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Invasion bond percolation (IBP) is mapped exactly into Prim’s algorithm for finding the sho
spanning tree of a weighted random graph. Exploring this mapping, which is valid for arb
dimensions and lattices, we introduce a new IBP model that belongs to the same universality c
IBP and generates the minimal energy tree spanning the IBP cluster. [S0031-9007(96)00106-8
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Flow in a porous medium, a problem with importa
practical applications, has motivated a large number
theoretical and experimental studies [1]. Aiming to u
derstand the complex interplay between the dynamics
flow processes and randomness characterizing the po
medium, a number of models have been introduced
capture different aspects of various experimental sit
tions. One of the most investigated models in this resp
is invasion percolation [2], which describes low flow ra
drainage experiments or secondary migration of oil dur
the formation of underground oil reservoirs [1,3].

When a wetting fluid (e.g., water) is injectedslowly into
a porous medium saturated with a nonwetting fluid (e
oil), capillary forces, inversely proportional to the loc
pore diameter, are the major driving forces determin
the motion of the fluid. The invasion bond percolati
(IBP) model captures the basic features of this invas
process. Consider a two dimensional square lattice
assign random numberspij [ f0, 1g to bonds connecting
the nearest neighbor verticesxi andxj . Herepij mimic the
randomness of the porous medium, corresponding to
random diameter of the pores, and vertices corresp
to throats. Invasion bond percolation without trapping
defined by the following steps: (i) Choose a vertex on
lattice. (ii) Find the bond with the smallestpij connected
to the occupied vertex and occupy it. At this point t
IBP cluster has two vertices and one bond. (iii) In a
subsequent step find the empty bond with the smallestpij

connected to the occupied vertices, and occupy the b
and the vertex connected to it.

The various versions of the model are useful in mat
ing the simulated dynamics to the microscopic effe
acting as fluids with different wetting properties an
compressibility are considered. Originally introduced
model fluid flow, lately invasion percolation is viewed a
a key model in statistical mechanics, investigated for
vancing our understanding of irreversible and nonequi
rium growth processes with generic scaling properties

Finding the shortest spanning tree of a weighted rand
graph is a well known problem in graph theory [4
Consider a connected nondirected graphG of n vertices
and m bonds (links connecting vertices), with costspij

associated with every bondsxi , xjd. A spanning treeon
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this graph is a connected graph ofn vertices andn 2 1
bonds. Of the many possible spanning trees one want
find the one for which the sum of the weightspij is the
smallest. A well known example is designing a netwo
that connectsn cities with direct city-to-city links (whose
length ispij) and shortest possible total length. This
a problem of major interest in the planning of large sca
communication networks and is one of the few problem
in graph theory that can be considered completely solv
Since for a fully connected graph withn vertices there
are nn22 spanning trees [5], designing an algorithm th
finds the shortest one in nonexponential time steps i
formidable global optimization problem.

An efficient algorithm for finding the shortest spannin
tree of an arbitrary connected graphG was introduced by
Prim [6], and involves the following steps: (i) Choose a
arbitrary vertex,xi . (ii) Of all vertices connected toxi

find the one for whichpij is the smallest, and joinxi and
xj . (iii) At any subsequent step a new vertex is append
to the tree by searching for the bond that has the smal
weight pik , wherexi belongs to the tree, andxk does not.
Thus bonds that connect already occupied vertices are
eligible for growth. It has been shown by Prim that th
tree generated by the previous algorithm is the small
energy spanning tree for the graphG [7]. Already at this
point one can notice the formal similarity between Prim
algorithm and the IBP model discussed above.

In this Letter I show the equivalence of the IBP mod
with Prim’s algorithm for finding the shortest spannin
tree of a weighted random graph [6], and explore t
consequences of this interesting mapping. For this
introduce an invasion bond percolation model with a loc
trapping rule (hereafter called IBPO model). Atevery
time stepthe bonds invaded by the IBPO model form
the minimum energy treespanning all vertices of the
IBP cluster, where energy is defined as the sum of t
invaded random bonds. Moreover, the clusters genera
by the IBPO model have the same scaling and dynam
properties as the clusters of the standard IBP model. T
the two models (and Prim’s algorithm) belong to the sam
universality class. Since the IBPO cluster forms a tr
(i.e., is loopless), this result implies that loopless IB
belongs to the same universality class as IBP. The clus
© 1996 The American Physical Society
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formed by the invaded bonds coincides with the uniq
solution of the global optimization problem of finding th
smallest energy branching self-avoiding walk connect
all vertices of a finite lattice. Furthermore, the IBPO mod
is computationally more efficient than the IBP mode
The above results areexact and are valid forarbitrary
dimensionsandlattices.

The difference between the IBP and IBPO models com
in an additional trapping rule [8]: In the IBPO model on
bonds connecting vertices of the cluster to empty verti
are eligible for growth (see Fig. 1). Note that in th
IBP model there may be bonds eligible for growth, whi
connect two already occupied vertices (hereafter these
called trapped bonds, since an empty bond is trapp
between two occupied vertices). In the IBPO model the
trapped bonds are not eligible for growth [9].

Consider the invasion process described by the IB
model, and assume that invasion ends whenall verticesof
a finite lattice have been invaded [10]. The energy of t
obtained IBPO cluster is defined byE ­

P
pij , where the

sum goes over alloccupiedbonds.
With these definitions one can prove the followin

(a) The cluster generated by the IBPO model has the sm
est energy of all possible clusters that span all vertices
the lattice. (b) The obtained cluster is independent of
site chosen as the starting point of the invasion proce
(c) Defining time as the number of invadedvertices,at
any time step the vertices invaded by the IBPO model

FIG. 1. Definition of the IBP and IBPO models. The figu
shows a portion of a two dimensional square lattice w
the numbers on the bonds corresponding to the weightspij .
Starting the invasion process from vertexA, both the IBP and
IBPO models select the smallest bonds in the order indica
by the arrows. After the third time step the invasion proce
reaches vertexB. The smallest bond is the one marked with
dotted line, connecting two alreadyoccupiedvertices,A andB.
Such a bond is atrappedbond. The IBP model next occupie
this trapped bond, without adding any new vertex to the clus
However, the trapped bond is not eligible for growth in th
IBPO model; thus the bond chosen next by the IBPO mode
the one withp ­ 0.4. Observe that in the next step the IB
model would choose exactly the same bond. Defining time
the number of occupiedvertices, the two models occupy the
same vertices in exactly the same order.
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incide with those invaded by the IBP model, implying th
the IBPO and IBP models belong to the same universa
class. (d) At any time step the bonds invaded by the IB
model form the smallest energy tree spanning the verti
of the IBP cluster. (e) The statements (a)–(d) are valid
any dimension and are independent of the lattice.

In the following we discuss (a)–(e) separately.
(a) Prim’s algorithm and IBPO.—Comparing the defi-

nition of the IBPO model and Prim’s algorithm, we fin
that Prim’s algorithm isexactlythe IBPO model acting on
the graphG. Since the square lattice, for which the IBP
model is defined, is a particular case of an arbitrary gra
the cluster generated by the IBPO model coincides w
the smallest energy spanning tree.

(b) Uniqueness of the IBPO cluster.—If the IBPO
model selects the smallest energy tree, there is only
such tree, provided that thepij ’s are distinct real numbers
since the chance of having two trees with the sa
number of bonds and the same energy is zero [11]. T
starting from any vertex of the lattice one should obta
the same minimum energy cluster.

(c) Cluster properties.—A B cluster is the set ofbonds
occupied by the invasion process. Similarly, aV cluster
is the set of occupiedvertices. In percolation and fluid
flow one is interested in the scaling properties of the fi
spanning cluster generated by the invasion algorithm.
particular, it is known that clusters generated by the I
model are fractal. However, the fractal dimension and
general the scaling exponents may depend on the trap
rule; thus one needs to establish the universality clas
which the IBPO model belongs, since it differs from th
IBP model in a trapping rule.

Defining time as the number of occupiedvertices,at
any time step theV clusters generated by the IBP an
IBPO models are identical [12], the only difference bei
that within one time step the IBP model may occupy
number of trapped bonds without adding any new ver
to the cluster. The IBPO model with every occupied bo
occupies a vertex as well. In conclusion, at any tim
step theV clusters generated by the two models coincid
provided that we start the invasion process from the sa
vertex. This implies that the IBP and IBPO belong to t
same universality class, and the generated clusters h
the same fractal dimension, whose value coincides w
the fractal dimension of ordinary percolation [13].

However, not only the static properties, but all dynam
properties measured in terms of the occupied verti
coincide as well. For example, the two models gener
exactly the same set of avalanches [14,15] and the gro
of the cluster obeys the same dynamic scaling form [15

(d) Spanning trees and loopless percolation.—Next I
investigate the relation between theB clusters generated
by the two models. The bonds invaded by the IBP
model are a subset of the bonds invaded by the IBP mo
i.e., at any time stepNb

IBP $ Nb
IBPO, whereNb

IBPO and
Nb

IBP are the number of bonds occupied by the IBPO a
3751
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IBP models, respectively. According to (a) and Prim
theorem, the bonds invaded by the IBPO model fo
the smallest energy spanning path connecting the sele
vertices. Since the IBP and IBPO models share the s
vertices, atevery time step the IBPOB cluster is the
minimum energy tree spanning all vertices of the IB
clusters. This can be seen in Fig. 2, where the IBP a
IBPO clusters are shown simultaneously.

Since the IBPO cluster forms a tree, removing any bo
of the IBPO cluster breaks the cluster in two subcluste
This is not true for the IBP model, where by cutting a
trapped bond one does not break the cluster (Fig. 2). S
the cluster generated by the IBPO model is a tree, it
no loops. The fact the IBPO and IBP share the sa
scaling exponents shows that loopless IBP (which is
IBPO model) belongs to the same universality class as I
or ordinary percolation. Loopless percolation has be
studied in great detail [16], and there isnumericalevidence
that removing loops does not change the universality c
of the percolation model. However, to my knowled
the IBPO model is the first percolation model generat
loopless percolation clusters, for which the fact that
loopless model belongs to the same universality clas
ordinary (invasion) percolation can be proven exactly.

(e) Dimension dependence.—The proof of (a)–(d) does
not assume anything specific about the structure of
lattice. Indeed, Prim’s theorem applies for an arbitra
weighted graph. Since any regular lattice, in any dim
sion, is a special case of a random graph, the above re
are independent of the nature and dimension of the lat
proving (e).

Complexity of the IBPO model.—The number of span
ning trees on a regular lattice is much smaller than

FIG. 2. A particular realization of the IBP and IBPO cluste
invading a square lattice simultaneously. The solid bonds fo
the IBPO cluster. The solid and dotted (trapped) bonds toge
form the IBP cluster. Note that the IBPO cluster forms a t
(loopless cluster), while every trapped bond leads to a loop
the cluster.
3752
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a fully connected graph, but still increases exponentia
with n. But the number of computations needed in t
simulation of the invasion processes, or thecomplexity of
the IBPO algorithm,is algebraic inn [17]. The most time
consuming operation is finding at every time step the bo
with the smallest weight eligible for growth. Howeve
sinceNb

IBPO # Nb
IBP , the IBPO model requires equal o

less time to run on an arbitrary computer. Figure 3 sho
the number of trapped bonds with timeNb

IBP 2 Nb
IBPO.

Since the two models belong to the same universality cla
using the IBPO model for studying the scaling propert
of IBP or ordinary percolation has considerable compu
tional advantages.

In conclusion, I introduced a new bond invasion perc
lation model that belongs to the same universality class
IBP without trapping, or ordinary percolation. The clu
ter generated by the IBPO model forms the smallest
ergy tree spanning the IBP cluster. Exact enumerati
which is the only alternative solution to this global opt
mization problem, diverges exponentially with the num
ber of vertices in the system. This is the first model,
my knowledge, that through a step-by-step optimizat
process finds the global minima of the system.

The global optimization problem, to which IBP is show
to be equivalent, connects to another class of problem
statistical mechanics: that of understanding the zero te
perature properties of various spatially extended rand
systems. Since the low temperature behavior is domina
by configurations with the smallest energy, such proble
involve finding the minima of certain functions, most ofte

FIG. 3. The difference between the number of bonds occup
by the IBP and IBPO clusters invading a two dimension
square lattice with the samepij configuration. The horizonta
axis corresponds to time, orNb

IBPO, according to the definition
of time used in this Letter, while the vertical isNb

IBP 2 Nb
IBPO.

Note that since the difference between the IBP and IB
models comes in the trapped bonds,Nb

IBP 2 Nb
IBPO coincides

with the number of trapped bonds generated by the IBP mo
The four curves correspond to simulations on systems w
size L 3 L, where L ­ 20, 50, 100, and 200. An averag
over 100 runs was taken for each curve. The simulations w
stopped after allverticeshave been occupied. The asymptot
scaling of the curves suggest a linear behavior.
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of a Hamiltonian. Problems in physics that regularly d
with such minimalization procedures range from direc
polymers to spin glasses [18], or interface motion in dis
dered media [19]. The IBPO model provides the minim
energy cluster, implicitly solving a generic problem for
particular random system whose only other solution is
act enumeration.

I have benefited from enlightening discussions w
A. Aharony, J. Feder, G. Grinstein, S. Havlin, J. Ton
J. Tossang, and Y. Tu.
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