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ABSTRACT

Information spreading processes are central to human in-
teractions. Despite recent studies in online domains, lit-
tle is known about factors that could affect the dissemi-
nation of a single piece of information. In this paper, we
address this challenge by combining two related but distinct
datasets, collected from a large scale privacy-preserving dis-
tributed social sensor system. We find that the social and
organizational context significantly impacts to whom and
how fast people forward information. Yet the structures
within spreading processes can be well captured by a simple
stochastic branching model, indicating surprising indepen-
dence of context. Our results build the foundation of future
predictive models of information flow and provide significant
insights towards design of communication platforms.

Categories and Subject Descriptors

J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Sociology

General Terms

Measurement, Experimentation, Human Factors

Keywords

Information spread, Context, Social networks, Structure,
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1. INTRODUCTION

Information spreading plays an essential role in numerous
human interactions, including the spread of innovations [32,
30], knowledge and information security management [15],
social influence in marketing [10, 21, 25], and more. Thanks
to the increasing availability of large-scale data, we have
witnessed great advances in understanding how informa-
tion propagates from person to person, ranging from in-
centivized word-of-mouth effects when recommending prod-
ucts [25, 19], to understanding how a single piece of infor-
mation forms internet chain letters on a global scale [27].

Despite recent studies in online social networks [25, 2,
16, 26], it has been difficult to obtain detailed traces of in-
formation dissemination alongside relevant contextual data
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such as people’s real social connections, their behavioral pro-
files, and job roles in organizations. Therefore, an important
question is largely unanswered: to what extent do spread-
ing processes depend on the underlying social network and
behavioral profiles of individuals. Indeed, on one hand, in-
formation such as rumors, innovations and opinions diffuses
through the underlying social networks. To whom and to
how many people a user would pass such information is con-
strained by whom s/he connects to and how well s/he is
connected in the social network, and the strength of those
connections. On the other hand, the population-based het-
erogeneity in personal profiles coexists with complex connec-
tivities between individuals, raising questions about to what
degree the diverse profiles of individuals, from personal in-
terests and expertise to communities and hierarchy, impact
the information spreading process. Understanding the role
of these features is of fundamental importance.

The lack of contextual information could change drasti-
cally, however, thanks to the pervasive use of email com-
munications in well-documented settings, such as corporate
work forces [11, 28, 12, 38, 4, 1, 22, 20]. Indeed, emails
have become the most important communication method in
various settings [36, 28], unveiling detailed traces of social
interactions among large populations. Previous studies [36,
6] have shown that email communications serve as a good
indicator of social ties. Forwarded emails [29], written by
someone other than the sender and sent to someone who
was not included in the original email, serve as an ideal
proxy for the information spreading process, where the sin-
gle piece of information, the original body of the email, is
passed through the social network.

We compiled a new dataset by integrating two related
but distinct data structures, collected from a large-scale,
privacy-preserving distributed social sensor system. First,
we collected two years of email communication data from
8,952 volunteer employees within a large technology firm
operating in more than 70 countries. Emails occupy the
majority of information workers’ time and thus provide high-
quality observation of the social context, i.e., the real social
connections of employees in the workplace [36, 6]. In addi-
tion to such “informal networks,” we investigated the “formal
networks,” imposed by the corporation such as their hierar-
chical structure, as well as demographic data such as ge-
ography, job role, self-specified interests, performance, etc.
This dataset provides us unique opportunities to study the
interplay between the information spreading and its context.
This issue is largely not addressed in previous studies par-



tially due to the lack of such a multi-faceted dataset and the
difficulty in matching user IDs across multiple sources.

Specifically, we investigate the impact of context on spread-
ing processes in two levels:

e At the microscopic level, we are interested in the be-
haviors of each individual in the spreading process,
e.g. to whom and how fast does a user forward in-
formation? (Sec. 4)

o At the macroscopic level, we ask what are the struc-
tural properties of the spreading processes? And what
is the best model for the observed structures? (Sec. 5)

At the microscopic level, we find that information spread-
ing is indeed highly dependent on social context as well as
the individuals’ behavioral profiles. Macroscopically, how-
ever, we find that the tree structures observed in the spread-
ing process can be accurately captured by a simple stochas-
tic branching model, indicating the macroscopic structures
of spreading processes, i.e., to how many people a user for-
wards the information and the overall coverage of the in-
formation, are largely independent of context and follow a
simple reproducible pattern. To the best of our knowledge,
this work presents the first comprehensive analysis of the de-
termining factors affecting information spreading processes.
We believe our findings are of fundamental importance in
developing prediction models for information flow, provide
new insights towards the design of our social and collab-
orative applications, such as assisting users to disseminate
information more efficiently, protecting digital information
leakage, and promoting spreading strategies to achieve ex-
pected coverage.

2. RELATED WORK

In this section, we review three categories of related work:
studies on information spreading and cascades, social net-
work analysis especially on emails, and virus propagation.

Information Spreading and Cascades. Various stud-
ies in online domains have been conducted to understand the
structural properties of information flow. Among them, the
spreading processes of specific pieces of information, includ-
ing studies on internet chain letters and viral marketing, are
most related to our work. Liben-Nowell and Kleinberg [27]
studied information flows on a global scale using internet
chain letters. They found that the structures of observed
trees are narrow and deep. They proposed a probabilistic
model, leveraging the structure of other social networks, to
explain the deep tree-like structure. Golub and Jackson [13]
then showed that the structures observed in [27] could be
explained by the Galton-Watson branching model [35] com-
bined with the selection bias of observing only the largest
trees. Leskovec, Adamic and Huberman [25] studied an in-
centivized word-of-mouth effect by analyzing viral market-
ing data, focusing on the overall properties of the result-
ing recommendation network and its dynamics. By using
data from a viral experiment of recommending newsletters,
Iribarren and Moro [19] modeled the overall dynamics of in-
formation flow from individual activity patterns. There has
been extensive work done in the blog domains about cascad-
ing behaviors [24, 2, 16, 26], and several models have been
proposed to capture the structure of the blogosphere.

Previous work focuses on analyzing the observed proper-
ties of information flows. In contrast, the questions we are

interested in this study are Why does information spread?
What are the factors that could potentially affect this pro-
cess?

Emails. Much work has focused on email communica-
tion records, from their static topological structure [11, 1]
to dynamic properties [12, 4, 33, 22, 19]. These works fo-
cus on the overall structure of the social network, or on the
timing of events. Recently, Karagiannis and Vojnovic [20]
studied the behavioral patterns of email usage in a large-
scale enterprise by looking at email replies. They examined
various factors that could potentially affect email replies,
focusing on pair-wise interactions and aiming to inform the
design of advanced features. Our approach presents a new
angle to using email data. First, we treat social networks as
the backbone of the spreading processes, using the network
topology to inspect the structures of information spreading
and to assess models. Second, the spreading processes we
study go beyond the pair-wise interactions of email replies,
representing richer structural properties.

Virus Propagation. There is much literature regarding
virus propagation. To name a few, Hethcote [18] studied the
epidemic threshold for cliques. Briesemeister et al [7] studied
the virus propagation on power law graphs by simulations.
Most recent research has been devoted to real, arbitrary
graphs. For example, Wang et al. [34] gave the analytic
epidemic threshold for an arbitrary graph. Based on that,
Tong et al [31] proposed an effective immunization strategy
by approximately maximizing that threshold.

Virus propagation, although bearing some high level sim-
ilarity to spreading of information, is not selective, meaning
that a better connected individual in the network will infect
more people. Information, on the other hand, spreads pur-
posefully, representing a more complex behavior. Indeed, in
our study we investigate the factors that affect to whom, and
to how many people, a user forwards information, exploring
the selective process of information spreading.

3. PRELIMINARIES

In this section, we describe the datasets used in our study
and present the basic properties of the dataset.

3.1 Data Description

We collected detailed electronic communication records of
8,952 volunteer employees in more than 70 countries over a
two-year period within a large global technology company
with over 400,000 employees. Each log entry specifies the
sender and receiver(s) of the message, a timestamp, the sub-
ject, and the content of the body of the email. To preserve
privacy!, the email addresses of users are hashed, and the
original textual content in email’s body was not saved. In-
stead, this content is represented as a term-frequency vector
containing the terms that appear in the text as well as their
counts after stemming and removal of stop-words. During
the two year period, we observe about 20 million emails sent
by our users. For the same population, we gathered infor-
mation specifying a range of personal attributes (gender,
job role, departmental affiliation and report-to relation with
managers, and more). We also collected detailed financial
performance data for more than 10,000 consultants in the
company. These consultants generate revenue by logging

vefer to [37] for more information about privacy related
solutions
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Figure 1: Activity levels at different times of the week for email forwarding activities and overall email traffic
in (a), and ratios of the two in (b). The ratios in weekends are omitted due to the low volumes.

“billable hours”. It has been found that a consultant’s abil-
ity to generate revenue is an appropriate productivity mea-
sure [39]. Therefore, we measure performance of individuals
with the total US dollars a consultant generated from June
2007 to July 2008. Combining the financial and commu-
nication data yields a total of 1,029 consultants for whom
we have both email and financial records. The identities of
participants were hashed.

As we are interested in how a specific piece of information
spreads, we further processed our dataset using the following
procedures. We started by looking for the string Fw: in the
beginning of each email subject title. This process gives
us all the emails that were forwarded. We then grouped
emails with the same subject title together, reconstructing
the original threads. Each forwarded thread results in an
information spreading tree structure, where the single piece
of information, the original body of the email, was passed
from one to others. Our dataset provides us with 9, 623 such
distinct threads, the starting point of our study.

3.2 Basic Properties

As our dataset captures communication within an enter-
prise, the temporal patterns and the organizational roles
of individuals involved may indicate the importance of for-
warded emails. We show in Fig. la the activity levels, the
number of communications in each hour of the week normal-
ized by the total number of communications in a week. We
observe a clearly periodic pattern. Communication builds
up in the morning and decays in the afternoon with a no-
table dip at noon indicating the lunch time. There are two
interesting points we want to make here. First, while the ac-
tivity levels of forwarded emails (red squares) follow a simi-
lar periodic pattern to the overall email traffic (blue circles),
their activity levels are significantly higher than the normal
email traffic on workday mornings, especially on Mondays,
and lower in the afternoons especially on Fridays. This can
be seen clearly in Fig. 1b, where we show the ratio of the
two curves in Fig. 1a. The curve goes above 1 in the morn-
ings, but mostly below 1 in the afternoons. This is a good
indicator that forwarded emails are timely and important,
representing a special class of overall email traffic. Second,
access to email is limited by weekly schedules. This weekly
cycle becomes important when we inspect the efficiency of
information spreading in the following sections. That is,

there is a time delay when forwarding an email after receiv-
ing it. For example, a delay of two days in the delivery of
information, when it was received on Friday, could be due
to the inability of a user to access his or her email during
the weekend. Therefore, for any calculation regarding time
in the following sections, we perform a check by removing
the off-hours. Yet no results changed qualitatively.

In addition, we observe that 38% of the forwarded threads
involve people from multiple departments. This suggests
that email forwarding is an important means to facilitate
cross-organization collaboration. Moreover, 43% of the emails
are forwarded by managers, indicating that email forwarding
is a common management tool.

4. MICROSCOPIC INFORMATION SPREAD-
ING IN CONTEXT

What factors could potentially affect the information spread-
ing process at the microscopic level, i.e., to whom and how
fast a user spreads the information? Why does some infor-
mation get rapidly processed and passed on to others, while
other information experiences notable delay? Or more gen-
erally, why does some information get forwarded at all in
the first place?

Here we investigate several aspects of these questions. Our
analysis will focus on the most fundamental building blocks
of information spreading — information pathways, as illus-
trated in Fig. 2. More specifically, user A sent an email to
user B at a certain time with a specific title. Then user B
waited for some time and forwarded the message to user C,
passing the information, the main body of the email, along
via B from A to C. We refer to user A as “initiator”, B as
“spreader”, and C as “receiver”. The dissemination process
can be far more complex than this simple case, as we shall
see in Section 5, where we focus on spreading processes at
the macroscopic level, exploring to what extent the overall
structure of spreading processes depends on context. Yet
any spreading tree structures can be reduced to a combina-
tion of such information pathways.

Our study shows that not only does the social and organi-
zational context affect to whom a specific piece of informa-
tion is forwarded, but it also affects how fast it is forwarded.
We found that information undergoes interesting re-routing
processes, from weak links to strong ties, and from non-
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Figure 2: An illustrative example of an information
pathway.

experts to experts. The efficiency of the spreading process is
affected by departmental structure, but little by individual
performance. These findings can guide us to build better
social and collaborative environments, design applications
assisting users to disseminate information more efficiently,
and develop strategies to protect digital information leakage
and predictive tools for recommendation systems.

4.1 The Underlying Social Networks

How information spreads may be influenced by the un-
derlying social network, and understanding the interplay
between the social network and spreading process is very
important. First, it has a number of implications in various
social systems, such as promoting new strategies in viral
marketing by taking into account the effect of the network
topology. Second, it plays an important role in assessing
the choice of models, arguing whether a flu-like epidemi-
ology model, which directly relies on the topology of the
network, is suitable for modeling the information flow, (see
Section 5).

We start by building a social network among our users
by aggregating email communications over a one year pe-
riod. We add a link between two users if there has been at
least one email communication between them. The weight
of the link, w(z — j), is asymmetric, defined as the number
of emails sent from user ¢ to j. As we are mostly inter-
ested in the connectivity between individuals, we focus on
the static picture of the network rather than the dynamics
of the network evolution.

We show in Fig. 3 the probability ratio of email forward-
ing activity? as a function of the weight of the links between
initiators and spreaders, w(A — B), and spreaders and re-
ceivers, w(B — O, defined in the information pathways in
Fig. 2. A positive slope would indicate that information is
more likely to flow through strong ties, whereas a negative
slope shows that weaker connections are more favorable for
the spreading processes. Surprisingly, we observe that the
information is more likely to spread initially via weak ties
and then gets passed through strong connections, strong ev-
idence of information routing by spreaders choosing social
neighbors of different closeness.

This raises an interesting question: how well are the in-
formation spreaders connected in the network? Are they a
random sample of individuals or are they a biased sample
of more central social hubs? We show in Fig. 4 the degree
distribution P(k) of nodes in the whole social network as
grey circles and the sample of spreaders as orange crosses.
Interestingly, we find that spreaders show nearly the same

2the probability ratio of email forwarding as a function of
quantity q is obtained by P¥™(q)/P**%(q), where P*¥(q)
is the probability of having ¢ in forwarded emails, while
P4 () is the same probability for overall emails. A value
equals to 1 would indicate P¥™(q) is about what you would
expect normally.
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Figure 3: The probability ratio of email forwarding
as a function of the weight of links between A and B
and B and C respectively in the information path-
ways. Information spreading undergoes an interest-
ing re-routing process, from weak links to strong
ties.
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Figure 4: The degree distribution of the whole net-
work and the group of the spreaders. The spreaders
have comparable connectivity to randomly sampled
individuals in the network.

distribution of connectivity as a random sample of individ-
uals from the network.

4.2 Information Content and Expertise

An important question about information spreading is
how the process depends on the relevance of the content of
the information to the individual’s expertise. Here, we ex-
plore this issue using the available message content. As men-
tioned previously, the content of each email in our dataset
is represented as term frequencies. We build a vocabulary
vector ¥U; = (81, 82, ..., Sn) for each user ¢ by looking at the
content of all the emails sent by 7, where the length of v; is
the total number of meaningful words that have appeared
in all emails for all users, thus is the same length for every
user. The j-th element s; is the score of the j-th word cal-
culated by TF-IDF. The vector #; will provide a measure
of ranked “buzzwords” for user i, which serves as an indica-
tor of the individual’s expertise, since previous studies have
shown emails are a primary form of communication within
big corporations [36, 6]. Next, we build a vector ¢ for each
email [ following the same procedure, where s; is the TF-
IDF score of the j-th word in ©;. Therefore, v; will give us
a measure of the content of email [, accounting for overly
common words and overly rare words. Then the similarity
between the content of the information [ and the individual
i’s expertise is defined as the cosine similarity of the two
vectors, S;; = U; - 0 /(||U:|| ||Ti]]). We show in Fig. 5, how
the probability ratio of information spreading changes in
function of S;; for user i as (a) spreaders and (b) receivers,
respectively. The probability ratio anti-correlates with S; ,



similarity between information content and spreaders’ ex-
pertise, yet exhibits a significant positive correlation for the
receivers’ case. This finding offers quantitative evidence that
the information undergoes a clear re-routing, demonstrating
that information flows from non-experts to experts. That is,
the information is more likely to be passed on by spreaders
if the content is dissimilar to spreaders’ expertise. It then
flows to receivers who are more likely to be interested in the
information.
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Figure 5: Probability ratio of information spread-
ing changes in function of S;; for (a) spreaders and
(b) receivers. Information spreading undergoes an
interesting re-routing from non-experts to experts.

4.3 Organizational Context

In an enterprise, understanding how information flows
within and between different departments and organizational
levels is of great importance, from building a better collabo-
rative environment to controlling information security. Here
we examine the impact of organizational context in two di-
rections: one is the influence of departmental restrictions,
and the other is the organizational hierarchies.

In Fig. 6, we show the median time delay in information
spreading for spreaders as different roles of brokerage [14].
There are in total five types of brokers. Figure 6 contains
illustrative examples for all five: Each box represents a de-
partment, and users are from the same department if they
are in the same box. If there is only one user in the depart-
ment, we omit the box for brevity. Our dataset has individ-
uals from as many as 19 departments, and the information
pathways consisting of people from different departments
are classified into these 5 categories. We observe that the
information flows significantly faster in two cases — coordi-
nator and gatekeeper — than the other three cases. These are
the only two cases where spreaders and receivers are in the
same department. Thus the bottleneck of information flow
in the departmental context is to get the information out of
the department. We further break down the manager and
non-manager cases for each role of brokerage. We find that
managers are better as a representative while non-managers
are better as a liaison, but the difference between managers
and non-managers is seldom large.

We now turn our attention to the impact of organizational
levels. While it is intuitive to assume that users would re-
spond faster to emails from people of higher level in the
organization (e.g., the reaction of the emails are influenced
by the report-to relationship), a previous study [20] on email
replies revealed that the reply time does not depend on level
difference. Our study shows similar results, confirming that
the time delay of information appears to be independent
of the hierarchy. Yet, when we look at the probability ra-
tio of email forwarding as a function of the level difference
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Figure 6: Information flow in the departmental con-
text. Each box represents a department, and users
are from the same department if they are in the
same box. Information spreads faster when B and
C are in the same department.

(Fig. 7a) and organizational distance (Fig. 7b) between ini-
tiators and spreaders, we discover some non-homophily ef-
fect as opposed to the homophily effect found in [20]. As
shown in Fig. 7a, information is unlikely to flow between
individuals in the same level compared with normal email
traffic, and two extreme cases clearly stand out — either bot-
tom up or top down the hierarchy. It tells us that, while the
communication between different hierarchies does not yield
a faster or slower response, it does matter when determin-
ing whether one would decide to pass on the information
or not in the first place. Moreover, Fig. 7b further con-
firms the non-homophily effect that the information tends to
flow between individuals at a larger distance in the formal
organizational structure. This effect shows that “informal
networks” and “formal networks” complement each other in
information spreading.
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Figure 7: Probability ratio of email forwarding as
a function of (a) hierarchical level difference and
(b) organizational distance between initiators and
spreaders. The information spreading exhibits some
non-homophily effect.

4.4 Individual Characteristics

Another factor that may impact the efficiency of infor-
mation spreading relates to the individual characteristics of
those participating in the spreading process. Do people with
different work performance behave differently in getting the
word out? A natural hypothesis is that people with bet-
ter performance are more efficient in spreading the informa-
tion. While it is generally difficult to get a quantitative mea-



surement of individual performance, the mentioned “billable
hours” data serves this purpose. As a consultant’s perfor-
mance is directly related to the total revenue s/he generates,
this unique data offers us an opportunity to explore for the
first time how individual characteristic affects the informa-
tion spreading process. To test this hypothesis, we look at
whether there is a correlation between the delay time of in-
formation spreading and the performance of the individuals.
We find that the hypothesis is not supported by our data.
We show in Fig. 8 the correlation between the median in-
formation’s waiting time in hours and the performance of
initiators and spreaders, respectively. The dashed grey lines
show the 25% quantiles. The information’s waiting time
appears to be constant for both initiators and spreaders,
independent of individual performance.
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Figure 8: Information delay time in hours versus
individual performance for (a) initiators and (b)
spreaders. The quartiles are shown as grey lines.
The efficiency of the spreading is little affected by
individual performance.

S. MACROSCOPIC INFORMATION SPREAD-

ING IN CONTEXT

We now go beyond information pathways and turn our
attention at the macroscopic level, aiming to understand to
what degree spreading processes rely on contextual factors.
That is, to how many people a user forwards the information
and the information reaches in total. Our dataset contains
more than 2000 threads®. Each thread can be treated as
a rooted tree (Fig. 9),where information spreads from one
user to others.

We focus on two questions: (i) what are the generic prop-
erties of the tree structures within spreading processes? (ii)
how much contextual information do we need to incorpo-
rate in the models in order to capture these properties? We
found, in contrast to the narrow and deep trees observed
in previous studies [27, 13], that the trees in our study are
bushy yet shallow. The information fans out, but quickly
dies out. We further demonstrated that the way informa-

3Since we did not have all the communications within the
enterprise, we were left with a relatively small number of
threads. The readers might be curious whether this sam-
pling issue would affect our observations of the tree struc-
tures. As our upcoming stochastic model, which well cap-
tures the empirical observations, is purely based on the in-
trinsic media properties of email systems (i.e., number of re-
cipients n in each email, and its distribution P,(n)), we can
therefore validate our results by checking the distribution of
n across different datasets. To this end, we measured this
quantity in other email datasets([12] and [11]). We found
that all email datasets to date share the common feature
that P, (n) universally follows a fat-tailed distribution, indi-
cating that our results are robust to sampling.

// \\ Aug 5, 09:30:12 "data request"

Aug 5, 09:53:00 "Fw: data request"

Aug 6, 14:21:53 " : data request"

Figure 9: An illustrative example of an information
spreading tree. This tree is of size 8, width 4, and
depth 3.

tion fans out, i.e., to how many people a user forwards the
information, features a high degree of randomness, being in-
dependent of the connectivity of spreaders in the underlying
social network. The overall structural properties of spread-
ing processes can be captured surprisingly well by a simple
stochastic model, indicating that information spreading is
largely independent of context at the macroscopic level.

5.1 Empirical Observations

In this subsection we report the main observations about
structural properties of the threads. These observations
build the foundation of our models. In summary, there are
two interesting findings regarding the observed trees, which
can not be interpreted intuitively by existing models.

e Ultra-shallow trees: Almost 95% of trees are of
depth 2, and trees with more than 4 hops are absent.

e Stage dependency: The branching factor (number
of children each node has) depends on the distance
from the root.

5.1.1 Tree size, width, and depth

The size, width, and depth of a tree are its three most
important structural characteristics. The size of a thread is
defined as the total number of people involved in the spread-
ing process; the width of a tree is the maximum of number of
nodes in each level among all levels of the tree; depth is the
length of the longest path from a leaf to the root. (As our
forwarding process is conditioned on the emails that were
forwarded, the minimum depth of the trees is 2). The dis-
tributions of size and width both follow a power law?*, with
an exponent of 2.67 and 2.53, respectively (Fig. 10). While
the power law distribution itself is not unexpected, what is
surprising is that the tails of these two distributions have
similar exponents. This fact directly implies, as shown in
Figure 11, that the size of the trees grows almost linearly
with the width (a power law relation with exponent around
1). Moreover, we observe that the tree structures extracted
from email forwarding activities are ultra shallow: 95% of
the trees are of depth 2, and the distribution of depth decays
so fast that we don’t observe any tree of depth greater than
4 within 2000+ samples.

4The likelihood of power law distributions and the exponents
hereafter are assessed by applying the techniques in [9].
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Figure 10: Distributions of size, width, and depth of the trees. Empirical measurements are denoted as blue
squares, while the grey triangles are predictions of existing models. Dashed lines are guides for the eye, with
an exponent of 2.5. The existing models overestimate the tails of the distributions.
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Figure 11: Scatter plot of the size and the width of
the trees. The size of the tree grows almost linearly
wrt the width of the tree.

These findings are puzzling when we apply the classical
model for generating a random tree structure: a Galton-
Watson branching process [35], in which each node has a
random number of children k, drawn independently accord-
ing to the same distribution, denoted as P(k). Previous
work [13] has shown that, despite the complexities of the
process, this simple model fits the data quite well. We
therefore follow the modeling procedure of [13] to fit our
observation. We first compute the parameters P(k) of a
Galton-Walton process by using maximum-likelihood esti-
mation. Then we simulate the process and generate the
same number of trees as empirical measurements. The dis-
tribution of size, width and depth, plotted as grey triangles
in Fig. 11, follow a power law, with an exponent of 1.96
and 2.11. Clearly, directly applying this procedure signif-
icantly overestimates the tails of distributions, generating
trees that are much bigger and deeper than observed empir-
ically. Most prominent is the depth distribution. For trees
that are in the subcritical regime, i.e., the mean p of P(k)
is less than 1 (u < 1), the depth distribution has an expo-
nential tail [17]. However, the measured depth distribution
decays much faster than the model prediction.

In summary, the trees we observed here are bushy yet
very shallow, which implies that the information spreads
efficiently, reaching out to many people then quickly dying
out.

5.1.2 Stage dependence

The observations above raise an important question: does
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Figure 12: Distribution of branching factors x condi-
tioned on the distance to the root of the tree d. The
branching process depends on the spreading stages.

the information spreading process change in different stages?
We therefore compute the conditional probability of x given
the distance to the root d, P(k | d), in Figure 12. In a
Galton-Watson branching process, P(k) is universal across
all nodes, therefore independent of d, predicting the col-
lapse of curves in the plot. We observe that, however, the
branching process does depend on the distance to the root.
The power law exponent o of P(x) when d = 0 approxi-
mately satisfies y1 = o + 1, where 7; is the exponent of
P(k) when d = 1. (y0 = 2.48 and v1 = 3.48). The dis-
tribution of k becomes steeper as we move deeper down the
trees, corresponding to the stage dependence, which was also
observed in a recent study [23] regarding how online conver-
sation forms yet remained unclear why the exponent of P(k)
changes with d, indicating that this effect is generic among
different settings, and a model that could appropriately cap-
ture this feature would be of great importance in enhancing
our understanding of social systems.

5.2 Modeling the information spreading pro-
cess

What is the underlying mechanism that governs the infor-
mation spreading process? Our goal here is to explore how
much contextual information we need to rely on to model
the observed macroscopic structural properties of the trees
in Sec. 5.1, aiming to quantify to what extent spreading pro-
cesses at the macroscopic level depend on context.

The observed fat-tailed distributions of branching factors
K in Fig. 12 help us assess the properties of nodes in the
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Figure 13: Distribution of branching factors « con-
ditioned on the degree of the node k. The branching
factors are independent on the degree connectivity.

underlying social network. As shown in Fig. 4, the degree
distribution, P(k), is also fat tailed [5, 3, 8]. Indeed, in-
dividuals are connected differently in the network. While
most people have only a few connections, there are a no-
table number of individuals who have many social neigh-
bors. This raises an important question: to what extent
does the information spreading process depend on the un-
derlying social network? First off, the branching factor « for
an individual in the spreading process is upper-bounded by
the total number of connections s/he has. Yet beyond that,
it is important to inspect whether there is a correlation be-
tween k and k. This question has a number of important
implications. In the viral marketing case for example, where
the underlying social network is usually not visible, the cor-
relation between k and s will tell us whether it is a good
marketing strategy to carefully choose the seed populations
to spread an advertisement. A positive correlation suggests
that it does matter who you choose to start the spreading,
as social hubs would tend to send the information to more
people. Yet if the correlation is not so strong, one could
argue that perhaps it is not so important how one chooses
the seed population. Another example comes from the dif-
ference between the spreading of information and diseases.
Indeed, diseases spread from a seed to many others through
networks, bearing high level similarity to the spreading of
information. The models of epidemics commonly rely on
infection rates, where better connected nodes infect more
neighbors, corresponding to a strong correlation between &
and k. Therefore, understanding to what extent informa-
tion spreading relies on the context of underlying network
would quantitatively assess the difference between these two
spreading processes, arguing whether the existing epidemic
models are applicable to the spreading of information.

The correlation between k and k can be examined by em-
pirically measuring the conditional probability P(x | k). In-
deed, as P(k) = [ P(x | k)P(k)dk, if x is largely uncorre-
lated with k, P(k | k) can therefore be factored out of the
integral, giving P(k) = P(k | k), leading to a data collapse
when plotting P(k) in different curves by grouping individ-
uals of similar k. We show in Fig. 13 the conditional prob-
ability P(k | k) for two different stages of spreading (d = 0
vs. d = 1), respectively. Surprisingly, we observe very good
collapse for different k in both figures, which indicates that
there is no direct correlation between k and . The breadth
of the dissemination of information is independent of the
connectivity k of individuals. This indicates, while to whom
a user forwards the information indeed depends on the un-
derlying social network (as shown in Sec. 4.1), to how many
people (k) one would forward the information does not.
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Figure 14: The distribution of the number of recip-
ients for each email P,(n) is fat-tailed.

Figure 15: P(k) for d = 0 and d = 1, model pre-
diction (solid lines) vs. experiment measure (scat-
tered squares and circles). Our model well captures
the stage dependence phenomenon of information
spreading.

The surprising independence of node properties of the in-
formation spreading process leads us to question its depen-
dence on the media properties of email systems. There-
fore, we model the spreading processes by mimicking the
way emails are sent. Indeed, an important feature of email
communication, distinguishing it from other forms of com-
munication, like cell phones, is the ability to send a message
to multiple recipients at the same time.

Therefore, the distribution of the number of recipients for
all the emails being sent should follow some non-trivial form,
other than §(1) in cell phones, i.e., each phone call is made to
one recipient only. Let us denote the distribution for emails
system as Py, (n) for now, where n represents the number of
recipients in each email. While some emails are forwarded,
many more are not. The easiest way to look at email for-
warding is to treat it as an independent decision making
process, where each recipient with probability p forwards
the information, or probability 1 —p does nothing. As email
forwarding represents a small fraction of overall email traf-
fic, p should be a small number. When a recipient decides
to forward the email, s/he draws a random number from
the distribution P, to decide how many people to send the
emails. So the distribution of branching factors should fol-
low the same distribution as P,, from which the random
numbers were drawn, giving P(k) = P,(x). However, this
should only hold for the case of d > 0. Indeed, as our study
is focused on the emails that are forwarded, there should
be an extra term for correcting this conditional probability
when d = 0. That is, the original emails with more recipi-
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Figure 16: Size, width, and depth distributions of model prediction (triangles) with empirical observations
(squares). The model matches well with observations. Note the last point in depth distribution is biased by

empirical finite size effect, lower bounded by N~!.

ents are more likely to get forwarded, as there will be more
people to make a decision whether or not to pass on the
information. Following this mechanism, the distribution of
branching factors at depth 0, P(x | d = 0), follows

P(r]d=0)=A1—=(1-p)")Pu(r)

1
—A (1 _ enln(l—p)) Pn(l*i) ( )
where A is the normalization factor, whereas P(x | d > 0)
follows

P(s | d > 0) = Pu(k) (2)

In the limit of p — 0, to the leading power, the relationship
between the scaling exponent o of P(k | d = 0), and 71 of
P(k | d = 1), follows the simple relation vy1 = v0 + 1 if kK <
—1/In(l—p) = 1/p,and y1 =y if K > —1/In(1—p) = 1/p.

Both parameter p and function P, can be measured inde-
pendently from our data, yielding p = 0.012 and a fat-tailed
distribution P, (Fig. 14). We can therefore simulate the
distributions of size, width, and depth using these two mea-
sured parameters. The results are shown in Fig. 16, with
observations as squares and model predictions as triangles.
Surprisingly, they all match the empirical observations very
well. The distribution of size and width follows a power
law, with an exponent of 2.63 and 2.51, very close to the
empirical observations (2.67 and 2.53). Indeed, both dis-
tributions pass the two-sample Kolmogorov-Smirnov tests,
with p-values equal to 1. Furthermore, the observation of
stage dependence could be verified analytically by plugging
the parameters into egs. (1) and (2), as plotted in blue and
red lines in Fig. 15, respectively. It is also very well captured
by the model.

The model we described above for email forwarding pro-
cesses is purely stochastic and has two parameters, p and P,
which are measured from our email dataset independently.
Perhaps unexpectedly, such a simple model explains a great
deal of observations. This, together with Fig. 13, indicates
that, despite the complexity in real life, the macroscopic
structures of information spreading processes are largely in-
dependent of contextual information and can be well cap-
tured and explained via simple machanisms.

6. CONCLUSIONS AND FUTURE WORK

Applications of social systems rely on our understanding
of information spreading patterns. In this work, by com-

bining two related but distinct large scale datasets, we ad-
dress the factors that govern information spreading at both
microscopic and macroscopic levels. We found, microscopi-
cally, whom the information flows to indeed depends on the
structure of the underlying social network, individual ex-
pertise and organizational hierarchy. The performance of
individuals has little influence on the efficiency of spread-
ing, yet departmental constraints do slow down the process.
At the macroscopic level, however, although seemingly com-
plex, the structural properties of spreading trees, i.e., to
how many people a user forwards the information and the
total coverage the information reaches, can be well captured
by a simple stochastic branching model, indicating that the
spreading process follows a random yet reproducible pat-
tern, largely independent of context. We believe that our
findings could guide users to build better social and collab-
orative applications, design tools and strategies to spread
information more efficiently, improve information security,
develop predictive tools for recommendation systems, and
more.

Future directions mainly fall into two lines. The first is
to develop a better prediction model for information flow.
Indeed, upon understanding to whom one forwards informa-
tion, when one would forward it, and to how many people,
the question thereafter is can we build a better prediction
model of the flows? The second direction is about the muta-
tion of information. People sometimes add extra information
or express opinions about existing information when passing
along the originals to others. How does information mutate
along the way? How does the mutation of information affect
the patterns of spreading? These questions stand as miss-
ing chapters in our understanding of spreading processes.
Indeed, with the availability of large-scale email datasets,
thorough inspection of the email message contents will re-
veal the dynamics of information itself, which in turn can
yield better predictive tools for information spreading.
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