
VOLUME 76, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 18 MARCH 1996

s 02215

2

Avalanches in the Lung: A Statistical Mechanical Model
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We study a statistical mechanical model for the dynamics of lung inflation which incorporates recent
experimental observations on the opening of individual airways by a cascade or avalanche mechanism.
Using an exact mapping of the avalanche problem onto percolation on a Cayley tree, we analytically
derive the exponents describing the size distribution of the first avalanches and test the analytical
solution by numerical simulations. We find that the treelike structure of the airways, together with the
simplest assumptions concerning opening threshold pressures of each airway, is sufficient to explain the
existence of power-law distributions observed experimentally.

PACS numbers: 87.45.Bp, 05.40.+j, 05.45.+b
i
l
m
t

w
I

n
e

n

i

o

a

e
l
i
o

c

n

e
a-

r

of
ay
t if
ort

en-

y a
ber
Recent interactions between physics and physiolo
have resulted in advances in understanding some “s
pler” physiological systems [1]. In particular, considerab
progress has occurred in the general area of statistical
chanics and pulmonary physiology [2,3] due most likely
the unique treelike connectivity of the airways [4].

During a forced exhalation, lungs deflate to very lo
volumes, and many peripheral airways close up [5].
lung disease, closure occurs even during normal brea
ing; the closed airways do not reopen for a significa
portion of the following inhalation [6]. As a consequenc
a large portion of the alveolar space can remain clos
during the entire breathing cycle leading to severe h
poventilation and an imbalance between ventilation a
perfusion. The process of opening asingle airway is a
local and isolated phenomenon. However, the dynam
of consecutiveairway openings in the lung is a highly
cooperative process. There is recent evidence sugges
that during inflation the resistance to airflow of the sma
airways decreases in discrete jumps [7,8]. Thus airwa
do not open individually, but in a sequence of bursts
“avalanches” [9] involving many airways; both the size o
these jumps and the time intervals between jumps follo
power-law distributions [8]. In this paper, we argue th
the existence of power laws in lung inflation can arise d
rectly from the treelike connectivity of the airways. W
observe that the dynamics of lung inflation can be usefu
described by a percolation problem on a Cayley tree, w
the inflated lung volume corresponding to a percolati
cluster. Using this exact mapping, we analytically deriv
the exponents describing the size distribution of thefirst
avalanches, and test our results using simulations.

Morphological data [4] show that human (as well a
other mammalian) lungs constitute an asymmetric bran
ing airway structure withø35 generations. Complete
airway closure appears to occur only in the lastø10 14
generations [8], where the branching structure is large
symmetric [4]. Accordingly, we model this part of the
airway tree as a binary Cayley tree with airway segme
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that can be either closed or opened (Fig. 1). At tim
t ­ 0, all airways are assumed to be closed. Lung infl
tion is simulated by applying an external pressurePE at the
root of the tree, and gradually increasingPE at a uniform
and slow rate. Airways are labeledsi, jd with a genera-
tion numberi si ­ 0, . . . , Nd, whereN is the order of the
tree (i ­ 0 denotes the tree root), and a column numbej
s j ­ 0, . . . , 2i 2 1d. An opening threshold pressurePij is
also assigned to each airwaysi, jd. Experiments on flex-
ible tube airway models [10] confirm that the opening
a single airway is a dynamic process, with each airw
characterized by a critical pressure threshold such tha
PE exceeds this threshold, then the airway opens in a sh
time, which is considered to be instantaneous [11]. Op
ing of airwaysi, jd occurs wheneverPij is smaller than the
pressure in its parent.

FIG. 1. Schematic diagram of the airways represented b
branching tree. The airways are labeled by a generation num
si ­ 0, ..., Nd and a column numbers j ­ 0, ..., 2i 2 1d. An
opening threshold pressure0 , Pij , 1 chosen from a uniform
distribution is also assigned to each airway.
© 1996 The American Physical Society
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We assume thatPij is uniformly distributed between
0 and 1 [12], and allowPE to increase from 0 to 1 in
small increments. WhenPE first exceedsP00, the airway
s0, 0d opens and its pressure is set equal toPE. Next, the
two airways (1,0) and (1,1) are tested to see if they c
be opened with this value ofPE —i.e., if PE . P10 and/
or PE . P11. If one or both conditions are met, the
the airwayss1, 0d and/or s1, 1d are also opened. This
opening is then continued sequentially down the tree u
no airway is found with itsPij , PE.

Of particular interest is the fact that a small increa
in PE can lead to an “avalanche” in which many airwa
open simultaneously. When the first avalanche stops,PE

is further incremented and pressures in the open airw
are updated. We iterate this process until all airwa
open. The location and size of the next avalanche depe
on the distribution ofPij in the accessible region.

We do not treat the full problem analytically, but w
can obtain exact results for the distribution of thefirst
avalanche. Att ­ 0, we increasePE until the first
avalanche occurs and we calculate its sizes. Then we
restart the simulation with a new set of thresholdshPijj.

Before we consider two possible definitions ofs, we
note that gas exchange in the lung occurs only in
“opened” alveoli (the terminal units of the bronchial tre
which are in communication with the trachea. For th
reason, in definition A,s denotes the number of alveol
defined as the number of elements in the last generat
N , that become open. Motivated by percolation theo
[13,14], in definition B,s is the number of airways tha
open following an increase ofPE that opens at least on
airway. The physiological rationale for definition B is th
when the lung is deflated to low volumes, most airwa
close. However, often there remains trapped air in
alveoli. Thus, concerning gas exchange, it may not
necessary that an avalanche reach the bottom of the
for it to connect alveoli with the trachea.

We studyPssd, the size distribution of first avalanche
For definition A, PAssd shows a single power law
behavior with an exponentgA ­ 0.9 sø1.0d (Fig. 2). For
definition B the functionPBssd has two regions (Fig. 2):
a first region with a steep power-law decay and a sec
region with a moderate power-law decay, with a crosso
at a scaleN ,

PBssd ,

(
s2g

B
1 fs # Ng

s2g
B
2 fs ¿ Ng

. (1)

The exponentgB
1 ­ 1.9 sø2.0d for the first regime, while

g
B
2 ­ 0.9 sø1.0d for the second regime which extend

to sizes including all branches, i.e., almost to a size
2N11 2 1.

We argue that for definition B, this problem can b
mapped onto the percolation problem for the Cayley t
[14]. In the percolation problem, we occupy random
every branch of the tree with a probabilityp. Then,
starting from the root, we connect all occupied branch
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FIG. 2. Double logarithmic plot of the avalanche size dist
butionsPssd obtained by computer simulation on a Cayley tre
of 12 generations. Shown are data obtained for108 realiza-
tions for each of the two avalanche size definitions discus
in the text, definition A (closed circles) and definition B (ope
circles). Also shown, for comparison, are the exact results
tained using the generating function approach described in
text. Again, both definitions are shown: definition A (soli
line) and definition B (dotted line).

that are neighbors of each other. Definition B concer
the cluster of connected bonds that starts from the ro
The size of this cluster depends on the fractionp of
occupied bonds. As we approach a critical probabil
pc, the typical size of a cluster can be characterized by
styp , jp 2 pcj

21ys . Both s and pc can be calculated
exactly due to the branching nature of the tree:s ­

1
2 and

pc ­
1
2 [14]. In general, the size distribution of the finit

clusters in the infinite system obeys the scaling form [1

Pssd ­ s2tfsssjp 2 pcjd , (2)

wheret ­ 3y2, andfsud ­ const foru ø 1 andfsu ¿

1d ! 0. To connect percolation theory to the lun
model, instead of occupying the branches randomly w
probability p, we assign a random number or pressu
threshold value to each airway. We then define a clus
to be the set of airways that have a threshold smaller t
a predefined valuep and are connected to the root. Whe
PE exceedsP00, we open all airways below the root whic
have a threshold value smaller thanP00.

If P00 is fixed and set equal top, then this isexactly
the percolation problem on the Cayley tree, and the
distribution of the cluster sizes or avalanches is given
(2). However, in our case,P00 is also a random variable
Thus, in order to obtain the size distribution of the fir
avalanche, we must integrate the cluster distribution o
the probabilityp from 0 to 1 with the result that

gB
1 ­ t 1 s , (3)

which predictsg
B
1 ­ 2, in agreement with the scaling

observed fors # N in Fig. 2.
2193
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These calculations assume that the system size
infinite. No avalanche withs , N can reach the bottom
of the tree, so the scaling behavior fors , N is that of
the infinite tree with an exponentg

B
1 ­ 2. On the other

hand, avalanches of sizes . N are affected by finite-size
effects, and indeed the data fors ¿ N indicate a different
exponent. Moreover, finite-size effects will always affe
the scaling behavior ofPAssd, since every avalanche tha
leads to the opening of one or more alveoli must open
leastN airways.

We next calculate the effect of finiteN on the cluster
size distribution. Following the general theory of branc
ing processes [15], we consider the generating function
orderN

g
A,B
N sp, xd ;

X̀
s­0

P
A,B
N sp, sdxs, (4)

where P
A,B
N sp, sd give, for definitions A and B, the

probability that in a tree withN generations we have an
avalanche of sizes for a givenP00 ­ p. Therefore,

P
A,B
N ssd ­

Z 1

0
P

A,B
N sp, sddp . (5)

These generating functions satisfy the recursion relatio

g
A,B
N11sp, xd ­ xufs1 2 pd 1 pg

A,B
N sp, xdg2,

g
A,B
0 sp, xd ­ x , (6)

where u ­ 0 for definition A andu ­ 1 for definition
B, gA

N is a polynomial in x of degree 2N , and gB
N

is a polynomial of degree2N11 2 1. We obtain the
distribution functionsPAssd and PBssd by numerical
integration of the coefficients of these polynomials wi
respect top ­ P00. The results forPAssd and PBssd
are shown in Fig. 2; note the good agreement betwe
simulations and theory, despite the fact that there are
adjustable parameters in the calculation (the theoreti
line being determined solely by the value ofN).

For N ! `, for any x , 1, the generating func-
tion gB

N sp, xd approaches the limit gB
`sp, xd ;

f1 2 2ps1 2 pdx 2
p

1 2 4ps1 2 pdxgy2p2x, which
can be expanded in powers ofx. On integrating the
coefficients of this expansion with respect top, we obtain
PBssd ­ 1yss2s 1 1d for s # N, which implies an
asymptotic exponentgB

1 ­ 2.
Next we consider definition A, and show thatPAssd ,

1ys for larges, so thatgA ­ 1. For largeN and larges,
it follows from general theorems [15] that forp . 1y2,

PA
N sp, sd , s21

0 expf2Cssys0dgspdg ,

s0 ­ s2pdN . (7)

Here s0 is the average avalanche size (number of op
alveoli) in the generationN, gs pd is a continuous function
of p for p , 1, andC is a positive number with a weak
dependence onsys0. For p #

1
2 , s0 decays exponentially

with N . Thus, forp #
1
2 , the coefficientsPA

N s p, sd for
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larges become negligibly small and do not contribute
the integral (5). In contrast, forp .

1
2 the probability of

a nonzero avalanche in definition A—which is equal
the sum of all thePA

N s p, sd with s $ 1—is finite when
N ! ` and equal tos2p 2 1dyp2. This quantity should
be used as a normalizing constant in the equation
Integrating equation (7) with respect top from 1

2 to 1 with
the help of the saddle point approximation, we find

PAssd ,
1

sN
s1 2 s21yN d ,

N ø s ø 2N , (8)
so gA ­ 1. If we expand Eq. (8) for smalls, we find
PAssd , lnsyssN2d; hence we expect to find an effectiv
exponent that is smaller than the asymptotic valueg

A
2 ­

1, and indeed our simulations givegA ­ 0.9 (Fig. 2).
For very larges, comparable with2N , the saddle point
approximation is no longer valid, and we observe (Fig.
the “kink” near the end of the distribution [16]; Eq. (8
also holds for definition B, sogB

2 ­ 1. Note that Eq. (8)
is valid for trees with any coordination number.

Having derived the above exponents analytically, w
next examine their “universality” by discussing how de
viations from the assumptions made in the model may
fect the scaling exponents. (i) The first assumption (wh
matters only for definition B) is that we neglect the fa
that in the lung the length, and the radiusr, and hence
the volume of the airways, depend on the generation nu
ber i [4]. Previously, we modeled this generational d
pendence such that,i11 ­ ,iy0.9 andri11 ­ riy0.86 [8],
where the scaling factors (0.9 and 0.86) arise from m
phological data [4]. This exponential dependence sho
not affect the scaling behavior, an expectation we verifi
by simulations. (ii) The second assumption, that the d
tribution of Pij is uniform, matters for both definitions
Unfortunately, direct experimental data on the distributi
of Pij in the lung are not available. However, even if th
distribution is not uniform, but normal or exponential, th
scaling exponents will not be influenced as long as the v
ues ofPij are not correlated. Correlations amongPij have
not been reported. (iii) While the assumption of a unifor
distribution is physiologically reasonable, it is also pos
ble that there is a weak generational dependence ofPij

[12] which can reduce the scaling region and/or chan
the value of the exponents. A stronger generational
pendence ofPij in which the mean ofPij as a function of
i increases from the root to the bottom by at least a fac
of 10 will, however, break down the scaling behavior [17
As a consequence, the very existence of scaling expon
found in experimental data [8] provides indirect eviden
that the distribution ofPij does not have any significan
generational dependence.

In summary, we have studied a statistical mechani
model of the distribution of thefirst avalanches during
lung inflation. Our main result is an analytically solu
ble model which, compared to the more realistic mod
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of Ref. [8], permits exact calculation of the scaling exp
nents with the avalanche size defined either as the nu
ber of alveoli (definition A) or number of opened airway
(definition B). We have found that the treelike structu
of the airways with the simplest assumptions concerni
opening threshold pressures is sufficient to explain the
istence of power-law distributions observed experime
tally [8]. Finally, the fact that the size distribution of the
first avalanches follows a power law suggests that in d
ease high pressures for at least short periods of inspira
might be necessary to open up larger alveolar volum
Thus, our results may also find important applications
the design of appropriate wave forms for artificial ventila
tion of patients who suffer from substantial airway closu
and alveolar collapse.
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