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The geometry of diffusion-limited aggregation clusters is mapped into single-valued functions by
tracing the surface of the aggregate and recording the X (or Y) coordinate of the position of a walk-
er moving along the perimeter of the cluster as a function of the arc length. Our numerical results
and scaling arguments show that the related plots can be considered as self-affine functions whose
scaling behavior is determined by the exponent H =1/D, where D is the fractal dimension of the ag-

gregates.

I. INTRODUCTION

Numerous recent studies of far-from-equilibrium pro-
cesses have demonstrated that interface growth phenome-
na governed by the Laplace equation typically lead to
fractal patterns.!”> The diffusion-limited aggregation
(DLA) model of Witten and Sander* represents a simple
approach that has been shown to capture the essential
features of the structure and development of such inter-
faces. Since the discovery that DLA clusters are fractals,
various methods have been used to characterize their
complex spatial behavior. In this paper we use a different
approach to provide an alternative way of describing the
scaling properties of growing fractal interfaces.

The main idea of our study is that we map the
geometry of a DLA cluster into a single-valued function.
This is done by tracing the perimeter of an aggregate and
plotting the X (or Y) coordinate of the actual position of
a walker moving along the perimeter as a function of the
distance made by the walker. The plot that is obtained
by this procedure can be considered as a length-
dependent ‘“‘signal” and as such it can be treated by a
number of methods developed for this purpose. This
kind of approach has been used recently to describe the
stochastic nature of deterministic growth patterns® and to
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FIG. 1. This figure illustrates the construction of the single-
valued function X (/) corresponding to a DLA cluster on the ex-
ample of a small aggregate.
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analyze the self-affinity of various curves.® Here we in-

tend to describe the scaling properties of plots corre-
sponding to the special type of random walks defined
above.

The actual realization of our approach is carried out as
follows: Consider the perimeter of a DLA cluster defined
on a lattice, where the perimeter is defined as the set of
empty sites that are nearest neighbors to the aggregate.
First we fix a direction and a starting point; then we let
the walker proceed from one perimeter site to another by
not permitting returns to the already visited sites. This
process is demonstrated for a small cluster in Fig. 1. It is
related to the perimeter walk which has been studied
from a different aspect for percolation clusters.’

As the walker moves along the perimeter we record its
X (or Y) coordinate as a function of the number of steps /.
Figure 1(b) shows the corresponding plot. For isotropic
clusters (such as an off-lattice diffusion-limited aggregate)
there is no difference between the statistical properties of
the functions X (/) and Y (/).

In the next section we present the results obtained
from simulations carried out on large DLA clusters gen-
erated by an off-lattice algorithm. Scaling arguments
supporting our numerical results are given in Sec. III. In
the last section we discuss the approach described in this
paper.

II. SIMULATIONS

To study the scaling properties of the X (/) plots
defined above we considered five off-lattice diffusion-
limited aggregates each consisting of 250000 particles.
Although the clusters were not grown on a lattice,® the
coordinates of the particles can be identified with those of
the nearest grid points of an underlying square lattice
without losing the relevant details of the geometry. The
number of steps in the associated perimeter walks was ap-
proximately L =500 000.

Since X (/) is apparently rough, it is a natural idea’ to
investigate the scaling behavior of the average of its stan-

6881 ©1990 The American Physical Society



6882 ALBERT-LASZLO BARABASI AND TAMAS VICSEK 41

dard deviation on an interval of length /,
| 172
-3 (X,—X)* ) (1)

<
where X is the mean value of X on a segment of length /
and ( ) denotes averaging over many such samples taken
from the total signal of L steps in a random or systematic
manner. If the width of the function (1) scales with the
length of the samples as

0(1)=<

a(h)~I1H, (2)

then the plot of the X coordinates can be considered as a
self-affine curve®!® with a fractal dimension Dg, =2—H.
This fractal dimension is different from that of the DLA
cluster itself but, as we shall show later, the two are relat-
ed. In general, from the scaling behavior of X (/) de-
scribed by (2) it also follows!®!! that X (/) satisfies

X(D=A"Hx (AD , (3)

which can be considered as an alternative condition for
the self-affinity of the recorded signal.

We tested the scaling of o(/) for the traces of DLA
clusters by plotting Ino versus In/ (Fig. 2), and from the
slope of the straight line fitted to the data we found that
this scaling behavior is described by an exponent

H =0.59+0.02 . 4

The above value is remarkably close to 1/D ~0.585,
where D =1.71 is the fractal dimension of the off-lattice
diffusion-limited aggregates in two dimensions.

The self-affine nature of the X (/) plots is demonstrated
in Fig. 3, where parts of the original signal are displayed.
In accordance with Eq. (3), if one rescales parts of the sig-
nal in the horizontal and the vertical directions, respec-
tively, by the factors A and A ¥ the resulting functions
remain statistically the same.
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FIG. 2. Scaling of the standard deviation o of the plots ob-
tained by tracing five DLA clusters of 250000 particles; o (/)
was calculated by taking an average over the widths obtained
for individual intervals of length /.
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FIG. 3. Visual demonstration of the self-affinity of functions
generated by tracing an aggregate. Plots obtained for (a)
1 =1000; (b) I =4000; (c) /=16000 steps have been rescaled
onto the same interval by shrinking the horizontal and the verti-
cal extension of the plots by the factors } and (1), respec-
tively. Self-affinity is indicated by the fact that the overall ap-
pearance of the resulting functions is the same (they are statisti-
cally identical).

III. SCALING APPROACH

The following scaling argument leads to a simple ex-
pression between the exponent H and the fractal dimen-
sion D of the DLA clusters. Let us consider a circle of
radius R centered on the particle of a large aggregate,
where the perimeter walk is started from. Because of the
self-similarity of the aggregate, the number of steps L (R)
that are made by the walker before it reaches the circle
scales as L(R)~N(R)~R?P, where N(R) is the number
of particles within the circle.

This means that the corresponding plot of X (/) has a
horizontal extension (number of steps) proportional to
R, while at the same time its vertical size is proportion-
al to the radius of the circle R. In other words, the
height of the signal scales with its length L as L!/2.
From this and the definitions (2) or (3) we get

1
H D (5)
This result is in full agreement with our numerical esti-
mate for H. Expression (5) is also known to hold for
plots of fractional Brownian motion, where it follows
from the definition.!?

Further evidence showing that (5) is satisfied for fractal
clusters can be obtained by studying the exact mathemat-
ical fractal shown in Fig. 4. It is easy to see that this
construction—which has the topology similar to that of a
DLA aggregate—leads to an X (/) plot that is self-affine.
Figure 4(b) demonstrates that each time the horizontal
scale is increased by a factor of 5, the vertical extension
of the plot becomes three times larger. This behavior
corresponds to H =In3/In5, and this means that for the
fractal in Fig. 4(a) Eq. (5) is exactly satisfied, since its di-
mension is D =In5/In3. We have also numerically deter-
mined o (/) for this construction to see how fast is the
convergence of H in the simulations to its true value.
The results show that even for sizes corresponding to an
aggregate of 3125 particles the observed scaling is ex-
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FIG. 4. This figure demonstrates that the relationship
H =1/D is exactly satisfied on the deterministic fractal shown
in (a).

tremely accurate, and the related slope deviates from the
exact value by less than 3%.

IV. DISCUSSION

Our results for the sequence of X (or Y) coordinates ob-
tained by tracing a diffusion-limited aggregate show that
the associated plots can be considered as self-affine func-
tions whose scaling behavior is determined by the ex-
ponent H =1/D, where D is the fractal dimension of the
aggregates. Accordingly, the local fractal dimension Dgj,
of these self-affine plots is related to D through the rela-
tion Dg, =2—H =2—1/D.

Next we would like to point out how the kinds of plots
studied in this work differ from those obtained by plot-
ting the X coordinates of a fractional Brownian motion
(FBM) in one dimension. In the case of FBM the incre-
ments of X represent a Gaussian random variable, and in
analogy with (2) they satisfy the expression ( X*(z)) ~ 2,
where ¢ denotes the time (corresponding to the number of
steps for a perimeter walk). Although the width of the
X (1) curves scales with [ as the width of the FDM plots
for the same H, there are at least two important
differences between these walks:

(i) The sequence of X (/) and Y (/) coordinates corre-
sponding to two fractional Brownian walks in one dimen-
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sion can be used to reconstruct an FBM in the plane.
Obviously, the cluster obtained in this way statistically
never produce a DLA cluster. From this, one can see
that self-affine plots with the same scaling behavior can
correspond to rather different actual functions. The situ-
ation is similar to the case of self-similar fractals: two ob-
jects with the same fractal dimension may have very
different geometrical properties.

(ii) The scaling of X (/) shown in Fig. 2 is far from be-
ing perfect. In fact, in a similar plot of an ordinary ran-
dom walk, the data are much closer to a straight line.
The deviation seen for the DLA case is likely to be
relevant, since the simulations were carried out on a large
scale.

The above observations raise the question of character-
izing the difference between self-affine curves with the
same H. For self-similar fractals such as DLA clusters,
several quantities have been shown to be useful in
describing the particular geometry of the aggregates. For
example, it was found that the angular correlation func-
tion'® and the three-point correlation function'* provide
further important information about the structure of
DLA clusters.

The fact that the scaling of the width corresponding to
the perimeter walk is systematically worse than for a
standard random walk is likely to indicate the deviation
of a diffusion-limited aggregate from a perfect isotropic
fractal. This is in accordance with the findings reported
in the above quoted works. Our results suggest that in
the self-affine case, characteristics alternative to the ex-
ponent H should be studied as well. The investigation of
some of these quantities is in progress.
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