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Avalanches in the Lung: A Statistical Mechanical Model
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We study a statistical mechanical model for the dynamics of lung inflation which incorporates recent
experimental observations on the opening of individual airways by a cascade or avalanche mechanism.
Using an exact mapping of the avalanche problem onto percolation on a Cayley tree, we analytically
derive the exponents describing the size distribution of the first avalanches and test the analytical
solution by numerical simulations. We find that the treelike structure of the airways, together with the
simplest assumptions concerning opening threshold pressures of each airway, is sufficient to explain the
existence of power-law distributions observed experimentally.

PACS numbers: 87.45.Bp, 05.40.+j, 05.45.+b

Recent interactions between physics and physiologyhat can be either closed or opened (Fig. 1). At time
have resulted in advances in understanding some “sim-= 0, all airways are assumed to be closed. Lung infla-
pler” physiological systems [1]. In particular, considerabletion is simulated by applying an external pressBgeat the
progress has occurred in the general area of statistical mesot of the tree, and gradually increasiRg at a uniform
chanics and pulmonary physiology [2,3] due most likely toand slow rate. Airways are labeldéd j) with a genera-
the unique treelike connectivity of the airways [4]. tion numberi (i =0,...,N), whereN is the order of the

During a forced exhalation, lungs deflate to very lowtree ¢ =0 denotes the tree root), and a column numper
volumes, and many peripheral airways close up [5]. In(j=0,...,2" —1). Anopening threshold pressus®; is
lung disease, closure occurs even during normal breattalso assigned to each airwéy j). Experiments on flex-
ing; the closed airways do not reopen for a significanible tube airway models [10] confirm that the opening of
portion of the following inhalation [6]. As a consequence,a single airway is a dynamic process, with each airway
a large portion of the alveolar space can remain closedharacterized by a critical pressure threshold such that if
during the entire breathing cycle leading to severe hyPg exceeds this threshold, then the airway opens in a short
poventilation and an imbalance between ventilation andime, which is considered to be instantaneous [11]. Open-
perfusion. The process of openingsingle airway is a ing of airway(i, j) occurs whenevep;; is smaller than the
local and isolated phenomenon. However, the dynamicpressure in its parent.
of consecutiveairway openings in the lung is a highly
cooperative process. There is recent evidence suggesting
that during inflation the resistance to airflow of the small
airways decreases in discrete jumps [7,8]. Thus airways
do not open individually, but in a sequence of bursts or
“avalanches” [9] involving many airways; both the size of
these jumps and the time intervals between jumps follow
power-law distributions [8]. In this paper, we argue that
the existence of power laws in lung inflation can arise di-
rectly from the treelike connectivity of the airways. We
observe that the dynamics of lung inflation can be usefully
described by a percolation problem on a Cayley tree, with
the inflated lung volume corresponding to a percolation
cluster. Using this exact mapping, we analytically derive
the exponents describing the size distribution of fingt
avalanches, and test our results using simulations.

Morphological data [4] show that human (as well as
other mammalian) lungs constitute an asymmetric branch /&,
ing airway structure with=35 generations. Complete
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FIG. 1. Schematic diagram of the airways represented by a

airway closure appears to occur only in the last0-14 . X .
- . - branching tree. The airways are labeled by a generation number
generations [8], where the branching structure is largely; — " “n) and a column numbetj = 0,...2 — 1). An

symmetric [4]. Accordingly, we model this part of the gpening threshold pressube< P;; < I chosen from a uniform
airway tree as a binary Cayley tree with airway segmentslistribution is also assigned to each airway.
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We assume thaP;; is uniformly distributed between 0
0 and 1 [12], and allowPg to increase from O to 1 in
small increments. WheRg first exceed®y, the airway
(0,0) opens and its pressure is set equaPto Next, the L
two airways (1,0) and (1,1) are tested to see if they cal
be opened with this value dfg—i.e., if Pg > Py and/ ) )
or P > Py;. If one or both conditions are met, then &
the airways(1,0) and/or (1,1) are also opened. This g
opening is then continued sequentially down the tree unti<
no airway is found with itsP;; < Pg.

Of particular interest is the fact that a small increase
in P can lead to an “avalanche” in which many airways
open simultaneously. When the first avalanche st8ps,
is further incremented and pressures in the open airway
are updated. We iterate this process until all airway:
open. The location and size of the next avalanche depent log s
on the distribution ofP;; in the accessible region.

We do not treat the full problem analytically, but we FIG. 2. Double logarithmic plot of the avalanche size distri-
; catrilg g . butionsII(s) obtained by computer simulation on a Cayley tree
can obtain exact results for the distribution of thest /5 generations. Shown are data obtained fiat realiza-

avalanche. Atr =0, we increasePy until the first tons for each of the two avalanche size definitions discussed
avalanche occurs and we calculate its sizeThen we in the text, definition A (closed circles) and definition B (open

restart the simulation with a new set of threshdlﬂg}. cir_cles). Also shown, for_ compari_son, are the exact r_esult_s ob-
Before we consider two possible definitions gfwe  t@ined using the generating function approach described in the

note that gas gxchange jn the _Iung occurs on!y in th %)g)' anAg?jlgfinti)t?grll ge(grgttt'ggslmaéf shown: definition A (solid

“opened” alveoli (the terminal units of the bronchial tree)

which are in communication with the trachea. For this

reason, in definition As denotes the number of alveoli,

that are neighbors of each other. Definition B concerns
defined as the number of elements in the last generatio e cluster of connected bonds that starts from the root.

N, that become open. Motivated by percolation theoryo?ceu Siiés ggntgiss C,IAthStv?/re iepiggihog (t:rr]iﬁctarﬁcgggggilit
[13,14], in definition B,s is the number of airways that thpet ical siz.e ofa clustgfcan be characterFi)zed b tr{e
open following an increase dtz that opens at least one Pes yp y

~ _ -1/o
airway. The physiological rationale for definition B is that Styp | |l(; pCIh b' Bc:.h o andp, fin be calciulatjd
when the lung is deflated to low volumes, most airwaysEXactly due to the branching nature of the tree:= ; and
5 [14]. In general, the size distribution of the finite

close. However, often there remains trapped air in thé’lc — 2L he infini b h ling f 14
alveoli. Thus, concerning gas exchange, it may not b&USters in the infinite system obeys the scaling form [14]

necessary that an avalanche reach the bottom of the tree II(s) = s 7f(s%|lp — pel), 2

for it to connect aIveoll_ Wlth. th(_e tra_lchea. _ wherer = 3/2, andf(u) = constforu < 1 andf(u >

We studylIl(s), the size distribution of first avalanches. 1) > 0. To connect percolation theory to the lung
For definition A, IT4(s) ihows a single power law mogel, instead of occupying the branches randomly with
behavior with an expc_)newlt; = 09 (=1.0) (Fig. 2). For  hropapility p, we assign a random number or pressure
definition B the functionl®(s) has two regions (Fig. 2): {hreshold value to each airway. We then define a cluster
a first region with a steep power-law decay and a secong, pe the set of airways that have a threshold smaller than
region with a moderate power-law decay, with a crossoves nredefined valup and are connected to the root. When

at a scalev, . P exceedsP, we open all airways below the root which
T8 (s) ~ s [s = N] 1 have a threshold value smaller thAg,.
(s) s [s > N]’ 1) If Py is fixed and set equal tp, then this isexactly

B . ) i the percolation problem on the Cayley treand the
Tr;e exponenty; = 1.9 (=2.0) for the first regime, while " gistribution of the cluster sizes or avalanches is given by
y2 =0.9 (=1.0) for the second regime which extends (2) However, in our casey, is also a random variable.
to sizes including all branches, i.e., almost to a size ofrhys, in order to obtain the size distribution of the first
2 - L avalanche, we must integrate the cluster distribution over

We argue that for definition B, this problem can benhe probabilityp from 0 to 1 with the result that
mapped onto the percolation problem for the Cayley tree B N 3)
Y =7 g,

[14]. In the percolation problem, we occupy randomly
every branch of the tree with a probabiliy. Then, which predictsy? = 2, in agreement with the scaling
starting from the root, we connect all occupied branchesbserved fos = N in Fig. 2.
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These calculations assume that the system size larges become negligibly small and do not contribute to
infinite. No avalanche with < N can reach the bottom the integral (5). In contrast, fgy > % the probability of
of the tree, so the scaling behavior for< N is that of a nonzero avalanche in definition A—which is equal to
the infinite tree with an exponenty = 2. On the other the sum of all thePd( p,s) with s = 1—is finite when
hand, avalanches of size> N are affected by finite-size N — « and equal td2p — 1)/p2. This quantity should
effects, and indeed the data for> N indicate a different be used as a normalizing constant in the equation (7).
exponent. Moreover, finite-size effects will always affectmtegrating equation (7) with respect pofrom % to 1 with
the scaling behavior ofl“(s), since every avalanche that the help of the saddle point approximation, we find

leads to the opening of one or more alveoli must open at 1
leastN airways. I4(s) ~ m(l — 57Ny,
We next calculate the effect of finit¥ on the cluster

size distribution. Following the general theory of branch- N <s <2V, (8)

ing processes [15], we consider the generating function oo y* = 1. If we expand Eq. (8) for smalt, we find

orderN [14(s) ~ Ins/(sN?); hence we expect to find an effective

B c B exponent that is smaller than the asymptotic vajde=
gv (p,x) = ZPN’ (p,s)x®, (4) 1, and indeed our simulations give4 = 0.9 (Fig. 2).
s=0

For very larges, comparable witr2", the saddle point

where Py®(p,s) give, for definiions A and B, the appf‘o>_<im”ation is no longer valid, and we observe (Fig. 2)
probability that in a tree withV generations we have an the “kink” near the end of the distribution [16]; Eq. (8)

avalanche of size for a givenPo = p. Therefore, also holds for definition B, sg7 = 1. Note that Eq. (8)
! is valid for trees with any coordination number.
Y (s) = ] Pyl (p,s)dp . (5) Having derived the above exponents analytically, we
0 next examine their “universality” by discussing how de-

These generating functions satisfy the recursion relationsyiations from the assumptions made in the model may af-
A.B — 01 _ A.B 2 fect the scaling exponents. (i) The first assumption (which
gN;;(p’x) FLA = p)+ pev (P 0F, matters only for definition B) is that we neglect the fact
g (p.x) = x, (6) that in the lung the lengtlf and the radius-, and hence
where @ = 0 for definition A and@ = 1 for definition the volume of the airways, depend on the generation num-
B, ¢} is a polynomial inx of degree2", and g% beri [4]. Previously, we modeled this generational de-
is a polynomial of degre@V*! — 1. We obtain the Pendence such thdt., =¢;/0.9 andr;., =r;/0.86 [8],
distribution functionsTT4(s) and T%(s) by numerical where .the scaling factqrs (0.9 and.0.86) arise from mor-
integration of the coefficients of these polynomials withPhological data [4]. This exponential dependence should
respect top = Py. The results forlI4(s) and TT5(s) not gffect t_he sca[[ng behavior, an expectation we verlflgd
are shown in Fig. 2; note the good agreement betweeRY Simulations. (ii) The second assumption, that the dis-
simulations and theory, despite the fact that there are n§iPution of P;; is uniform, matters for both definitions.
adjustable parameters in the calculation (the theoretica/nfortunately, direct experimental data on the distribution

line being determined solely by the valuedj. of P;; in the lung are not available. However, even if the
For N — , for any x < 1, the generating func- distribution is not uniform, but normal or exponential, the
tion g%(p,x) approaches the limit g2(p,x) = Scaling exponents will not be influenced as long as the val-

1 —2p(1 — — 1 =41 = 2p2x. which Ues ofP;; are not correlated. Correlations amahg have
[can bg(expaﬁéxed i\r{ powepr(s af p())xr?/in[;egjrating the Notbeenreported. (iii) While the assumption of a uniform

coefficients of this expansion with respecytowe obtain distribution is physiologically reas_onable, it is also possi-
B(s) = 1/s(2s + 1) for s = N, which implies an ble that there is a weak generational dependencg; of

[12] which can reduce the scaling region and/or change
the value of the exponents. A stronger generational de-
pendence oP;; in which the mean oP;; as a function of
i increases from the root to the bottom by at least a factor
of 10 will, however, break down the scaling behavior [17].
Py(p.s) ~ 5o ' exd—C(s/s50)”"], As a consequence, the very existence of scaling exponents
_ N found in experimental data [8] provides indirect evidence
so = (2p)". (7) Rt v
) ) that the distribution ofP;; does not have any significant
Here sy is the average avalanche size (number of opeQenerational dependence.
alveoli) in the generatioV, y( p) is a continuous function |5 summary, we have studied a statistical mechanical
of p for p < 1, andC is a positive number with a weak model of the distribution of thdirst avalanches during
dependence os/so. Forp = 3, 5o decays exponentially |ung inflation. Our main result is an analytically solu-

with N. Thus, forp = % the coefficientsP;‘,(p,s) for  ble model which, compared to the more realistic model

asymptotic exponeng? = 2.

Next we consider definition A, and show thEt(s) ~
1/s for larges, so thaty? = 1. For largeN and larges,
it follows from general theorems [15] that for > 1/2,
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of Ref. [8], permits exact calculation of the scaling expo-
nents with the avalanche size defined either as the num-
ber of alveoli (definition A) or number of opened airways
(definition B). We have found that the treelike structure
of the airways with the simplest assumptions concerning
opening threshold pressures is sufficient to explain the 8)1_10]
istence of power-law distributions observed experimen:
tally [8]. Finally, the fact that the size distribution of the [11]
first avalanches follows a power law suggests that in dis-
ease high pressures for at least short periods of inspiration
might be necessary to open up larger alveolar volumes.
Thus, our results may also find important applications iM12]
the design of appropriate wave forms for artificial ventila-
tion of patients who suffer from substantial airway closure
and alveolar collapse.

We thank P. Ch. Ivanov, R. Sadr, A. Shehter,
K. Sneppen, and especially M. Wortis for very helpful
comments, and NSF Grant No. BES-9503008 and OTKA
2675 for financial support.

[1] J.B. Bassingthwaighte, L.S. Liebovitch, and B.J. West,
Fractal Physiology(Oxford University Press, New York,
1994); Fractals in Natural Sciencesdited by T. Vicsek,

M. Shlesinger, and M. Matsushita (World Scientific,
Singapore, 1994); B.J. West and W. Deering, Phys. Rep.
246, 1 (1994);Growth Patterns in Physical Sciences and
Biology, J.M. Garcia-Ruizet al. (Plenum, New York,
1993); B.J. West,Fractal Physiology and Chaos in
Medicine(World Scientific, Singapore, 1990).

[2] M.F. Shlesinger and B.J. West, Phys. Rev. L6, 2106 [13]
(1991). [14]
[3] B.J. West and M. F. Shlesinger, Int. J. Mod. Phys3B
795 (1989).

[4] K.G. Horsfield, G. Dart, D.E. Olson, and G. Cumming, [15]

J. Appl. Phys31, 207-217 (1971).

[5] L.A. Engel, A. Grassino, and N.R. Anthonisen, J. Appl.
Phys.38, 1117 (1975).

[6] A.B.H. Crawford, D.J. Cotton, M. Paiva, and L.A.
Engel, J. Appl. Phys66, 2511 (1989).

[7] F. Petdk, Z. Hantos, A. Adamicza, D.R. Otis, and [17]

B. Daroczy, Eur. Respir. B, 403S (1993); D.R. Otis,

Ph.D. thesis, MIT, 1994.

B. Suki, A.-L. Barabasi, Z. Hantos, F. Petadk, and H.E.

Stanley, Nature (Londor368 615 (1994).

Note that although we use the term “avalanche,”

our avalanches are different from those observed in

self-organized criticality (SOC); for a review, see

G. Grinstein, inScale Invariance, Interfaces, and Non-

[16]

(8]
9]

Equilibrium Dynamicsgedited by A.J. McKane, M. Droz,

J. Vannimenus, and D. Wolf (Plenum, New York, 1995).
The most important difference is in the actual mecha-
nisms that lead to the avalanches: Here we show that the
avalanches in the lung are related to the distribution of
percolation clusters on a Cayley tree.

D.P. Gaver, R.W. Samsel, and J. Solway, J. Appl. Phys.
69, 74 (1990).

The time required to open an airway is well under 0.05
s for the smaller airways [10]. Since the inflation time in
the experiments was 80 s [7], the process of opening an
airway can be considered to be instantaneous.

A recent study of physical tube models [10] finds that
viscous and surface tension forces increase with decreas-
ing radius, so there may exist a generational dependence
of P;; on airway radius;. It was predicted [10] thaP;;

is inversely proportional ta;. There are many additional
factors that can balance this generational dependence, such
as local variations inr, length, surface tension, airway
wall thickness, local elastic moduli, smooth muscle tone,
etc. Additionally, there are two important systematic fac-
tors that compensate this generational dependence. First,
the airway wall volumetric elastic modulus is inversely
proportional to the cube of [B. Suki et al., J. Appl.
Phys. 75, 2755 (1993)]. Thus, airway wall modulus in-
creases rapidly with decreasing diameter. Sincethds
smaller in stiffer tubes, this mechanism alone may balance
the generational dependenceyf. Second, it was found
that at any given generatianthe distribution ofr; is not
normal, but it has a longer tail toward the larger radii [H.
Kitaoka and B. Suki (unpublished)]. The fact that this tail
increases with increasingwill again reduce the effect of
the inverse dependence Bf; on r;.

J. Essam, Rep. Prog. Phyk3, 833 (1980).

A. Bunde and S. Havlin, inFractals and Disordered
Systemsgedited by A. Bunde and S. Havlin (Springer-
Verlag, Berlin, 1996), 2nd ed..

T.E. Harris, The Theory of Branching Process@3over
Publication Inc., New York, 1989); S. Asmussen and H.
Hering, Branching Processe@Birkhauser, Boston, 1983);

N. H. Bingham, J. Appl. Prol25A, 215 (1988).

For very smalls < N approximation (7) is also incorrect.
For example, one can show thlt' (1) ~ 1/N3.

If r;+1 = r;/0.86 as in Ref. [8], then in a 14-generation
tree, P;; will increase by no more than a factor of 10.
Since it was suggested that; ~ 1/r; [10], we modeled
the generational dependence 8f; so that the mean

of P;; depended oni according toP;.;; = P;;/0.86.
Simulations in a 12-generation tree showed that using
definition A, the scaling completely breaks down, and with
definition B, the scaling region is significantly reduced to
about one decade.

2195



