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Invasion Percolation and Global Optimization
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Invasion bond percolation (IBP) is mapped exactly into Prim’s algorithm for finding the shortest
spanning tree of a weighted random graph. Exploring this mapping, which is valid for arbitrary
dimensions and lattices, we introduce a new IBP model that belongs to the same universality class as
IBP and generates the minimal energy tree spanning the IBP cluster. [S0031-9007(96)00106-8]

PACS numbers: 47.55.Mh

Flow in a porous medium, a problem with important this graph is a connected graph iofvertices and: — 1
practical applications, has motivated a large number obonds. Of the many possible spanning trees one wants to
theoretical and experimental studies [1]. Aiming to un-find the one for which the sum of the weights; is the
derstand the complex interplay between the dynamics admallest. A well known example is designing a network
flow processes and randomness characterizing the porotlgat connects cities with direct city-to-city links (whose
medium, a number of models have been introduced thdength is p;;) and shortest possible total length. This is
capture different aspects of various experimental situaa problem of major interest in the planning of large scale
tions. One of the most investigated models in this respeatommunication networks and is one of the few problems
is invasion percolation [2], which describes low flow ratein graph theory that can be considered completely solved.
drainage experiments or secondary migration of oil duringsince for a fully connected graph with vertices there
the formation of underground oil reservoirs [1,3]. are n"~2 spanning trees [5], designing an algorithm that

When a wetting fluid (e.g., water) is injectebwlyinto  finds the shortest one in nonexponential time steps is a
a porous medium saturated with a nonwetting fluid (e.g.formidable global optimization problem.
oil), capillary forces, inversely proportional to the local An efficient algorithm for finding the shortest spanning
pore diameter, are the major driving forces determiningree of an arbitrary connected graphwas introduced by
the motion of the fluid. The invasion bond percolationPrim [6], and involves the following steps: (i) Choose an
(IBP) model captures the basic features of this invasiorrbitrary vertex,x;. (i) Of all vertices connected ta;
process. Consider a two dimensional square lattice aniihd the one for whiclp;; is the smallest, and join; and
assign random numbeys; € [0, 1] to bonds connecting x;. (iii) At any subsequent step a new vertex is appended
the nearest neighbor verticesandx;. Herep;; mimicthe to the tree by searching for the bond that has the smallest
randomness of the porous medium, corresponding to theeight p;;, wherex; belongs to the tree, ang does not.
random diameter of the pores, and vertices correspon@ihus bonds that connect already occupied vertices are not
to throats. Invasion bond percolation without trapping iseligible for growth. It has been shown by Prim that the
defined by the following steps: (i) Choose a vertex on thdree generated by the previous algorithm is the smallest
lattice. (ii) Find the bond with the smallegt; connected energy spanning tree for the graph[7]. Already at this
to the occupied vertex and occupy it. At this point thepoint one can notice the formal similarity between Prim’s
IBP cluster has two vertices and one bond. (iii) In anyalgorithm and the IBP model discussed above.
subsequent step find the empty bond with the smafigst In this Letter | show the equivalence of the IBP model
connected to the occupied vertices, and occupy the bonglith Prim’s algorithm for finding the shortest spanning
and the vertex connected to it. tree of a weighted random graph [6], and explore the

The various versions of the model are useful in matcheonsequences of this interesting mapping. For this |
ing the simulated dynamics to the microscopic effectdntroduce an invasion bond percolation model with a local
acting as fluids with different wetting properties andtrapping rule (hereafter called IBPO model). Avery
compressibility are considered. Originally introduced totime stepthe bonds invaded by the IBPO model form
model fluid flow, lately invasion percolation is viewed asthe minimum energy treespanning all vertices of the
a key model in statistical mechanics, investigated for adiBP cluster, where energy is defined as the sum of the
vancing our understanding of irreversible and nonequilibinvaded random bonds. Moreover, the clusters generated
rium growth processes with generic scaling properties [3]by the IBPO model have the same scaling and dynamic

Finding the shortest spanning tree of a weighted randomroperties as the clusters of the standard IBP model. Thus
graph is a well known problem in graph theory [4]. the two models (and Prim’s algorithm) belong to the same
Consider a connected nondirected graplof n vertices universality class. Since the IBPO cluster forms a tree
and m bonds (links connecting vertices), with cogig  (i.e., is loopless), this result implies that loopless IBP
associated with every bon@;, x;). A spanning treeon  belongs to the same universality class as IBP. The cluster
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formed by the invaded bonds coincides with the uniquéncide with those invaded by the IBP model, implying that
solution of the global optimization problem of finding the the IBPO and IBP models belong to the same universality
smallest energy branching self-avoiding walk connectingclass. (d) At any time step the bonds invaded by the IBPO
all vertices of a finite lattice. Furthermore, the IBPO modelmodel form the smallest energy tree spanning the vertices
is computationally more efficient than the IBP model. of the IBP cluster. (e) The statements (a)—(d) are valid in
The above results arexactand are valid forarbitrary =~ any dimension and are independent of the lattice.
dimensionsandlattices In the following we discuss (a)—(e) separately.

The difference between the IBP and IBPO models comes (a) Prim’s algorithm and IBPO—Comparing the defi-
in an additional trapping rule [8]: In the IBPO model only nition of the IBPO model and Prim’s algorithm, we find
bonds connecting vertices of the cluster to empty verticethat Prim’s algorithm ixactlythe IBPO model acting on
are eligible for growth (see Fig. 1). Note that in thethe graphG. Since the square lattice, for which the IBPO
IBP model there may be bonds eligible for growth, whichmodel is defined, is a particular case of an arbitrary graph,
connect two already occupied vertices (hereafter these athe cluster generated by the IBPO model coincides with
called trapped bonds, since an empty bond is trappedthe smallest energy spanning tree.
between two occupied vertices). Inthe IBPO model these (b) Unigueness of the IBPO clusterIf the IBPO
trapped bonds are not eligible for growth [9]. model selects the smallest energy tree, there is only one

Consider the invasion process described by the IBPGQuch tree, provided that the;’s are distinct real numbers,
model, and assume that invasion ends whkrerticesof  since the chance of having two trees with the same
afinite lattice have been invaded [10]. The energy of thenumber of bonds and the same energy is zero [11]. Thus
obtained IBPO cluster is defined By= Y. p;;, where the  starting from any vertex of the lattice one should obtain
sum goes over athccupiedbonds. the same minimum energy cluster.

With these definitions one can prove the following: (c) Cluster properties—A B cluster is the set dbonds
(a) The cluster generated by the IBPO model has the smalbccupied by the invasion process. Similarlyyacluster
est energy of all possible clusters that span all vertices dé the set of occupiedertices In percolation and fluid
the lattice. (b) The obtained cluster is independent of thélow one is interested in the scaling properties of the first
site chosen as the starting point of the invasion processpanning cluster generated by the invasion algorithm. In
(c) Defining time as the number of invadedrtices,at particular, it is known that clusters generated by the IBP
any time step the vertices invaded by the IBPO model comodel are fractal. However, the fractal dimension and in
general the scaling exponents may depend on the trapping
rule; thus one needs to establish the universality class to
which the IBPO model belongs, since it differs from the
05 0.55 IBP m_o_del in a trapping rule. _ _

’ : Defining time as the number of occupiegrtices,at
0.45 |02 0.6 any time step theV clusters generated by the IBP and
IBPO models are identical [12], the only difference being
0.25 that within one time step the IBP model may occupy a

0.151 4y 55 number of trapped bonds without adding any new vertex
0.4 A == 0.65 to the cluster. The IBPO model with every occupied bond

occupies a vertex as well. In conclusion, at any time

075 0.7 step theV clusters generated by the two models coincide,
’ ’ provided that we start the invasion process from the same
vertex. This implies that the IBP and IBPO belong to the
FIG. 1. Definition of the IBP and IBPO models. The figure same universality (.:Iass’ _and the generated glusters have
shows a portion of a two dimensional square Iatticegwiththe same frgctal Q|menS|0n, whose Valug coincides with
the numbers on the bonds corresponding to the weights the fractal dimension of ordinary percolation [13].
Starting the invasion process from vertéx both the IBP and However, not only the static properties, but all dynamic
IBPO models select the smallest bonds in the order indicategroperties measured in terms of the occupied vertices
by the arrows. After the third time step the invasion processgincide as well. For example, the two models generate

reaches verteB. The smallest bond is the one marked with a
dotted line, connecting two alreadgcupiedvertices,A and B. exactly the same set of avalanches [14,15] and the growth

Such a bond is #rappedbond. The IBP model next occupies ©Of the cluster obeys the same dynamic scaling form [15].
this trapped bond, without adding any new vertex to the cluster. (d) Spanning trees and loopless percolatierNext |
However, the trapped bond is not eligible for growth in the investigate the relation between tiBeclusters generated
IBPO model; thus the bond chosen next by the IBPO model ify the two models. The bonds invaded by the IBPO

the one withp = 0.4. Observe that in the next step the IBP -
model would choose exactly the same bond. Defining time agnodel are a subset of the bonds invaded by the IBP model,

- b b b
the number of occupiedertices,the two models occupy the €. at any time stefVigp = Nigpo, Where Nigpo and
same vertices in exactly the same order. Nrgp are the number of bonds occupied by the IBPO and
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IBP models, respectively. According to (a) and Prim’sa fully connected graph, but still increases exponentially
theorem, the bonds invaded by the IBPO model formwith n. But the number of computations needed in the
the smallest energy spanning path connecting the selectasimulation of the invasion processes, or twnplexity of
vertices. Since the IBP and IBPO models share the samtbe IBPO algorithmis algebraic im [17]. The most time
vertices, atevery time step the IBP@ cluster is the consuming operation is finding at every time step the bond
minimum energy tree spanning all vertices of the IBPwith the smallest weight eligible for growth. However,
clusters This can be seen in Fig. 2, where the IBP andsince Nzpo = Nigp, the IBPO model requires equal or
IBPO clusters are shown simultaneously. less time to run on an arbitrary computer. Figure 3 shows

Since the IBPO cluster forms a tree, removing any bondhe number of trapped bonds with tindsp — Nigpo-
of the IBPO cluster breaks the cluster in two subclustersSince the two models belong to the same universality class,
This is not true for the IBP model, where by cutting any using the IBPO model for studying the scaling properties
trapped bond one does not break the cluster (Fig. 2). Sinagf IBP or ordinary percolation has considerable computa-
the cluster generated by the IBPO model is a tree, it hagonal advantages.
no loops. The fact the IBPO and IBP share the same In conclusion, | introduced a new bond invasion perco-
scaling exponents shows that loopless IBP (which is théation model that belongs to the same universality class as
IBPO model) belongs to the same universality class as IBRBP without trapping, or ordinary percolation. The clus-
or ordinary percolation. Loopless percolation has beener generated by the IBPO model forms the smallest en-
studied in great detail [16], and therenismericalevidence ergy tree spanning the IBP cluster. Exact enumeration,
that removing loops does not change the universality clasghich is the only alternative solution to this global opti-
of the percolation model. However, to my knowledgemization problem, diverges exponentially with the num-
the IBPO model is the first percolation model generatingoer of vertices in the system. This is the first model, to
loopless percolation clusters, for which the fact that themy knowledge, that through a step-by-step optimization
loopless model belongs to the same universality class gsocess finds the global minima of the system.
ordinary (invasion) percolation can be proven exactly. The global optimization problem, to which IBP is shown

(e) Dimension dependenee The proof of (a)—(d) does to be equivalent, connects to another class of problems in
not assume anything specific about the structure of thetatistical mechanics: that of understanding the zero tem-
lattice. Indeed, Prim’s theorem applies for an arbitraryperature properties of various spatially extended random
weighted graph. Since any regular lattice, in any dimensystems. Since the low temperature behavior is dominated
sion, is a special case of a random graph, the above resulty configurations with the smallest energy, such problems
are independent of the nature and dimension of the latticénvolve finding the minima of certain functions, most often
proving (e).

Complexity of the IBPO modetThe number of span-
ning trees on a regular lattice is much smaller than on 4.0
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FIG. 3. The difference between the number of bonds occupied
by the IBP and IBPO clusters invading a two dimensional
square lattice with the sampg; configuration. The horizontal
axis corresponds to time, @¥{zpo, according to the definition

of time used in this Letter, while the vertical ¥%p — Nro.
Note that since the difference between the IBP and IBPO
models comes in the trapped bond&sp — Nigpo coincides
FIG. 2. A particular realization of the IBP and IBPO clusters with the number of trapped bonds generated by the IBP model.
invading a square lattice simultaneously. The solid bonds fornThe four curves correspond to simulations on systems with
the IBPO cluster. The solid and dotted (trapped) bonds togethesize L X L, where L = 20, 50, 100, and 200. An average
form the IBP cluster. Note that the IBPO cluster forms a treeover 100 runs was taken for each curve. The simulations were
(loopless cluster), while every trapped bond leads to a loop ostopped after alverticeshave been occupied. The asymptotic
the cluster. scaling of the curves suggest a linear behavior.
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of a Hamiltonian. Problems in physics that regularly deal [9] Opening mechanisms similar to the one described by the
with such minimalization procedures range from directed
polymers to spin glasses [18], or interface motion in disor-
dered media [19]. The IBPO model provides the minimal

energy cluster, implicitly solving a generic problem for a
particular random system whose only other solution is ex-:
act enumeration.
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