamics of the social network at different levels,
from the small-scale individual’s perspective to the large-scale, collective behavior of the
masses, with an unprecedented degree of reach and accuracy. Besides the inherent scientific
interest of these issues, deeper insight into applications of great practical importance could
certainly be gained. For instance, urban planning, public transport design, traffic engineering,
disease outbreak control and disaster management are some areas that will greatly benefit from
a better understanding of the structure and dynamics of social networks [1].

The use of mobile phone data as a proxy for social interaction has already proved successful
in several recent investigations. Onnela et al [2, 3] have analyzed the structure of weighted
call graphs arising from reciprocal calls that serve as signatures of work-, family-, leisure- or
service-based relationships. A coupling between interaction strengths and the network’s local
structure was observed, with the counterintuitive consequence that social networks turn out to
be robust to the removal of the strong ties but fall apart following a phase transition if the weak
ties are removed. Szabd and Barabési [4] have studied social network effects in the spread
of innovations, products and new services. They investigated different mobile phone-based
services and found the coexistence on the same social network of two distinct usage classes,
with either very strong or very weak community-based segregation effects. In the context of
urban studies and planning, Ratti et al [5, 6] have considered the potential use of aggregated
data from mobile phones and other hand-held devices. Their ‘Mobile Landscapes’ project
aims at the application of location-based services to urban studies in order to gain insight into
complex and rapidly changing urban dynamics phenomena. More recently, Palla, Barabasi
and Vicsek [7, 8] used mobile phone data to study the evolution of social groups. They
found that large groups persist for longer times if they are capable of dynamically altering
their membership, suggesting that an ability to change the group composition results in better
adaptability. In contrast, the behavior of small groups displays the opposite tendency, the
condition for long-term persistence being that their composition remains stable.

In the following sections, we present new results that address novel aspects of human
dynamics and social interactions obtained from extensive mobile phone data. In section 2,
we show how large-scale collective behavior can be described using aggregated data resolved
in both time and space. We stress the importance of investigating large departures from the
average and develop the basic framework to quantify anomalous fluctuations by means of
standard percolation theory tools. In section 3, we focus on the individual level and study
patterns of calling activity. We show that the interevent time of consecutive calls is heavy-
tailed, a finding that has implications for the dynamics of spreading on social networks [9—17].
Furthermore, by fixing the time of observation between consecutive calls it is possible to use
the phone call data to characterize some aspects of human mobility.

2. Fluctuations in aggregated spatiotemporal call activity patterns

The spatial dependence of the call activity at any given time can be conveniently displayed
by means of maps divided in Voronoi cells, which delimit the area of influence of each
transceiver tower or antenna. The Voronoi tessellation partitions the plane into polygonal
regions, associating each region with one transceiver tower. The partition is such that all
points within a given Voronoi cell are closer to its corresponding tower than to any other tower
in the map.

Figure 1 shows activity maps for aggregated data corresponding to a 1 h interval. The
upper panel shows the activity pattern (in logo scale) for a peak hour (Monday noon), while
the lower panel shows the same urban neighborhood during an off-peak hour (Sunday at 9 am).
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Figure 1. Call activity maps in an urban neighborhood, showing the number of calls per hour
managed by each transceiver tower or antenna (dots). The division in terms of Voronoi cells defines
the area of reach of each tower. Call traffic patterns depend on time and day of the week, as shown
by comparing the map on a Monday at noon (upper panel) with that on a Sunday at 9 am (lower
panel). The bars on the right side of each panel correspond to the number of calls per hour and
tower in logjg scale.

The differences between both panels reflect the intrinsic rhythm and pulse of the city: we can
expect call patterns during peak hours to be dominated by the hectic activity around business
and office areas, whereas other, presumably residential and leisure areas can show increased
activity during off-peak times, thus leading to different, spatially distinct activity patterns.
Besides different spatial patterns, each particular time of the day, as well as each day of the
week, is characterized by a different overall level of activity. This phenomenon is shown by the
plot at the center of figure 1, in which aggregated data for a country are shown as a function of
time (data were binned in time intervals of 1 h). As expected, the overall normalization of the
aggregated pattern is lower during weekends than during weekdays, except around weekend
midnights and early mornings, when many people go out.
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The minimum spatial resolution is determined by either the typical distance between
towers or, in rural regions with sparse tower density, by the reach of the radio-frequency
signals exchanged between the mobile handset and the antenna (typically ranging from a few
hundred meters to several kilometers). To explore activity differences at larger scales, the data
of neighboring cells can be aggregated. At the expense of some loss of spatial resolution,
aggregating data into larger spatial bins (taking, e.g., a regular spatial grid covering the entire
country) allows for better statistics and for a more stable activity pattern. That is, the number
of calls made from a group of nearby cells at a certain time and day of the week is expected
to be fairly constant, except for small statistical fluctuations.

Usually, activity patterns are strongly correlated with the daily pulse of populated areas
(such as those shown in figure 1) and, at a larger scale, to variations in population density
between different regions within the country. In contrast, departures from the mean expected
activity are in general not trivially correlated with population density and describe instead
interesting dynamical features.

The measurement of fluctuations around the mean expected activity is of paramount
importance, since it allows a quantitative measurement of anomalous behavior and, ultimately,
of possible emergency situations. This indeed constitutes the base of proposed real-time
monitoring tools such as the Wireless Phone-based Emergency Response (WIPER) system
[18]. Anomalous patterns indicative of a crisis (such as the occurrence of natural catastrophes
and terrorist attacks) could be detected in real time, plotted on satellite and GIS-based maps
of the area, and used in the immediate evaluation of mitigation strategies, such as potential
evacuation routes or barricade placement, by means of computer simulations [18, 19].

The call volume shows strong variations with time and day of the week, as shown in
figure 1, but differences across subsequent weeks are generally mild (provided one considers
call traffic in the same place, time and day of the week). To capture the weekly periodicity
of the observed patterns, we define n;(r, ¢, T) as the number of calls recorded at location r
(which can either denote a single Voronoi cell or a group of neighboring cells) during the ith
week between times ¢ and ¢ + 7, where time is defined modulo 1 week. Assuming we have
access to continuous data for N weeks, the mean call activity is given by

N
(n(r,t,T)) = %Eni(r,t, T). (1)
i=1
Note that in the same way as one can trade off spatial resolution for increased statistics by
summing over a group of Voronoi cells, varying 7 one can regulate time accuracy versus
statistics. This certainly depends on the extent to which aggregated data show a regular, stable
behavior. The results presented here correspond to 7 = 1 h.
The scale to measure departures from the average behavior is set by the standard deviation,
defined as

1 N
o1, 1) = |2 > (w6, T) = (n(r, 2, )2 2)
i=1

Hence, using recorded data for an extended period of time, one can determine the expected
call traffic levels and corresponding deviations for all times and locations. Once this normal
behavior is established, anomalous fluctuations above or below a given threshold can be
obtained using the condition

Inij(r,z, T) — (n(r,t,T))| > Ape X o (v, 2, T), 3)
where Ay, > 0 is a constant that sets the fluctuation level.
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Figure 2. Activity and fluctuations in a regular 2D grid showing a normal event (left panels) and
an anomalous one (right panels). The activity is displayed in terms of the number of calls per
hour inside each square bin in logjo scale (upper panels). High-activity bins above the fluctuation
threshold Ay = 0.25 are shown in black, while bins with normal activity are shown in gray
(bottom panels). Bins in white correspond to areas not covered by the mobile phone carrier.

We grouped Voronoi cells together generating a regular 2D grid made of square bins of
about 12 km of linear size. Considering a fixed time slice, we study the spatial clustering
of bins showing anomalous activity at different fluctuation levels. In order to illustrate our
procedure, figure 2 shows the activity and fluctuations in a grid of size 40 x 40 bins (i.e.
480 x 480 km? area). We compare the activity in the same region for 2 different weeks
(corresponding to the same time and day of the week). The left panels show a normal event, in
which fluctuations around the local mean activity are typically small, with just a few scattered
bins having somewhat larger deviations. The right panels, however, show an anomalous event,
characterized by extended, spatially correlated fluctuations that indicate the emergence of a
large-scale, coordinated activity pattern. As pointed out above, the existence of anomalous
activity patterns could be indicative of possible emergency situations. Similarly to the Voronoi
maps already discussed, the upper panels in figure 2 show the activity (number of calls per
hour inside each square bin) in log;y scale. White bins correspond to areas not covered by
the mobile phone provider. Taking a fixed threshold value Ay, = 0.25, the bottom panels
show the high-activity bins above the fluctuation threshold (in black) and the bins with normal
activity (in gray). Note that although the activity maps have a similar appearance to the
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Figure 3. Size of the largest cluster as a function of the fluctuation threshold for the normal case
(left) and the anomalous one (right). Measurements on the call data (solid line with circles) are
compared to those of randomized distributions, of which we show the mean (long-dashed line) and
confidence bounds at o4y, (short-dashed lines) and 20,4y, (dotted lines).

degree that they seem at first look indistinguishable, the fluctuation maps display striking
differences.

In order to quantify the clustering of anomalous bins, we will use the standard tools of
percolation theory and determine the size of the largest cluster, the number of different clusters
and the size distribution of all clusters. The statistical significance of the measured clustering
is evaluated by comparing it to results from randomized distributions, in which many different
configurations are randomly generated, keeping fixed the total number of high-activity bins
above the fluctuation threshold. The substrate, which is formed by all bins with non-zero
activity, remains always the same (in figure 2, for instance, the substrate is the set of all
gray and black bins). Clusters are defined by first- and second-order nearest neighbors in
the square 2D grid. In the remainder of this section, we will focus on a specific large-scale
anomalous event and compare it to the normal behavior observed in data of a different week
(but corresponding to the same time and day of the week). The comparison between normal
and anomalous events will illustrate the use of percolation observables as diagnostic tools for
anomaly detection.

Figure 3 shows the size of the largest cluster, Spmax, as a function of the fluctuation
threshold Ay, for the normal case (left) and the anomalous one (right). Each measured
plot (solid line with circles) is compared to results from randomized distributions. The latter
correspond to the mean (long-dashed line) and confidence bounds at 04y, (short-dashed lines)
and +20.4y, (dotted lines), as obtained from generating 100 random configurations in each
case. As expected, the plots show that the size of the largest cluster monotonically decreases
with the fluctuation threshold. However, while the clustering in the normal case lacks any
significance, the anomalous event shows large departures from the clustering expected in a
random configuration.

In the same vein, figure 4 shows the number of different clusters, Ny, as a function of
the fluctuation threshold Ay, where measurements on the call data for the same normal (left)
and anomalous (right) events are compared to results from randomized configurations. As
before, in the normal case the number of clusters agrees well with the expectations for random
configurations, while significant departures are observed in the anomalous case.

Figure 5 shows the cumulative size distribution of all clusters, N (s > S), as a function
of the cluster size S, compared to random configurations. The upper panels display results
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Figure 4. Number of different clusters as a function of the fluctuation threshold for the normal
case (left) and the anomalous one (right). Measurements on the call data (solid line with circles)
are compared to results on random configurations (dashed and dotted lines).
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Figure 5. Cumulative size distribution of all clusters as a function of cluster size, for A, = 0.25
(upper panels), Apr = 0.75 (bottom panels), normal case (left panels), and anomalous case (right
panels). Thick solid lines are measurements on the call data, while dashed and dotted lines are
results from random configurations.

for Agy = 0.25, while the bottom ones show results for Ay, = 0.75, as indicated. Moreover,
the left panels correspond to the normal event, while the right panels to the anomalous event.
Again, the measured cluster size distribution in the normal case is in good agreement with
the expected one for a random configuration. In contrast, the anomalous event shows the
occurrence of a few very large clusters formed by many highly active bins. These unusually
large structures cannot be explained as arising just from random configurations, but instead
are the result of the spatiotemporal correlation of large, highly active regions.

As a summary, in this section we showed how large-scale collective behavior can be
described using aggregated data resolved in both time and space. Moreover, we developed the
basic framework for detecting and characterizing spatiotemporal fluctuation patterns, which is
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Figure 6. Interevent time distribution P(AT) for calling activity. AT corresponds to the time
interval between two mobile phone calls sent by the same user. Different symbols indicate the
measurements done over groups of users with different activity levels (# calls). The inset shows
the unscaled interevent time distribution and the solid line corresponds to equation (4).

based on standard procedures of statistics and percolation theory. These tools are particularly
effective in detecting extended anomalous events, as those expected to occur in emergency
scenarios due to e.g. natural catastrophes and terrorist attacks.

3. Individual calling activity patterns

In order to use the huge amount of data recorded by mobile phone carriers to investigate
various aspects of human dynamics [1, 20-23], a necessary starting point is to characterize the
dynamics of the individual calling activity per se. Previous studies have measured the time
between consecutive individual-driven events, such as sending e-mails, printing and visiting
web pages or the library [24, 25]. Those events are described by heavy-tailed processes
[20, 26], challenging the traditional Poissonian modeling framework [27-31], with
consequences on task completion in computer systems. In this section, we explore the
interevent distribution of the calling activity of 6 x 10® mobile phone users during 1 month.
As many other human activities, the calling activity pattern is highly heterogeneous.
While some users rarely use the mobile phone, others make hundreds or even thousands of
calls each month. To analyze such different levels of activity, we group the users based on
their total number of calls. Within each group, we measure the probability density function
P(AT) of the time interval AT between two consecutive calls made by each user. As shown
by the inset of figure 6, the tail of the distribution is shifted to longer interevent times for users
with less activity. However, if we plot AT, P(AT) as a function of AT/AT,, where AT, is
the average interevent time for the corresponding user, the data collapse into a single curve
(figure 6). This indicates that the measured interevent distribution follows the expression
P(AT) =1/AT,F(AT/AT,), where F(x) is independent from the average activity level of
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Figure 7. Travel behavior. (a), (b) Number of trips and consecutive calls that are reported within
a fixed interevent time AT, = 30 min versus time of the day. (c) The ratio of the two quantities
described in (a) and (b) shows that along the whole day 40 &= 20% of the people that is calling seems
to be also traveling. (d) The average distance of travel within A7, = 30 min remains constant
during the day within 6 £ 2 km, a reasonable value that may correspond to the combination
between walk and motor transportation.

the population. This represents a universal characteristic of the system that surprisingly also
coincides with results from e-mail communication [32]. The data are well fitted by

P(AT) = (AT) “exp(AT/7.), “4)

where the power-law scaling with exponent « = 0.9 %+ 0.1 is followed by an exponential
cutoff at . ~ 48 days. Equation (4) is shown by a solid line in the inset of figure 6 and
its scaled version is presented in the main panel of the figure using AT, = 8.2 h, which is
the average interevent time measured for the whole population. This result, clearly different
from that predicted by a Poisson approximation [26, 33, 34], would for instance affect the
predictions of spreading dynamics through the network of calls [35].

To explore the interplay between human activity and mobility patterns, we fix the
characteristic observation time to A7, = 30 min and collect only those consecutive calls
that occur with this interevent time, recording also the time of the day in which they occurred
(figure 7(a)). For each pair of calls, we count how many of them result in a change of
coordinate, e.g. the user traveled in the 30 min time interval between the calls (figure 7(b)).
The number of events that result in a change of location and the number of calls as a function
of time capture the daily activity pattern of the users [36]. We find that both the call and the
mobility pattern decrease at night and have clear peaks near noon and late evening. There
is a factor of 30 between the largest and the smallest number of events (calls/changes of
location) reported during the day. Interestingly, when we calculate the fraction of consecutive
calls also resulting in a potential change of location, the quantity varies at most 40% during
the whole day (figure 7(c)). This indicates that although the total activity varies strongly, the
percentage of the people that are calling and traveling remains rather stable. More importantly,
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the average distance traveled within AT, = 30 min is stable in the vicinity of Ar = 6 &2 km
(figure 7(d)), a value consistent for the combination between walk and motor transportation.

4. Conclusions

Novel aspects of human dynamics and social interactions were addressed by means of mobile
phone data with time and space resolution. This allowed us to study the mean collective
behavior at large scales and focus on the occurrence of anomalous events. Considering a
fixed time slice, we partitioned the space using a regular grid and studied the aggregated call
activity inside each square bin forming the grid. We showed that anomalous events give rise to
spatially extended patterns that can be meaningfully quantified in terms of standard percolation
observables. By considering a series of consecutive time slices, we could investigate the rise,
clustering and decay of spatially extended anomalous events, which could be relevant e.g. in
real-time detection of emergency situations.

We also investigated patterns of calling activity at the individual level. We observed that
the interevent time of consecutive calls is heavy-tailed, a finding that has implications for
dynamics of spreading phenomena on social networks, and that agrees with results previously
reported on other, related human activities. We also show that despite the complexity inherent
in the interevent calling patterns, it is still possible to recover some characteristic values from
the behavior of the population that are stationary during the day, such as the fraction of active
traveling population and their average distance traveled.

In many ways, these results represent only a first step toward understanding human activity
patterns. Our results indicate that the rich information provided by mobile communication
data open avenues to addressing novel problems. These tools offer a chance to improve our
understanding of complex networks as well [37-44], by potentially correlating the structure
of social networks with the spatial layout of the users as nodes [45-51], thus contributing to a
better understanding of the spatiotemporal features of network evolution.
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