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Complex biological systems and cellular networks may underlie most genotype to phenotype
relationships. Here, we review basic concepts in network biology, discussing different types of
interactome networks and the insights that can come from analyzing them. We elaborate on why
interactome networks are important to consider in biology, how they can bemapped and integrated
with each other, what global properties are starting to emerge from interactome network models,
and how these properties may relate to human disease.
Introduction
Since the advent of molecular biology, considerable progress

has been made in the quest to understand the mechanisms

that underlie human disease, particularly for genetically inherited

disorders. Genotype-phenotype relationships, as summarized in

the Online Mendelian Inheritance in Man (OMIM) database (Am-

berger et al., 2009), include mutations in more than 3000 human

genes known to be associated with one or more of over 2000

human disorders. This is a truly astounding number of geno-

type-phenotype relationships considering that a mere three

decades have passed since the initial description of Restriction

Fragment Length Polymorphisms (RFLPs) as molecular markers

to map genetic loci of interest (Botstein et al., 1980), only

two decades since the announcement of the first positional

cloning experiments of disease-associated genes using RFLPs

(Amberger et al., 2009), and just one decade since the release

of the first reference sequences of the human genome (Lander

et al., 2001; Venter et al., 2001). For complex traits, the informa-

tion gathered by recent genome-wide association studies

suggests high-confidence genotype-phenotype associations

between close to 1000 genomic loci and one or more of over

one hundred diseases, including diabetes, obesity, Crohn’s

disease, and hypertension (Altshuler et al., 2008). The discovery

of genomic variations involved in cancer, inherited in the germ-

line or acquired somatically, is equally striking, with hundreds

of human genes found linked to cancer (Stratton et al., 2009).

In light of new powerful technological developments such as

next-generation sequencing, it is easily imaginable that a catalog

of nearly all human genomic variations, whether deleterious,

advantageous, or neutral, will be available within our lifetime.

Despite the natural excitement emerging from such a huge

body of information, daunting challenges remain. Practically,

the genomic revolution has, thus far, seldom translated directly

into the development of new therapeutic strategies, and the

mechanisms underlying genotype-phenotype relationships

remain only partially explained. Assuming that, with time, most

human genotypic variations will be described together with
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phenotypic associations, there would still be major problems

to fully understand andmodel human genetic variations and their

impact on diseases.

To understand why, consider the ‘‘one-gene/one-enzyme/

one-function’’ concept originally framed by Beadle and Tatum

(Beadle and Tatum, 1941), which holds that simple, linear

connections are expected between the genotype of an organism

and its phenotype. But the reality is that most genotype-pheno-

type relationships arise from a much higher underlying com-

plexity. Combinations of identical genotypes and nearly identical

environments do not always give rise to identical phenotypes.

The very coining of the words ‘‘genotype’’ and ‘‘phenotype’’ by

Johannsen more than a century ago derived from observations

that inbred isogenic lines of bean plants grown in well-controlled

environments give rise to pods of different size (Johannsen,

1909). Identical twins, although strikingly similar, nevertheless

often exhibit many differences (Raser and O’Shea, 2005). Like-

wise, genotypically indistinguishable bacterial or yeast cells

grown side by side can express different subsets of transcripts

and gene products at any given moment (Elowitz et al., 2002;

Blake et al., 2003; Taniguchi et al., 2010). Even straightforward

Mendelian traits are not immune to complex genotype-pheno-

type relationships. Incomplete penetrance, variable expressivity,

differences in age of onset, and modifier mutations are more

frequent than generally appreciated (Perlis et al., 2010).

We, along with others, argue that the way beyond these chal-

lenges is to decipher the properties of biological systems, and in

particular, those of molecular networks taking place within cells.

As is becoming increasingly clear, biological systems and

cellular networks are governed by specific laws and principles,

the understanding of which will be essential for a deeper com-

prehension of biology (Nurse, 2003; Vidal, 2009).

Accordingly, our goal is to review key aspects of how complex

systems operate inside cells. Particularly, we will review how by

interacting with each other, genes and their products form

complex networks within cells. Empirically determining and

modeling cellular networks for a few model organisms and for
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Figure 1. Perturbations in Biological Systems and Cellular Networks

May Underlie Genotype-Phenotype Relationships
By interacting with each other, genes and their products form complex cellular
networks. The link between perturbations in network and systems properties
and phenotypes, such as Mendelian disorders, complex traits, and cancer,
might be as important as that between genotypes and phenotypes.
human has provided a necessary scaffold toward understanding

the functional, logical and dynamical aspects of cellular systems.

Importantly, wewill discuss the possibility that phenotypes result

from perturbations of the properties of cellular systems and

networks. The link between network properties and phenotypes,

including susceptibility to human disease, appears to be at least

as important as that between genotypes and phenotypes

(Figure 1).

Cells as Interactome Networks
Systems biology can be said to have originated more than half

a century ago, when a few pioneers initially formulated a theoret-

ical framework according to which multiscale dynamic complex

systems formed by interacting macromolecules could underlie

cellular behavior (Vidal, 2009). These theoretical systems biology

ideas were elaborated upon at a time when there was little

knowledge of the exact nature of the molecular components of

biology, let alone any detailed information on functional and

biophysical interactions between them. While greatly inspira-

tional to a few specialists, systems concepts remained largely

ignored by most molecular biologists, at least until empirical

observations could be gathered to validate them. Meanwhile,

theoretical representations of cellular organization evolved

steadily, closely following the development of ever improving

molecular technologies. The organizational view of the cell

changed from being merely a ‘‘bag of enzymes’’ to a web of

highly interrelated and interconnected organelles (Robinson

et al., 2007). Cells can accordingly be envisioned as complex

webs of macromolecular interactions, the full complement of

which constitutes the ‘‘interactome’’ network. At the dawn of

the 21st century, with most components of cellular networks

having been identified, the basic ideas of systems and network

biology are ready to be experimentally tested and applied to

relevant biological problems.
Mapping Interactome Networks
Network science deals with complexity by ‘‘simplifying’’ com-

plex systems, summarizing themmerely as components (nodes)

and interactions (edges) between them. In this simplified

approach, the functional richness of each node is lost. Despite

or even perhaps because of such simplifications, useful discov-

eries can be made. As regards cellular systems, the nodes are

metabolites and macromolecules such as proteins, RNA mole-

cules and gene sequences, while the edges are physical,

biochemical and functional interactions that can be identified

with a plethora of technologies. One challenge of network

biology is to provide maps of such interactions using systematic

and standardized approaches and assays that are as unbiased

as possible. The resulting ‘‘interactome’’ networks, the networks

of interactions between cellular components, can serve as scaf-

fold information to extract global or local graph theory proper-

ties. Once shown to be statistically different from randomized

networks, such properties can then be related back to a better

understanding of biological processes. Potentially powerful

details of each interaction in the network are left aside, including

functional, dynamic and logical features, as well as biochemical

and structural aspects such as protein post-translational modifi-

cations or allosteric changes. The power of the approach resides

precisely in such simplification of molecular detail, which allows

modeling at the scale of whole cells.

Early attempts at experimental proteome-scale interactome

network mapping in the mid-1990s (Finley and Brent, 1994; Bar-

tel et al., 1996; Fromont-Racine et al., 1997; Vidal, 1997) were

inspired by several conceptual advances in biology. The bio-

chemistry of metabolic pathways had already given rise to

cellular scale representations of metabolic networks. The dis-

covery of signaling pathways and cross-talk between them, as

well as large molecular complexes such as RNA polymerases,

all involving innumerable physical protein-protein interactions,

suggested the existence of highly connected webs of interac-

tions. Finally, the rapidly growing identification ofmany individual

interactions between transcription factors and specific DNA

regulatory sequences involved in the regulation of gene expres-

sion raised the question of how transcriptional regulation is

globally organized within cells.

Three distinct approaches have been used since to capture

interactome networks: (1) compilation or curation of already

existing data available in the literature, usually obtained from

one or just a few types of physical or biochemical interactions

(Roberts, 2006); (2) computational predictions based on avail-

able ‘‘orthogonal’’ information apart from physical or biochem-

ical interactions, such as sequence similarities, gene-order

conservation, copresence and coabsence of genes in com-

pletely sequenced genomes and protein structural information

(Marcotte and Date, 2001); and (3) systematic, unbiased high-

throughput experimental mapping strategies applied at the scale

of whole genomes or proteomes (Walhout and Vidal, 2001).

These approaches, though complementary, differ greatly in the

possible interpretations of the resultingmaps. Literature-curated

maps present the advantage of using already available informa-

tion, but are limited by the inherently variable quality of the

published data, the lack of systematization, and the absence

of reporting of negative data (Cusick et al., 2009; Turinsky
Cell 144, March 18, 2011 ª2011 Elsevier Inc. 987



Figure 2. Networks in Cellular Systems
To date, cellular networks are most available for the ‘‘super-model’’ organisms (Davis, 2004) yeast, worm, fly, and plant. High-throughput interactome mapping
relies upon genome-scale resources such as ORFeome resources. Several types of interactome networks discussed are depicted. In a protein interaction
network, nodes represent proteins and edges represent physical interactions. In a transcriptional regulatory network, nodes represent transcription factors
(circular nodes) or putative DNA regulatory elements (diamond nodes); and edges represent physical binding between the two. In a disease network, nodes
represent diseases, and edges represent genemutations of which are associated with the linked diseases. In a virus-host network, nodes represent viral proteins
(square nodes) or host proteins (round nodes), and edges represent physical interactions between the two. In a metabolic network, nodes represent enzymes,
and edges represent metabolites that are products or substrates of the enzymes. The network depictions seem dense, but they represent only small portions of
available interactome network maps, which themselves constitute only a few percent of the complete interactomes within cells.
et al., 2010). Computational prediction maps are fast and effi-

cient to implement, and usually include satisfyingly large

numbers of nodes and edges, but are necessarily imperfect

because they use indirect information (Plewczynski andGinalski,

2009). While high-throughput maps attempt to describe unbi-

ased, systematic, and well-controlled data, they were initially

more difficult to establish, although recent technological

advances suggest that near completion can be reached within

a few years for highly reliable, comprehensive protein-protein

interaction and gene regulatory network maps for human (Ven-

katesan et al., 2009).

The mapping and analysis of interactome networks for

model organisms was instrumental in getting to this point.

Such efforts provided, and will continue to provide, both neces-

sary pioneering technologies and crucial conceptual insights. As

with other aspects of biology, advancements inmapping of inter-

actome networks would have been minimal without a focus on

model organisms (Davis, 2004). The field of interactome

mapping has been helped by developments in several model

organisms, primarily the yeast, Saccharomyces cerevisiae, the

fly, Drosophila melanogaster, and the worm, Caenorhabditis

elegans (Figure 2). For instance, genome-wide resources such

as collections of all, or nearly all, open reading frames

(ORFeomes) were first generated for these model organisms,

both because their genomes are the best annotated and

because there are fewer complications, such as the high number

of splice variants in human and other mammals. ORFeome

resources allow efficient transfer of large numbers of ORFs into

vectors suitable for diverse interactome mapping technologies

(Hartley et al., 2000;Walhout et al., 2000b). Moreover, gene abla-

tion technologies, knockouts (for yeast) and knockdowns by

RNAi (for worms and flies) and transposon insertions (for plants),
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were discovered in and are being applied genome-wide for these

model organisms (Mohr et al., 2010).

Metabolic Networks
Metabolic network maps attempt to comprehensively describe

all possible biochemical reactions for a particular cell or

organism (Schuster et al., 2000; Edwards et al., 2001). In many

representations of metabolic networks, nodes are biochemical

metabolites and edges are either the reactions that convert

one metabolite into another or the enzymes that catalyze these

reactions (Jeong et al., 2000; Schuster et al., 2000) (Figure 2).

Edges can be directed or undirected, depending on whether

a given reaction is reversible or not. In specific cases of meta-

bolic network modeling, the converse situation can be used,

with nodes representing enzymes and edges pointing to adja-

cent pairs of enzymes for which the product of one is the

substrate of the other (Lee et al., 2008).

Although large metabolic pathway charts have existed for

decades (Kanehisa et al., 2008), nearly complete metabolic

network maps required the completion of full genome

sequencing together with accurate gene annotation tools (Ober-

hardt et al., 2009). Network construction is manual with compu-

tational assistance, involving: (1) the meticulous curation of large

numbers of publications, each describing experimental results

regarding one or several metabolic reactions characterized

from purified or reconstituted enzymes, and (2) when necessary,

the compilation of predicted reactions from studies of ortholo-

gous enzymes experimentally characterized in other species.

Assembly of the union of all experimentally demonstrated

and predicted reactions gives rise to proteome-scale network

maps (Mo and Palsson, 2009). Such maps have been

compiled for numerous species, predominantly prokaryotes



and unicellular eukaryotes (Oberhardt et al., 2009), and full-scale

metabolic reconstructions are now underway for human as

well (Ma et al., 2007). Metabolic network maps are likely the

most comprehensive of all biological networks, although consid-

erable gaps will remain to be filled in by direct experimental

investigations.

Protein-Protein Interaction Networks
In protein-protein interaction network maps, nodes represent

proteins and edges represent a physical interaction between

two proteins. The edges are nondirected, as it cannot be said

which protein binds the other, that is, which partner functionally

influences the other (Figure 2). Of the many methodologies that

can map protein-protein interactions, two are currently in wide

use for large-scale mapping. Mapping of binary interactions is

primarily carried out by ever improving variations of the yeast

two-hybrid (Y2H) system (Fields and Song, 1989; Dreze et al.,

2010). Mapping of membership in protein complexes, providing

indirect associations between proteins, is carried out by affinity-

or immunopurification to isolate protein complexes, followed by

some form of mass spectrometry (AP/MS) to identify protein

constituents of these complexes (Rigaut et al., 1999; Charbon-

nier et al., 2008). While Y2H datasets containmostly direct binary

interactions, AP/MS cocomplex data sets are composed of

direct interactions mixed with a preponderance of indirect

associations. Accordingly, the graphs generated by these two

approaches exhibit different global properties (Seebacher and

Gavin, 2011), such as the relationships between gene essenti-

ality and the number of interacting proteins (Yu et al., 2008).

In the past decade, significant steps have been taken toward

the generation of comprehensive protein-protein interaction

network maps. Comprehensive efforts using Y2H technologies

to generate interactome maps began with the model organisms

S. cerevisiae, C. elegans, and D. melanogaster (Ito et al., 2000,

2001; Uetz et al., 2000; Walhout et al., 2000a; Giot et al., 2003;

Reboul et al., 2003; Li et al., 2004), and eventually included

human (Colland et al., 2004; Rual et al., 2005; Stelzl et al.,

2005; Venkatesan et al., 2009). Comprehensive mapping of co-

complex membership by high-throughput AP/MS was initially

undertaken in yeast (Gavin et al., 2002; Ho et al., 2002), rapidly

progressing to ever improving completeness and quality there-

after (Gavin et al., 2006; Krogan et al., 2006). For technical

reasons future comprehensive AP/MS efforts will stay focused

on unicellular organisms such as yeast (Collins et al., 2007)

and mycoplasma (Kuhner et al., 2009), whereas Y2H efforts

are more readily implemented for complex multicellular organ-

isms (Seebacher and Gavin, 2011).

In their early implementations, systematic and comprehensive

interaction network mapping efforts met with skepticism

regarding their accuracy (von Mering et al., 2002), analogous

to the original concerns over whether automated high-

throughput genome sequencing efforts might have considerably

lower accuracy than dedicated efforts carried out cumulatively

in many laboratories. Only after the emergence of rigorous

statistical tests to estimate sequencing accuracy could high-

throughput sequencing efforts reach their full potential (Ewing

et al., 1998). Analogously, an empirical framework recently prop-

agated for protein interaction mapping (Venkatesan et al., 2009)
now allows the estimation of overall accuracy and sensitivity for

maps obtained using high-throughput mapping approaches.

Four critical parameters need to be estimated: (1) complete-

ness: the number of physical protein pairs actually tested in a

given search space; (2) assay sensitivity: which interactions

can and cannot be detected by a particular assay; (3) sampling

sensitivity: the fraction of all detectable interactions found by a

single implementation of any interaction assay; and (4) precision:

the proportion of true biophysical interactors. Careful consider-

ation of these parameters offers a quantitative idea of the

completeness and accuracy of a particular high-throughput

interactionmap (Yu et al., 2008; Simonis et al., 2009; Venkatesan

et al., 2009), and allows comparison of multiple maps as long as

standardized framework parameters are used. In contrast,

comparing the results of small-scale experiments available in

literature curated databases is not possible, as there is little

way to control for accuracy, reproducibility, and sensitivity.

The binary interactome empirical framework offers a way to esti-

mate the size of interactome networks, which in turn is essential

to define a roadmap to reach completion for the interactome

mapping efforts of any species of interest. While originally estab-

lished for protein-protein interaction mapping, similar empirical

frameworks can be applied more broadly to mapping of other

types of interactome networks (Costanzo et al., 2010).

Gene Regulatory Networks
In most gene regulatory network maps, nodes are either a tran-

scription factor or a putative DNA regulatory element, and

directed edges represent the physical binding of transcription

factors to such regulatory elements (Zhu et al., 2009). Edges

canbesaid tobe incoming (transcription factor binds a regulatory

DNA element) or outgoing (regulatory DNA element bound by

a transcription factor) (Figure 2). Currently, two general

approaches are amenable to large-scale mapping of gene regu-

latorynetworks. In yeastone-hybrid (Y1H) approaches, aputative

cis-regulatory DNA sequence, commonly a suspected promoter

region, is used as bait to capture transcription factors that bind to

that sequence (Deplancke et al., 2004). In chromatin immunopre-

cipitation (ChIP) approaches, antibodies raisedagainst transcrip-

tion factors of interest, or against a peptide tag used in fusionwith

potential transcription factors, are used to immunoprecipitate

potentially interacting cross-linked DNA fragments (Lee et al.,

2002). As Y1H proceeds from genes and captures associated

proteins it is said to be ‘‘gene-centric,’’ whereas ChIP strategies

are ‘‘protein-centric’’ in that they proceed from transcription

factors and attempt to capture associated gene regions (Walh-

out, 2006). The two approaches are complementary. The Y1H

system can discover novel transcription factors but relies on

having known, or at least suspected, regulatory regions; ChIP

methods can discover novel regulatory motifs but rely on the

availability of reagents specific to transcription factors of interest,

which themselves depend on accurate predictions of transcrip-

tion factors (Reece-Hoyes et al., 2005; Vaquerizas et al., 2009).

Large-scale Y1H networks have been produced forC. elegans

(Vermeirssen et al., 2007; Grove et al., 2009). Large-scale ChIP-

based networks have been produced for yeast (Lee et al., 2002)

and have been carried out for mammalian tissue culture cells as

well (Cawley et al., 2004).
Cell 144, March 18, 2011 ª2011 Elsevier Inc. 989



Figure 3. Integrated Networks
Coexpression and phenotypic profiling can be
thought of as matrices comprising all genes of an
organism against all conditions that this organism
has been exposed to within a given expression
compendium and all phenotypes tested, respec-
tively. For any correlation measurement, Pearson
correlation coefficients (PCCs) being commonly
used, the threshold between what is considered
coexpressed and noncoexpressed needs to be set
using appropriate titration procedures. Pairs of
genes whose expression or phenotype profiles are
above thedetermined threshold are then linked.The
resulting integrated networks have powerful pre-
dictive value. Adapted from (Gunsalus et al., 2005).
In addition to transcription factor activities, overall gene tran-

script levels are also regulated post-transcriptionally by micro

RNAs (miRNAs), short noncoding RNAs that bind to complemen-

tary cis-regulatory RNA sequences usually located in 30 untrans-
lated regions (UTRs) of target mRNAs (Lee et al., 2004; Ruvkun

et al., 2004). miRNAs are not expected to act as master regula-

tors, but rather act post-transcriptionally to fine-tune gene

expression by modulating the levels of target mRNAs. Complex

networks are formed by miRNAs interacting with their targets. In

such networks, nodes are either a miRNA or a target 30UTR, and
edges represent the complementary annealing of the miRNA to

the target RNA. Edges can be said to be incoming (miRNA binds

a 30UTRelement) or outgoing (30UTRelement bound by amiRNA)

(Martinez et al., 2008). The targets of miRNAs are generally

computationally predicted, as experimental methodologies to

map miRNA/30UTR interactions at high-throughput are just

coming online (Karginov et al., 2007; Guo et al., 2010; Hafner

et al., 2010). Since transcription factors regulate the expression

of miRNAs, it is however possible to combine Y1H methods with

computationally predictedmiRNA/30UTR interactions, a strategy

which was used to derive a large-scale miRNA network in

C. elegans (Martinez et al., 2008) and which could be extended

to other genomes.

Integrating Interactome Networks with other Cellular
Networks
The three interactome network types considered so far, meta-

bolic, protein-protein interaction, and gene regulatory networks,

are composed of physical or biochemical interactions between

macromolecules. The corresponding network maps provide

crucial ‘‘scaffold’’ information about cellular systems, on top of

which additional layers of functional links can be added to fine-

tune the representation of biological reality (Figure 3) (Vidal,

2001). Networks composed of functional links, although strik-

ingly different in terms of what the edges represent, can never-

theless complement what can be learned from interactome

network maps in powerful ways, and vice versa. Networks of

functional links represent a category of cellular networks that

can be derived from indirect, or ‘‘conceptual,’’ interactions

where links between genes and gene products are reported
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based upon functional relationships or

similarities, independently of physical

macromolecular interactions. We con-
sider three types of functional networks that have been mapped

thus far at the scale of whole genomes and used together with

physical interactome networks to interrogate the complexities

of genotype-to-phenotype relationships.

Transcriptional Profiling Networks

Gene products that function together in common signaling

cascades or protein complexes are expected to show greater

similarities in their expression patterns than random sets of

gene products. But how does this expectation translate at the

level of whole proteomes and transcriptomes? How do tran-

scriptome states correlate globally with interactome networks?

Since the original description of microarray and DNA chip tech-

niques and more recently de novo RNA sequencing using next-

generation sequencing technologies, vast compendiums of

gene expression datasets have been generated for many

different species across a multitude of diverse genetic and envi-

ronmental conditions. This type of information can be thought of

as matrices comprising all genes of an organism against all

conditions that this organism has been exposed to within a given

expression compendium (Vidal, 2001). In the resulting coexpres-

sion networks, nodes represent genes, and edges link pairs of

genes that show correlated coexpression above a set threshold

(Kim et al., 2001; Stuart et al., 2003). For any correlation

measurement, Pearson correlation coefficients (PCCs) being

commonly used, the threshold between what is considered

coexpressed and not coexpressed needs to be set using

appropriate titration procedures (Stuart et al., 2003; Gunsalus

et al., 2005).

Integration attempts in yeast, combining physical protein-

protein interaction maps with coexpression profiles, revealed

that interacting proteins are more likely to be encoded by genes

with similar expression profiles than noninteracting proteins (Ge

et al., 2001; Grigoriev, 2001; Jansen et al., 2002; Kemmeren

et al., 2002). These observations were subsequently confirmed

in many other organisms (Ge et al., 2003). Beyond the funda-

mental aspect of finding significant overlaps between interaction

edges in interactome networks and coexpression edges in tran-

scription profiling networks, these observations have been used

to estimate the overall biological significance of interactome

datasets. While correlations can be statistically significant over



huge datasets, still many valid biologically relevant protein-

protein interactions correspond to pairs of genes whose expres-

sion is uncorrelated or even anticorrelated. Coexpression

similarity links need not be perfectly overlapping with physical

interactions of the corresponding gene products and vice versa.

In another example of what coexpression networks can be

used for, preliminary steps have been taken to delineate gene

regulatory networks from coexpression profiles (Segal et al.,

2003; Amit et al., 2009). Such network constructions provide

verifiable hypotheses about how regulatory pathways operate.

Phenotypic Profiling Networks

Perturbations of genes that encode functionally related products

often confer similar phenotypes. Systematic use of gene knock-

out strategies developed for yeast (Giaever et al., 2002) and

knock-down approaches using RNA interference (RNAi) for

C. elegans, Drosophila, and, recently, human (Mohr et al.,

2010), are amenable to the perturbation of (nearly) all genes

and subsequent testing of a wide variety of standardized pheno-

types. As with transcriptional profiling networks, this type of

information can be thought of as matrices comprising all genes

of an organism and all phenotypes tested within a given pheno-

typic profiling compendium. In the resulting phenotypic similarity

or ‘‘phenome’’ network, nodes represent genes, and edges link

pairs of genes that show correlated phenotypic profiles above

a set threshold. Here again, titration is needed to decide on the

threshold between what is considered phenotypically similar

and what is not (Gunsalus et al., 2005).

The earliest evidence that phenotypic profiling or ‘‘phenome’’

networks might help in interpreting protein-protein interactome

networks was obtained in studies of theC. elegansDNA damage

response and hermaphrodite germline (Boulton et al., 2002;

Piano et al., 2002; Walhout et al., 2002). The physical basis of

phenome networks is not yet completely defined, though there

are strong overlaps between correlated phenotypic profiles

and physical protein-protein interactions (Walhout et al., 2002;

Gunsalus et al., 2005). Overlapping three network types, binary

interactions, coexpression, and phenotype profiling, produces

integrated networks with high predictive power, as demon-

strated for C. elegans early embryogenesis (Walhout et al.,

2002; Gunsalus et al., 2005). Integration of transcriptional regu-

latory networks with these other network types has also been

undertaken in worm (Grove et al., 2009).

Comprehensive genome-wide phenome networks are now a

reality for the yeast S. cerevisiae (Giaever et al., 2002), and are

expected to be further developed for C. elegans (Sönnichsen

et al., 2005) and Drosophila (Mohr et al., 2010). Now that RNAi

reagents are available for nearly all genes of mouse and human

(Root et al., 2006), phenome maps for cell lines of these organ-

isms should soon follow.

Genetic Interaction Networks

Pairs of functionally related genes tend to exhibit genetic interac-

tions, defined by comparing the phenotype conferred by muta-

tions in pairs of genes (double mutants) to the phenotype

conferred by either one of these mutations alone (single

mutants). Genetic interactions are classified as negative, i.e.

aggravating, synthetic sick or lethal, when the phenotype of

double mutants is significantly worse than expected from that

of single mutants, and positive, i.e. alleviating or suppressive,
when the phenotype of double mutants is significantly better

than that expected from the single mutants (Mani et al., 2008).

Though finding genetic interactions has been crucial to geneti-

cists for decades (Sturtevant, 1956; Novick et al., 1989), only in

the last ten years has functional genomics advanced sufficiently

to allow systematic high-throughput mapping of genetic interac-

tions to give rise to large-scale networks (Boone et al., 2007).

Two general strategies have been followed for the systematic

mapping of genetic interactions in yeast. Synthetic genetic

arrays (SGA) and derivative methodologies use high-density

arrays of double mutants by mating pairs from an available set

of single mutants (Tong et al., 2001; Boone et al., 2007). Alterna-

tive strategies take advantage of sequence barcodes embedded

in a set of yeast deletion mutants (Giaever et al., 2002; Beltrao

et al., 2010) to measure the relative growth rate in a population

of double mutants by hybridization to anti-barcode microarrays

(Pan et al., 2004; Boone et al., 2007). These two approaches

seem to capture similar aspects of genetic interactions, as the

overlap between the two types of datasets is significant (Cos-

tanzo et al., 2010).

Patterns of genetic interactions can be used to define a kind of

network that is similar to phenotypic profiling or phenome

networks. As with transcriptional and phenotypic profiling net-

works, this type of information can be thought of as matrices

comprising all genes of an organism and the genes with which

they exhibit a genetic interaction. In such ‘‘genetic interaction

profiling’’ networks, edges functionally link two genes based

on high similarities of genetic interaction profiles. Here again,

predictive models of biological processes can be obtained

when such networks are combined with other types of interac-

tome networks.

Integration of genetic interaction networks with other types of

interactome network maps provides potentially powerful

models. While genetic interactions do not necessarily corre-

spond to physical interactions between the corresponding

gene products (Mani et al., 2008), interesting patterns emerge

between the different datasets. Because they tend to reveal

pairs of genes involved in parallel pathways or in different molec-

ular machines, negative genetic interactions tend not to correlate

with either protein associations in protein complexes or with

binary protein-protein interactions (Beltrao et al., 2010; Costanzo

et al., 2010). In contrast, positive genetic interactions tend to

point to pairs of gene products physically associated with each

other. This trend is usually explained by loss of either one or

two gene products working together in a molecular complex

resulting in similar effects (Beltrao et al., 2010).

Graph Properties of Networks
A critical realization over the past decade is that the structure

and evolution of networks appearing in natural, technological,

and social systems over time follows a series of basic and repro-

ducible organizing principles. Theoretical advances in network

science (Albert and Barabasi, 2002), paralleling advances in

high-throughput efforts to map biological networks, have pro-

vided a conceptual framework with which to interpret large

interactome network maps. Full understanding of the internal

organization of a cell requires awareness of the constraints

and laws that biological networks follow. We summarize several
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principles of network theory that have immediate applications to

biology.

Degree Distribution and Hubs

Any empirical investigation starts with the same question: could

the investigated phenomena have emerged by chance, or could

random effects account for them? The earliest network models

assumed that complex networks are wired randomly, such that

any two nodes are connected by a link with the same probability

p. This Erdos-Renyi model generates a network with a Poisson

degree distribution, which implies that most nodes have approx-

imately the same degree, that is, the same number of links, while

nodes that have significantly more or fewer links than any

average node are exceedingly rare or altogether absent. In

contrast, many real networks, from the world wide web to social

networks, are scale-free (Barabási and Albert, 1999), which

means that their degree distribution follows a power law rather

than the expected Poisson distribution. In a scale-free network

most nodes have only a few interactions, and these coexist

with a few highly connected nodes, the hubs, that hold the whole

network together. This scale-free property has been found in all

organisms for which protein-protein interaction and metabolic

network maps exist, from yeast to human (Barabási and Oltvai,

2004; Seebacher and Gavin, 2011). Regulatory networks,

however, show a mixed behavior. The outgoing degree distribu-

tion, corresponding to how many different genes a transcription

factor can regulate, is scale-free, meaning that some master

regulators can regulate hundreds of genes. In contrast, the

incoming degree distribution, corresponding to how many tran-

scription factors regulate a specific gene, best fits an exponential

model (Deplancke et al., 2006), indicating that genes that are

simultaneously regulated by large numbers of transcription

factors are exponentially rare.

Gene Duplication as the Origin of the Scale-Free

Property

The scale-free topology of biological networks likely originates

from gene duplication. While the principle applies from meta-

bolic to regulatory networks, it is best illustrated in protein-

protein interaction networks, where it was first proposed

(Pastor-Satorras et al., 2003; Vázquez et al., 2003). When cells

divide and the genome replicates, occasionally an extra copy

of one or several genes or chromosomes gets produced. Imme-

diately following a duplication event, both the original protein and

the new extra copy have the same structure, so both interact

with the same set of partners. Consequently, each of the protein

partners that interacted with the ancestor gains a new interac-

tion. This process results in a ‘rich-get-richer’ phenomenon (Bar-

abási and Albert, 1999), where proteins with a large number of

interactions tend to gain links more often, as it is more likely

that they interact with a duplicated protein. This mechanism

has been shown to generate hubs (Pastor-Satorras et al.,

2003; Vázquez et al., 2003), and so could be responsible for

the scale-free property of protein-protein interaction networks.

The Role of Hubs

Network biology attempts to identify global properties in interac-

tome network graphs, and subsequently relate such properties

to biological reality by integrating various functional datasets.

One of the best examples where this approach was successful is

in defining the role of hubs. In the model organisms S. cerevisiae
992 Cell 144, March 18, 2011 ª2011 Elsevier Inc.
and C. elegans, hub proteins were found to: (1) correspond to

essential genes (Jeong et al., 2001), (2) be older and have

evolved more slowly (Fraser et al., 2002), (3) have a tendency

to be more abundant (Ivanic et al., 2009), and (4) have a larger

diversity of phenotypic outcomes resulting from their deletion

compared to the deletion of less connected proteins (Yu et al.,

2008). While the evidence attributed to some of these findings

has been debated (Jordan et al., 2003; Yu et al., 2008; Ivanic

et al., 2009), the special role of hub proteins in model organisms

led to the expectation that, in humans, hubs should preferentially

encode disease-related genes. Indeed, upregulated genes in

lung squamous cell carcinoma tissues tend to have a high

degree in protein-protein interaction networks (Wachi et al.,

2005), and cancer-related proteins have, on average, twice as

many interaction partners as noncancer proteins in protein-

protein interaction networks (Jonsson and Bates, 2006). A

cautionary note is necessary: since disease-related proteins

tend to be more avidly studied their higher connectivity may be

partly rooted in investigative biases. Therefore, this type of

finding needs to be appropriately controlled using systematic

proteome-wide interactome network maps.

Understanding the role of hubs in human disease requires

distinguishing between essential genes and disease-related

genes (Goh et al., 2007). Some human genes are essential for

early development, such that mutations in them often lead to

spontaneous abortions. The protein products of mouse in utero

essential genes show a strong tendency to be associated with

hubs and to be expressed in multiple tissues (Goh et al., 2007).

Nonessential disease genes tend not to be encoded by hubs

and tend to be tissue specific. These differences can be best

appreciated from an evolutionary perspective. Mutations that

disrupt hubs may have difficulty propagating in the population,

as the host may not survive long enough to have offspring.

Only mutations that impair functionally and topologically periph-

eral genes can persist, becoming responsible for heritable

diseases, particularly those that manifest in adulthood.

Date and Party Hubs

Another success in uncovering the functional consequences of

the topology of interactome networks was provided by the

discovery of date and party hubs (Han et al., 2004). Upon inte-

grating protein-protein interaction network data with transcrip-

tional profiling networks for yeast, at least two classes of hubs

can be discriminated. Party hubs are highly coexpressed with

their interacting partners while date hubs appear to be more

dynamically regulated relative to their partners (Han et al.,

2004). In other words, date hubs interact with their partners at

different times and/or different conditions, whereas party hubs

seem to interact with their partners at all times or conditions

tested (Seebacher andGavin, 2011). Despite the preponderance

of evidence in its favor, the date and party hubs concept remains

a subject of debate, (Agarwal et al., 2010), attributable to the

necessity to appropriately calibrate coexpression and protein-

protein interaction hub thresholdswhen analyzing new transcrip-

tome and interactome datasets (Bertin et al., 2007).

Fundamentally, date hubs preferentially connect functional

modules to each other, whereas party hubs preferentially act

inside functional modules, hence they are occasionally called

inter-module and intra-module hubs, respectively (Han et al.,



2004; Taylor et al., 2009). Date hubs are less evolutionarily con-

strained than party hubs (Fraser, 2005; Ekman et al., 2006; Bertin

et al., 2007). Party hubs contain fewer and shorter regions of

intrinsic disorder than do date hubs (Ekman et al., 2006; Singh

et al., 2006; Kahali et al., 2009) and contain fewer linear motifs

(short binding motifs and post-translational modification sites)

than do date hubs (Taylor et al., 2009). Initially explored in a yeast

interactome (Han et al., 2004; Ekman et al., 2006), the distinction

between date and party hubs can be recapitulated in human

interactomes as well (Taylor et al., 2009).

Motifs

There has been considerable attention paid in recent years to

network motifs, which are characteristic network patterns, or

subgraphs, in biological networks that appear more frequently

than expected given the degree distribution of the network

(Milo et al., 2002). Such subgraphs have been found to be asso-

ciated with desirable (or undesirable) biological function (or

dysfunction). Hence identification and classification of motifs

can offer information about the various network subgraphs

needed for biological processes. It is now commonly understood

that motifs constitute the basic building blocks of cellular

networks (Milo et al., 2002; Yeger-Lotem et al., 2004).

Originally identified in transcriptional regulatory networks of

several model organisms (Milo et al., 2002; Shen-Orr et al.,

2002), motifs have been subsequently identified in interactome

networks and in integrated composite networks (Yeger-Lotem

et al., 2004; Zhang et al., 2005). Different types of networks

exhibit different motif profiles, suggesting a means for network

classification (Milo et al., 2004; Zhang et al., 2005). The high

degree of evolutionary conservation of motif constituents within

interaction networks (Wuchty et al., 2003), combined with the

convergent evolution that is seen in the transcription regulatory

networks of diverse species toward the same motif types (Bara-

bási and Oltvai, 2004), makes a strong argument that motifs are

of direct biological relevance. Classification of several highly

significant motifs of two, three, and four nodes, with descriptors

like coherent feed forward loop or single-input module, has

shown that specific types of motifs carry out specific dynamic

functions within cells (Alon, 2007; Shoval and Alon, 2010).

Topological, Functional, and Disease Modules

Most biological networks have a rather uneven organization.

Many nodes are part of locally dense neighborhoods, or topolog-

ical modules, where nodes have a higher tendency to link to

nodes within the same local neighborhood than to nodes outside

of it (Ravasz et al., 2002). A region of the global network diagram

that corresponds to a potential topological module can be iden-

tified by network clustering algorithms which are blind to the

function of individual nodes. These topological modules are

often believed to carry specific cellular functions, hence leading

to the concept of a functionalmodule, an aggregation of nodes of

similar or related function in the same network neighborhood.

Interest is increasing in disease modules, which represent

groups of network components whose disruption results in

a particular disease phenotype in humans (Barabási et al., 2010).

There is a tacit assumption, based on evidence in the biolog-

ical literature, that cellular components forming topological

modules have closely related functions, thus corresponding to

functional modules. New potentially powerful methods to iden-
tify topological and functional clusterings continue to be

described (Ahn et al., 2010). Such modules can serve as hypoth-

esis building tools to identify regions of the interactome likely

involved in particular cellular functions or disease (Barabási

et al., 2010).

Networks and Human Diseases
Having reviewed why biological networks are important to

consider, how they can be mapped and integrated with each

other, and what global properties are starting to emerge from

such models, we next return to our original question: to what

extent do biological systems and cellular networks underlie

genotype-phenotype relationships in human disease? We

attempt to provide answers by covering four recent advances

in network biology: (1) studies of global relationships between

human disorders, associated genes and interactome networks,

(2) predictions of new human disease-associated genes using in-

teractome models, (3) analyses of network perturbations by

pathogens, and (4) emergence of node removal versus edge-

specific or ‘‘edgetic’’ models to explain genotype-phenotype

relationships.

Global Disease Networks

One of the main predictions derived from the hypothesis that

human disorders should be viewed as perturbations of highly

interlinked cellular networks is that diseases should not be inde-

pendent from each other, but should instead be themselves

highly interconnected. Such potential cellular network-based

dependencies between human diseases has led to the genera-

tion of various global disease network maps, which link disease

phenotypes together if some molecular or phenotypic relation-

ships exist between them. Such a map was built using known

gene-disease associations collected in the OMIM database

(Goh et al., 2007), where nodes are diseases and two diseases

are linked by an edge if they share at least one common gene,

mutations in which are associated with these diseases. In the

obtained disease network more than 500 human genetic disor-

ders belong to a single interconnected main giant component,

consistent with the idea that human diseases are much more

connected to each other than anticipated. The flipside of this

representation of connectivity is a network of disease-associ-

ated genes linked together if mutations in these genes are known

to be responsible for at least one common disorder. Providing

support for our general hypothesis that perturbations in cellular

networks underlie genotype-phenotype relationships, such

disease-associated gene networks overlap significantly with

human protein-protein interactome network maps (Goh et al.,

2007).

Additional types of connectivity between large numbers of

human diseases can be found in ‘‘comorbidity’’ networks where

diseases are linked to each other when individuals who were

diagnosed for one particular disease are more likely to have

also been diagnosed for the other (Rzhetsky et al., 2007; Hidalgo

et al., 2009). Diabetes and obesity represent probably the best

known disease pair with such significant comorbidity. While co-

morbidity can have multiple origins, ranging from environmental

factors to treatment side effects, its potential molecular origin

has attracted considerable attention. A network biology interpre-

tation would suggest that the molecular defects responsible for
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one of a pair of diseases can ‘‘spread along’’ the edges in cellular

networks, affecting the activity of related gene products and

causing or affecting the outcome of the other disease (Park

et al., 2009).

Predicting Disease Related Genes by Using Interactome

Networks

If cellular networks underlie genotype-phenotype relationships,

then network properties should be predictive of novel, yet to be

identified human disease-associated genes. In an early example,

it was shown that the products of a few dozen ataxia-associated

genes occupy particular locations in the human interactome

network, in that the number of edges separating them is on

average much lower than for random sets of gene products

(Lim et al., 2006). Physical protein-protein interactome network

maps can indeed generate lists of genes potentially enriched for

newcandidatediseasegenesormodifier genesof knowndisease

genes (Lim et al., 2006; Oti et al., 2006; Fraser and Plotkin, 2007).

Integration of various interactome and functional relationship

networks have also been applied to reveal genes potentially

involved in cancer (Pujana et al., 2007). Integrating a coexpres-

sion network, seeded with four well-known breast cancer

associated genes, together with genetic and physical interac-

tions, yielded a breast cancer network model out of which candi-

date cancer susceptibility andmodifier genes could be predicted

(Pujana et al., 2007). Integrative network modeling strategies are

applicable to other types of cancer and other types of disease

(Ergun et al., 2007; Wu et al., 2008; Lee et al., 2010).

Network Perturbations by Pathogens

Pathogens, particularly viruses, have evolved sophisticated

mechanisms to perturb the intracellular networks of their hosts

to their advantage. As obligate intracellular pathogens, viruses

must intimately rewirecellularpathways to their ownends tomain-

tain infectivity. Since many virus-host interactions happen at the

level of physical protein-protein interactions, systematic maps

capturing viral-host physical protein-protein interactions, or

‘‘virhostome’’ maps, have been obtained using Y2H for Epstein-

Barr virus (Calderwood et al., 2007), hepatitis C virus (de Chassey

et al., 2008), several herpesviruses (Uetz et al., 2006), influenza

virus (Shapira et al., 2009) and others (Mendez-Rios and Uetz,

2010), and by co-AP/MS methodologies for HIV (Jäger et al.,

2010). An eminent goal is to find perturbations in network proper-

ties of the host network, properties that would not be made

evident by small-scale investigations focused on one or a handful

of viral proteins. For instance, it has been found several times

now that viral proteins preferentially target hubs in host

interactome networks (Calderwood et al., 2007; Shapira et al.,

2009). The many host targets identified in virhostome screens

are now getting biologically validated by RNAi knock-down and

transcriptional profiling, leading to detailed maps of the interac-

tions underlying viral-host relationships (Shapira et al., 2009).

Another impetus for mapping virhostome networks is that

virus protein interactions can act as surrogates for human

genetic variations, inducing disease states by influencing local

and global properties of cellular networks. The inspiration for

this concept emerged from classical observations such as the

binding of Adenovirus E1A, HPV E7, and SV40 Large T antigen

to the human retinoblastoma protein, which is the product of

a gene in which mutations lead to a predisposition to retinoblas-
994 Cell 144, March 18, 2011 ª2011 Elsevier Inc.
toma and other types of cancers (DeCaprio, 2009). This hypoth-

esis will soon be tested globally by systematic investigations of

how host networks, including physical interaction, gene regula-

tory and genetic interaction networks, are perturbed upon viral

infection. Pathogen-host interaction mapping projects are also

in their first iterations, with similar goals of identifying emergent

global properties and disease surrogates. As microbial patho-

gens can have thousands of gene products relative to much

smaller numbers for most viruses, such projects will require

considerably more effort and time.

Edgetics

Our underlying premise throughout has been that phenotypic

variations of an organism, particularly those that result in human

disease, arise from perturbations of cellular interactome

networks. These alterations range from the complete loss of

a gene product, through the loss of some but not all interactions,

to the specific perturbation of a singlemolecular interactionwhile

retaining all others. In interactome networks these alterations

range from node removal at one end and edge-specific,

‘‘edgetic’’ perturbations at the other (Zhong et al., 2009). The

consequences on network structure and function are expected

to be radically dissimilar for node removal versus edgetic pertur-

bation. Node removal not only disables the function of a node but

also disables all the interactions of that node with other nodes,

disrupting in some way the function of all of the neighboring no-

des. An edgetic disruption, removing one or a few interactions

but leaving the rest intact and functioning, has subtler effects

on the network, though not necessarily on the resulting pheno-

type (Madhani et al., 1997). The distinction between node

removal and edgetic perturbation models can provide new clues

on mechanisms underlying human disease, such as the different

classes of mutations that lead to dominant versus recessive

modes of inheritance (Zhong et al., 2009).

The idea that the disruption of specific protein interactions

can lead to human disease (Schuster-Bockler and Bateman,

2008) complements canonical gene loss/perturbation models

(Botstein and Risch, 2003), and is poised to explain confounding

genetic phenomena such as genetic heterogeneity.

Matching the edgetic hypothesis to inherited human diseases,

approximately half of �50,000 Mendelian alleles available in the

human gene mutation database can be modeled as potentially

edgetic if one considers deletions and truncating mutations as

node removal, and in-frame point mutations leading to single

amino-acid changes and small insertions and deletions as

edgetic perturbations (Zhong et al., 2009). This number is prob-

ably a good approximation, since thus far disease-associated

genes predicted to bear edgetic alleles using this model have

been experimentally confirmed (Zhong et al., 2009). For genes

associated with multiple disorders and for which predicted

protein interaction domains are available, it was shown that

putative edgetic alleles responsible for different disorders tend

to be located in different interaction domains, consistent with

different edgetic perturbations conferring strikingly different

phenotypes.

Conclusion
A comprehensive catalog of sequence variations among the �7

billion human genomes present on earth might soon become



available. This information will continue to revolutionize biology

in general and medicine in particular for many decades and

perhaps centuries to come. The prospects of predictive and

personalized medicine are enormous. However, it should be

kept in mind that genome variations merely constitute variations

in the parts list and often fail to provide a description of themech-

anistic consequences on cellular functions.

Here, we have summarized why considering perturbations of

biological networks within cells is crucial to help interpret how

genome variations relate to phenotypic differences. Given their

high levels of complexity, it is no surprise that interactome

networks have not yet been mapped completely. The data and

models accumulated in the last decade point to clear directions

for the next decade. We envision that with more interactome

datasets of increasingly high quality, the trends reviewed here

will be fine tuned. The global properties observed so far and

those yet to be uncovered should help ‘‘make sense’’ of the enor-

mous body of information encompassed in the human genome.
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