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Controllability of complex networks
Yang-Yu Liu1,2, Jean-Jacques Slotine3,4 & Albert-László Barabási1,2,5

The ultimate proof of our understanding of natural or technological systems is reflected in our ability to control them.
Although control theory offers mathematical tools for steering engineered and natural systems towards a desired state, a
framework to control complex self-organized systems is lacking. Here we develop analytical tools to study the
controllability of an arbitrary complex directed network, identifying the set of driver nodes with time-dependent
control that can guide the system’s entire dynamics. We apply these tools to several real networks, finding that the
number of driver nodes is determined mainly by the network’s degree distribution. We show that sparse
inhomogeneous networks, which emerge in many real complex systems, are the most difficult to control, but that
dense and homogeneous networks can be controlled using a few driver nodes. Counterintuitively, we find that in
both model and real systems the driver nodes tend to avoid the high-degree nodes.

According to control theory, a dynamical system is controllable if, with a
suitable choice of inputs, it can be driven from any initial state to any
desired final state within finite time1–3. This definition agrees with our
intuitive notion of control, capturing an ability to guide a system’s
behaviour towards a desired state through the appropriate manipulation
of a few input variables, like a driver prompting a car to move with the
desired speed and in the desired direction by manipulating the pedals
and the steering wheel. Although control theory is a mathematically
highly developed branch of engineering with applications to electric
circuits, manufacturing processes, communication systems4–6, aircraft,
spacecraft and robots2,3, fundamental questions pertaining to the con-
trollability of complex systems emerging in nature and engineering have
resisted advances. The difficulty is rooted in the fact that two independ-
ent factors contribute to controllability, each with its own layer of
unknown: (1) the system’s architecture, represented by the network
encapsulating which components interact with each other; and (2) the
dynamical rules that capture the time-dependent interactions between
the components. Thus, progress has been possible only in systems where
both layers are well mapped, such as the control of synchronized net-
works7–10, small biological circuits11 and rate control for communica-
tion networks4–6. Recent advances towards quantifying the topological
characteristics of complex networks12–16 have shed light on factor (1),
prompting us to wonder whether some networks are easier to control
than others and how network topology affects a system’s controllability.
Despite some pioneering conceptual work17–23 (Supplementary
Information, section II), we continue to lack general answers to these
questions for large weighted and directed networks, which most com-
monly emerge in complex systems.

Network controllability
Most real systems are driven by nonlinear processes, but the controll-
ability of nonlinear systems is in many aspects structurally similar to
that of linear systems3, prompting us to start our study using the
canonical linear, time-invariant dynamics

dx(t)
dt

~Ax(t)zBu(t) ð1Þ

where the vector x(t) 5 (x1(t), …, xN(t))T captures the state of a
system of N nodes at time t. For example, xi(t) can denote the amount

of traffic that passes through a node i in a communication network24

or transcription factor concentration in a gene regulatory network25.
The N 3 N matrix A describes the system’s wiring diagram and the
interaction strength between the components, for example the traffic
on individual communication links or the strength of a regulatory
interaction. Finally, B is the N 3 M input matrix (M # N) that iden-
tifies the nodes controlled by an outside controller. The system is
controlled using the time-dependent input vector u(t) 5 (u1(t), …,
uM(t))T imposed by the controller (Fig. 1a), where in general the same
signal ui(t) can drive multiple nodes. If we wish to control a system, we
first need to identify the set of nodes that, if driven by different signals,
can offer full control over the network. We will call these ‘driver
nodes’. We are particularly interested in identifying the minimum
number of driver nodes, denoted by ND, whose control is sufficient
to fully control the system’s dynamics.

The system described by equation (1) is said to be controllable if it
can be driven from any initial state to any desired final state in finite
time, which is possible if and only if the N 3 NM controllability matrix

C~(B, AB, A2B, . . . , AN{1B) ð2Þ
has full rank, that is

rank(C)~N ð3Þ

This represents the mathematical condition for controllability, and is
called Kalman’s controllability rank condition1,2 (Fig. 1a). In practical
terms, controllability can be also posed as follows. Identify the minimum
number of driver nodes such that equation (3) is satisfied. For example,
equation (3) predicts that controlling node x1 in Fig. 1b with the input
signal u1 offers full control over the system, as the states of nodes x1, x2, x3

and x4 are uniquely determined by the signal u1(t) (Fig. 1c). In contrast,
controlling the top node in Fig. 1e is not sufficient for full control, as the
difference a31x2(t) 2 a21x3(t) (where aij are the elements of A) is not
uniquely determined by u1(t) (see Fig. 1f and Supplementary
Information section III.A). To gain full control, we must simultaneously
control node x1 and any two nodes among {x2, x3, x4} (see Fig. 1h, i for a
more complex example).

To apply equations (2) and (3) to an arbitrary network, we need to
know the weight of each link (that is, the aij), which for most real
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networks are either unknown (for example regulatory networks) or
are known only approximately and are time dependent (for example
Internet traffic). Even if all weights are known, a brute-force search
requires us to compute the rank of C for 2N 2 1 distinct combina-
tions, which is a computationally prohibitive task for large networks.
To bypass the need to measure the link weights, we note that the
system (A, B) is ‘structurally controllable’26 if it is possible to choose
the non-zero weights in A and B such that the system satisfies equation
(3). A structurally controllable system can be shown to be controllable
for almost all weight combinations, except for some pathological cases
with zero measure that occur when the system parameters satisfy
certain accidental constraints26,27. Thus, structural controllability helps
us to overcome our inherently incomplete knowledge of the link
weights in A. Furthermore, because structural controllability implies
controllability of a continuum of linearized systems28, our results can
also provide a sufficient condition for controllability for most non-
linear systems3 (Supplementary Information, section III.A).

To avoid the brute-force search for driver nodes, we proved that the
minimum number of inputs or driver nodes needed to maintain full
control of the network is determined by the ‘maximum matching’ in
the network, that is, the maximum set of links that do not share start
or end nodes (Fig. 1c, f, i). A node is said to be matched if a link in the
maximum matching points at it; otherwise it is unmatched. As we
show in the Supplementary Information, the structural controllability

problem maps into an equivalent geometrical problem on a network:
we can gain full control over a directed network if and only if we
directly control each unmatched node and there are directed paths
from the input signals to all matched nodes29. The possibility of
determining ND, using this mapping, is our first main result. As the
maximum matching in directed networks can be identified numer-
ically in at most O(N1/2L) steps30, where L denotes the number of links,
the mapping offers an efficient method to determine the driver nodes
for an arbitrary directed network.

Controllability of real networks
We used the tools developed above to explore the controllability of
several real networks. The networks were chosen for their diversity:
for example, the purpose of the gene regulatory network is to control
the dynamics of cellular processes, so it is expected to evolve towards a
structure that is efficient from a control perspective, potentially
implying a small number of driver nodes (that is, small nD ; ND/
N). In contrast, for the World Wide Web or citation networks con-
trollability has no known role, making it difficult even to guess nD.
Finally, it might be argued that social networks, given their perceived
neutrality (or even resistance) to control, should have a high nD, as it is
necessary to control most individuals separately to control the whole
system. We used the mapping into maximum matching to determine
the minimum set of driver nodes (ND) for the networks in Table 1, the
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Figure 1 | Controlling a simple network. a, The small network can be
controlled by an input vector u 5 (u1(t), u2(t))T (left), allowing us to move it
from its initial state to some desired final state in the state space (right).
Equation (2) provides the controllability matrix (C), which in this case has full
rank, indicating that the system is controllable. b, Simple model network: a
directed path. c, Maximum matching of the directed path. Matching edges are
shown in purple, matched nodes are green and unmatched nodes are white. The
unique maximum matching includes all links, as none of them share a common
starting or ending node. Only the top node is unmatched, so controlling it yields
full control of the directed path (ND 5 1). d, In the directed path shown in b, all
links are critical, that is, their removal eliminates our ability to control the
network. e, Small model network: the directed star. f, Maximum matchings of

the directed star. Only one link can be part of the maximum matching, which
yields three unmatched nodes (ND 5 3). The three different maximum
matchings indicate that three distinct node configurations can exert full
control. g, In a directed star, all links are ordinary, that is, their removal can
eliminate some control configurations but the network could be controlled in
their absence with the same number of driver nodes ND. h, Small example
network. i, Only two links can be part of a maximum matching for the network
in h, yielding four unmatched nodes (ND 5 4). There are all together four
different maximum matchings for this network. j, The network has one critical
link, one redundant link (which can be removed without affecting any control
configuration) and four ordinary links.
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obtained trend defying our expectations: as a group, gene regulatory
networks display high nD (,0.8), indicating that it is necessary to
independently control about 80% of nodes to control them fully. In
contrast, several social networks are characterized by some of the
smallest nD values, suggesting that a few individuals could in principle
control the whole system.

Given the important role hubs (nodes with high degree) have in
maintaining the structural integrity of networks against failures and
attacks31,32, in spreading phenomena32,33 and in synchronization8,34, it
is natural to expect that control of the hubs is essential to control a
network. To test the validity of this hypothesis, we divided the nodes
into three groups of equal size according to their degree, k (low, medium
and high). As Fig. 2a, b shows for two canonical network models
(Erdős–Rényi35,36 and scale-free15,37–39), the fraction of driver nodes is
significantly higher among low-k nodes than among the hubs. In Fig. 2c,
we plot the mean degree of the driver nodes, ÆkDæ, as a function of the
mean degree, Ækæ, of each network in Table 1 and several network
models. In all cases, ÆkDæ is either significantly smaller than or compar-
able to Ækæ, indicating that in both real and model systems the driver
nodes tend to avoid the hubs.

To identify the topological features that determine network con-
trollability, we randomized each real network using a full randomiza-
tion procedure (rand-ER) that turns the network into a directed
Erdős–Rényi random network with N and L unchanged. For several

networks there is no correlation between the ND of the original net-
work and the ND of its randomized counterpart (Fig. 2d), indicating
that full randomization eliminates the topological characteristics that
influence controllability. We also applied a degree-preserving rando-
mization40,41 (rand-Degree), which keeps the in-degree, kin, and out-
degree, kout, of each node unchanged but selects randomly the nodes
that link to each other. We find that this procedure does not alter ND

significantly, despite the observed differences in ND of six orders of
magnitude (Fig. 2e). Thus, a system’s controllability is to a great extent
encoded by the underlying network’s degree distribution, P(kin, kout),
which is our second and most important finding. It indicates that ND

is determined mainly by the number of incoming and outgoing links
each node has and is independent of where those links point.

An analytical approach to controllability
The importance of the degree distribution allows us to determine ND

analytically for a network with an arbitrary P(kin, kout). Using the
cavity method42–44, we derived a set of self-consistent equations
(Supplementary Information, section IV) whose input is the degree
distribution and whose solution is the average nD (or ND) over all
network realizations compatible with P(kin, kout), which is our third
key result. As Fig. 2f shows, the analytically predicted ND agrees
perfectly with ND

rand-Degree (and hence is in good agreement with
the exact value, ND

real), offering an effective analytical tool to study

Table 1 | The characteristics of the real networks analysed in the paper
Type Name N L nD

real nD
rand-Degree nD

rand-ER

Regulatory TRN-Yeast-1 4,441 12,873 0.965 0.965 0.083
TRN-Yeast-2 688 1,079 0.821 0.811 0.303
TRN-EC-1 1,550 3,340 0.891 0.891 0.188
TRN-EC-2 418 519 0.751 0.752 0.380

Ownership-USCorp 7,253 6,726 0.820 0.815 0.480

Trust College student 32 96 0.188 0.173 0.082
Prison inmate 67 182 0.134 0.144 0.103

Slashdot 82,168 948,464 0.045 0.278 1.7 3 1025

WikiVote 7,115 103,689 0.666 0.666 1.4 3 1024

Epinions 75,888 508,837 0.549 0.606 0.001

Food web Ythan 135 601 0.511 0.433 0.016
Little Rock 183 2,494 0.541 0.200 0.005
Grassland 88 137 0.523 0.477 0.301
Seagrass 49 226 0.265 0.199 0.203

Power grid Texas 4,889 5,855 0.325 0.287 0.396

Metabolic Escherichia coli 2,275 5,763 0.382 0.218 0.129
Saccharomyces cerevisiae 1,511 3,833 0.329 0.207 0.130
Caenorhabditis elegans 1,173 2,864 0.302 0.201 0.144

Electronic circuits s838 512 819 0.232 0.194 0.293
s420 252 399 0.234 0.195 0.298
s208 122 189 0.238 0.199 0.301

Neuronal Caenorhabditis elegans 297 2,345 0.165 0.098 0.003

Citation ArXiv-HepTh 27,770 352,807 0.216 0.199 3.6 3 1025

ArXiv-HepPh 34,546 421,578 0.232 0.208 3.0 3 1025

World Wide Web nd.edu 325,729 1,497,134 0.677 0.622 0.012
stanford.edu 281,903 2,312,497 0.317 0.258 3.0 3 1024

Political blogs 1,224 19,025 0.356 0.285 8.0 3 1024

Internet p2p-1 10,876 39,994 0.552 0.551 0.001
p2p-2 8,846 31,839 0.578 0.569 0.002
p2p-3 8,717 31,525 0.577 0.574 0.002

Social communication UCIonline 1,899 20,296 0.323 0.322 0.706
Email-epoch 3,188 39,256 0.426 0.332 3.0 3 1024

Cellphone 36,595 91,826 0.204 0.212 0.133

Intra-organizational Freemans-2 34 830 0.029 0.029 0.029
Freemans-1 34 695 0.029 0.029 0.029

Manufacturing 77 2,228 0.013 0.013 0.013
Consulting 46 879 0.043 0.043 0.022

For each network, we show its type and name; number of nodes (N) and edges (L); and density of driver nodes calculated in the real network (nD
real), after degree-preserved randomization (nD

rand-Degree) and after
full randomization (nD

rand-ER). For data sources and references, see Supplementary Information, section VI.
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the impact of various network parameters on ND. Although the cavity
method does not offer a closed-form solution, we can derive the
dependence of nD on key network parameters in the thermodynamic
limit (N R ‘). We find, for example, that for a directed Erdős–Rényi
network nD decays as

nD<e{ kh i=2 ð4Þ
for large Ækæ. For scale-free networks with degree exponent cin 5
cout 5 c in the large-Ækæ limit38, we have

nD<exp {
1
2

1{
1

c{1

� �
kh i

� �
ð5Þ

which has the same Ækæ dependence as equation (4) in the c R ‘ limit.
Equation (5) predicts that cc 5 2 is a critical exponent for the con-
trollability of an infinite scale-free network, as only for c . cc can we
control the full system through a finite subset of nodes (that is,
nD , 1). For c # cc in the thermodynamic limit, all nodes must be
individually controlled (that is, nD 5 1). We note that cc is different
from c 5 3, which is the critical exponent for a number of network
phenomena driven by the divergence of Æk2æ, from network robustness
to epidemic spreading31–33,45. To check the validity of the analytical
predictions, we determined the Ækæ dependence of nD numerically for
both Erdős–Rényi and scale-free networks, confirming the asymp-
totic exponential dependence of nD on Ækæ, as predicted by equa-
tions (4) and (5). Furthermore, the predicted nD value is in excellent

agreement with the numerical results for c . 3 (Fig. 3d, e). Near c 5 2,
however, nD as predicted by the cavity method deviates from the exact
nD value owing to degree correlations that are prominent at cc 5 2 and
can be eliminated by imposing a degree cut-off in constructing the
scale-free networks39,46 (Supplementary Information, section IV.B).

Equation (5) also shows that nD decreases as c increases (for fixed
Ækæ), indicating that nD is affected by degree heterogeneity, repre-
senting the spread between the less connected and the more con-
nected nodes. We defined the degree heterogeneity as H 5 D/Ækæ,
where D 5

P
i
P

jjki 2 kjjP(ki)P(kj) is the average absolute degree dif-
ference of all pairs of nodes (i and j) drawn from the degree distri-
bution P(k). The degree heterogeneity is zero (H 5 0) for networks in
which all nodes have the same degree, such as the random regular
digraph (Fig. 3a), in which the in- and out-degrees of the nodes are
fixed to Ækæ/2 but the nodes are connected randomly. For Ækæ $ 2, this
graph always has a perfect matching47, which means that a single
driver node can control the whole system (Supplementary Informa-
tion, section IV.B1). The degree heterogeneity increases as we move
from the random regular digraph to an Erdős–Rényi network (Fig. 3b)
and eventually to scale-free networks with decreasing c (Fig. 3c).
Overall, the fraction of driver nodes, nD, increases monotonically with
H, whether we keep c (Fig. 3f) or Ækæ (Fig. 3g) constant.

Taking these results together, we find that the denser a network is,
the fewer driver nodes are needed to control it, and that small changes
in the average degree induce orders-of-magnitude variations in nD.
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Figure 2 | Characterizing and predicting the driver nodes (ND). a, b, Role of
the hubs in model networks. The bars show the fractions of driver nodes, fD,
among the low-, medium- and high-degree nodes in two network models,
Erdős–Rényi (a) and scale-free (b), with N 5 104 and Ækæ 5 3 (c 5 3), indicating
that the driver nodes tend to avoid the hubs. Both the Erdős–Rényi and the
scale-free networks are generated from the static model38 and the results are
averaged over 100 realizations. The error bars (s.e.m.), shown in the figure, are
smaller than the symbols. c, Mean degree of driver nodes compared with the
mean degree of all nodes in real and model networks, indicating that in real

systems the hubs are avoided by the driver nodes. d, Number of driver nodes,
ND

rand-ER, obtained for the fully randomized version of the networks listed in
Table 1, compared with the exact value, ND

real. e, Number of driver nodes,
ND

rand-Degree, obtained for the degree-preserving randomized version of the
networks shown in Table 1, compared with ND

real. f, The analytically predicated
ND

analytic calculated using the cavity method, compared with ND
rand-Degree. In

d–f, data points and error bars (s.e.m.) were determined from 1,000 realizations
of the randomized networks.
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Furthermore, the larger are the differences between node degrees, the
more driver nodes are needed to control the system. Overall, networks
that are sparse and heterogeneous, which are precisely the character-
istics often seen in complex systems like the cell or the Internet13–16,
require the most driver nodes, underscoring that such systems are
difficult to control.

Robustness of control
To see how robust is our ability to control a network under unavoid-
able link failure, we classify each link into one of the following three
categories (Fig. 1d, g, j): ‘critical’ if in its absence we need to increase
the number of driver nodes to maintain full control; ‘redundant’ if it
can be removed without affecting the current set of driver nodes; or
‘ordinary’ if it is neither critical nor redundant. Figure 4 shows the
densities of critical (lc 5 Lc/L), redundant (lr 5 Lr/L) and ordinary
(lo 5 Lo/L) links for each real network, and indicates that most net-
works have few or no critical links. Most links are ordinary, meaning
that they have a role in some control configurations but that the
network can still be controlled in their absence.

To understand the factors that determine lc, lr and lo, in Fig. 5a, c, f
we show their Ækæ dependence for model systems. The behaviour of lc
is the easiest to understand: for small Ækæ, all links are essential for
control (lc < 1). As Ækæ increases, the network’s redundancy increases,
decreasing lc. The increasing redundancy suggests that the density of
redundant links, lr, should always increase with Ækæ, but it does not: it
reaches a maximum at a critical value of Ækæ, Ækæc, after which it decays.
This non-monotonic behaviour results from the competition of two
topologically distinct regions of a network, the core and leaves43.
The core represents a compact cluster of nodes left in the network
after applying a greedy leaf removal procedure48, and leaves are nodes
with kin 5 1 or kout 5 1 before or during leaf removal. The core
emerges through a percolation transition (Fig. 5b, d): for k , Ækæc,
ncore 5 Ncore/N 5 0, so the system consists of leaves only (Fig. 5e).
At Ækæ 5 Ækæc, a small core emerges, decreasing the number of leaves.
For Erdős–Rényi networks, we predict that Ækæc 5 2e < 5.436564 in
agreement with the numerical result (Fig. 5a, b), a value that coincides
with Ækæ where lr reaches its maximum. Indeed, lr starts decaying
at Ækæc because for Ækæ . Ækæc the number of distinct maximum
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Figure 3 | The impact of network structure on
the number of driver nodes. a–c, Characteristics
of the explored model networks. A random-regular
digraph (a), shown here for Ækæ 5 4, is the most
degree-homogeneous network as kin 5 kout 5 Ækæ/2
for all nodes. Erdős–Rényi networks (b) have
Poisson degree distributions and their degree
heterogeneities are determined by Ækæ. Scale-free
networks (c) have power-law degree distributions,
yielding large degree heterogeneities. d, Driver
node density, nD, as a function of Ækæ for Erdős–
Rényi (ER) and scale-free (SF) networks with
different values of c. Both the Erdős–Rényi and the
scale-free networks are generated from the static
model38 with N 5 105. Lines are analytical results
calculated by the cavity method using the expected
degree distribution in the N R ‘ limit. Symbols are
calculated for the constructed discrete network:
open circles indicate exact results calculated from
the maximum matching algorithm, and plus
symbols indicate the analytical results of the cavity
method using the exact degree sequence of the
constructed network. For large Ækæ, nD approaches
its lower bound, N21, that is, a single driver node
(ND 5 1) in a network of size N. e, nD as a function
of c for scale-free networks with fixed Ækæ. For
infinite scale-free networks, nD R 1 as c R cc 5 2,
that is, it is necessary to control almost all nodes to
control the network fully. For finite scale-free
networks, nD reaches its maximum as c approaches
cc (Supplementary Information). f, nD as a function
of degree heterogeneity, H, for Erdős–Rényi and
scale-free networks with fixed c and variable Ækæ.
g, nD as a function of H for Erdős–Rényi and scale-
free networks for fixed Ækæ and variable c. As c
increases, the curves converge to the Erdős–Rényi
result (black) at the corresponding Ækæ value.
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matchings increases exponentially (Supplementary Information, sec-
tion IV.C) and, as a result, the chance that a link does not participate
in any control configuration decreases. For scale-free networks, we
observe the same behaviour, with the caveat that Ækæc decreases with c
(Fig. 5c, d).

Discussion and conclusions
Control is a central issue in most complex systems, but because a
general theory to explore it in a quantitative fashion has been lacking,
little is known about how we can control a weighted, directed net-
work—the configuration most often encountered in real systems.
Indeed, applying Kalman’s controllability rank condition (equation
(3)) to large networks is computationally prohibitive, limiting pre-
vious work to a few dozen nodes at most17–19. Here we have developed
the tools to address controllability for arbitrary network topologies
and sizes. Our key finding, that ND is determined mainly by the degree
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distribution, allows us to use the tools of statistical physics to predict
ND from P(kin, kout) analytically, offering a general formalism with
which to explore the impact of network topology on controllability.

The framework presented here raises a number of questions,
answers to which could further deepen our understanding of control
in complex environments. For example, although our analytical work
focused on uncorrelated networks, the algorithmic method we
developed can identify ND for arbitrary networks, providing a frame-
work in which to address the role of correlations systematically40,49,50.
Taken together, our results indicate that many aspects of controllability
can be explored exactly and analytically for arbitrary networks if we
combine the tools of network science and control theory, opening new
avenues to deepening our understanding of complex systems.
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6. Chiang, M., Low, S. H., Calderbank, A. R. & Doyle, J. C. Layering as optimization

decomposition: a mathematical theory of network architectures. Proc. IEEE 95,
255–312 (2007).

7. Wang, X. F. & Chen, G. Pinning control of scale-free dynamical networks. Physica A
310, 521–531 (2002).

8. Wang, W. & Slotine, J.-J. E. On partial contraction analysis for coupled nonlinear
oscillators. Biol. Cybern. 92, 38–53 (2005).

9. Sorrentino, F., di Bernardo, M., Garofalo, F. & Chen, G. Controllability of complex
networks via pinning. Phys. Rev. E 75, 046103 (2007).
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