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Elastic string in a random medium
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We consider a one-dimensional elastic string as a set of massless beads interacting through springs charac-
terized by anisotropic elastic constants. The string, driven by an external force, moves in a medium with
guenched disorder. We find that longitudinal fluctuations lead to nonlinear behavior in the equation of motion
that iskinematicallygenerated by the motion of the string. The strength of the nonlinear effects depends on the
anisotropy of the medium and the distance from the depinning transition. On the other hand, the consideration
of restricted solid-on-solid conditions imposed on the string leads to a nonlinear term diiterging coef-
ficient at the depinning transition.

PACS numbd(s): 47.55—t

The motion of an elastic string in disordered media hasThe first term in the right-hand side (%) includes the elastic
attracted considerable attention recently, in part due to iteffects acting to make the string straight. The second term
relevance to flux flow in type-ll superconductdrs] and  mimics the quenched disorder, which has zero mean and is
roughening of nonequilibrium interfac¢2]. By means of a uncorrelated. The string is driven in tlyedirection by the
number of numerical3—8] and analytica[9,10] studies it external forceF. For large driving force F>F.), the
has been observed that scaling theory can be used as guenched noise becomes effectively time dependent,
underlying framework to understand and characterize the dyn(x,yo+vt). It is believed[10,12 that in this regime the
namical properties of the elastic string. motion of the string induces an additional nonlinear term in

Consider a one-dimensional elastic string moving under2), namely, the Kardar-Parisi-Zhan@gKPZ) term A (Vy)?
the influence of an external driving forde normal to the [13]. However, since this nonlinear term is generated by the
string, in a two-dimensional disordered medium of horizon-motion of the string) is expected to vanish as the velocity
tal sizeL (along thex axisg). A discrete model for such a goes to zero at the depinning transition, and the critical be-
string consists o\ massless beads connected by springshavior atF=F_ is correctly described by Eq2).

The string is assumed to be oriented alongxtais and the While (2) can be obtainedusing d,y=— 8.7/ 6y + F)
position of theith bead is denoted by a two-dimensional from the Hamiltonian

displacement vectoﬂz(xi Vi), i=1,...L (see Fig. 1L

The disorder in the medium is introduced by uniformly dis- I

tributed pinning sites with random strength, which we refer H= J; dx{r(Vy)*+ nxy)}, )

to as quenched disorder or “quenched noise.” The dynamics

of such a string is the result of the interplay between th
guenched disorder characteristic of the medium and the el
tic properties of the string.

A key quantity is the average velocity of the string as a
function of the external force. At small forcésthe string is
pinned by static disorder. Just above the depinning transition L
F=F., i.e., when the external force overcomes the pinning
effect of impurities, the velocity varies as F

&he KPZ nonlinear term\(Vy)? cannot be deduced as a
A¥ariation of any bounded Hamiltonian. Here the quenched

noise isn(Xx,y) = — dyu(X,y).

vo(f)~f, 1)

where @ is the velocity exponent anfi=F/F;—1 the re-
duced force.

Neglecting thermal fluctuations and lateral fluctuations of y
the beads, the equation of motion for the string in the con-
tinuum limit is the Edwards-Wilkinson equatidi 1] with
qguenched disorddi3—10Q]

X
Ay (Xx,t . . . N

yoH =vV2y+ p(x,y)+F. 2 FIG. 1. The discrete version of the elastic string is composed of

ot L massless beads interacting via springs. A driving external force

F acts in they direction. Pointlike quenched disord@ot shown is
introduced at each site on the lattice. The beads are allowed to
*Present address: Department of Physics, University of Notrenove in thex andy directions and therefore they develop over-
Dame, Notre Dame, IN 46556. hangs.
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FIG. 2. Plot of average velocity vs the average tilt of the string for different values of the reduced force rangirfg=fodd3 (bottom
curves to f=0.20(top curve$. Results are averaged over 200 independent realizations of the disorder. The systerh si260sand the
strength of the disorder i§=3. (a) The elastic constants aig=0.1 andv,=1 (¢=10). The opening of the parabolas as the depinning
transition is approached indicates that a nonlinear term is present in the equation of motion, and that its value converges to zero at the
depinning transition. The continuous lines are the best polynomial fits to the curves. We note that the observed parabolic dependence cannot
be a lattice effect since in this case one expeta=0)=v(m=1). (b) The same plot for the case when longitudinal fluctuations are not
energetically favorable, so that overhangs are not observed. The elastic constagts ai@ andv,=0.1 (¢=0.1). The horizontal lines
indicate that the velocity is independent of the average tilt of the stt@dlilt dependence of the average velocity of the string when the
RSOS condition is applied showing the closing of the parabolas indicating a diverdargn at the depinning transition. Here is shown the
isotropic casev,=v,=1 (e=1), although the divergency of is shown to be independent of the parameter

In the Hamiltonian(3), only transverse fluctuatiortalong by the nonlinear equation of motion with quenched noise
the y direction contribute to the elastic energy, forbidding
longitudinal fluctuations(along thex directior). However, ay(x,t) 5 )
for a real elastic string, the elastic energy depends on the i YVYHAMVY) T (xy) +F, (4)

distance fi—Fi,l)z between two consecutives beads. Here

we introduce a(1+1)-dimensional model that allows for where the nonlinear term(Vy)? in (4) is of kinematic ori-

both longitudinal and transverse fluctuations of the beads. Igin. We find that\ vanishes at the depinning transition as

the model, the elastic energy depends on both

(X —Xi-1)% and v, (y;—y;_1)?, wherev, and v, are the A(f)~fl4l—0. (5)

elastic constants corresponding to displacements ix tred

y directions, respectively. We focus on the determination of (b) If longitudinal fluctuations are neglected, we find nu-

the equation of motion of the string. We find that, evenmerically that nonlinear terms of the typ€Vy)? are forbid-

though the string can form overhangs, at large enough lengttien in the growth equation. We argue that this result applies

scales the string still has a well-defined orientation and proto a number of previously introduced modé¢&-8]. In our

file, and can be described by a continuum theory. The maimodel, this limit corresponds te= v, /v,—0.

results of this paper are as follows: (c) A different scenario is found when the rules of motion
(@ In the limit e=»,/v,>1, wheree is the anisotropy of the beads are constrainted to satisfy a restricted solid-on-

parameter, the large-scale behavior of the string is describesblid (RSOS condition|h; .. ; — h;| <const[14]. When such a
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condition is imposed we find that the equation of motion ofwith the tilt, indicating the presence of a nonlinear term
the string is(4) but with a coefficient\ that diverges at the A (Vy)? above the depinning transitiofmoving phase,
depinning transition as F>F.). However, the parabolas become flatter as the depin-
o ning transition is approached. Our calculations indicate that
M)~ 70— 6) N—0 asF—F_ as in(5). These results are obtained for the

This result is valid for any value of the anisotropy paramete@MiSOtropic case, <y (e>1), and further increasing the
&, and applies to a number of growth models in the directe@iSOtropy, the observed behavior does not vanish.
percolation universality clagd5—20. (b) The other limit of the model leads to known results: a
We now take up each of these results in turn. Befordinite », and v,— o means that longitudinal fluctuations are
beginning, we note that for a given model the presence of &nergetically very expensive, allowing only transversal fluc-
nonlinear term\ (Vy)? can be identified using tilt-dependent tuations. In this limit, the model reduces to the models of
velocity measuremenf21,18—-2(. Suppose we tilt the elas- Refs.[3-8], where longitudinal fluctuations are not allowed.
tic string, by imposing helical boundary conditions In this case the nonlinear termésactlyzero[see Fig. 2)].
y1=Yy_+mL, wherem is the average tilt of the string. Then, Thus asv,—x, a decrease of toward zero is expected.
according ta(4), the average tilt-dependent velocity becomes  Our simulations at the isotropic poiat=1 (vy=wv,=1)
5 show the following results(i) for large disorder strength
v(M)=vo+Am?, D (6=3>v,= vy,=1) we find a coefficienh —0 asF—F;

wherew, is the velocity of the untilted string. =0, so that 1) for disorder strengtid=1=v,= v, we find\ =0 for any -
the motion of the elastic string is described (2, then the value of the force. Thus, there are two scenarios compatible

velocity does not depend on the average tilt of the interfacgVith our results. According to the firsh —0 as e—0

Tilt dependence is expected only if there is a nonlinear termStrong disorder The second scenarigmall disordey says

in the equation of motion of the form(Vy)2. This property thatA=0 fore<1 andx#0 for e>1.

can be used to gain information on the presence and magni- (¢) Figure Zc) shows the results of our simulations when

tude of the nonlinear termy, by monitoring the velocity of the RSOS condition is applied to the growth of the string: for

the string as a function of the average tilt, and fitting to aa given ith bead, if hj.;—h;>2 then we increment

parabola the obtained cury22]. h;—h;+ 1 regardless of the energy value of the new configu-
In the following, we study a generalized model of an elas—ation. In contrast with the results &) and(b), in this case

tic string that allows for lateral motions of the beads andwe find that the parabolas become steepéf-as-., corre-

therefore overhangs. The main element of the model, notponding to an increase i as the depinning transition is

included in the Hamiltoniart3), is the existence of longitu- approached as in E@6) [18-20.

dinal motion of the beads. To include this additional degree A typ|Ca| System to which this Study may be relevant is

of freedom, we use a generalized Hamiltonian the motion of a single flux line in a type-Il superconductor,
L directed along the external magnetic field 1]. At moderate

7/22 [V (%=X _1)2+ Vy(yi—Yi—1)2+,u(Xi V) —Fyil. fields, Whe_n the separz_anon of_the vortex lines is suff|C|entI_y
i=1 large, the intervortex interaction can be neglected. In this

(8 regime, the dynamics of the vortex phase can be understood
by studying the motion of a single vortex. We argue that the
condition »,<v, can be met in some anisotropic supercon-

the zero-temperature dynamics of the sFr(m:gﬂy motions ductors. Thus our results might be important in understand-
that decrease the total energy of the string are allpwad . : e : "

> . ing the driven diffusion of the flux line. The variation of the
standard Monte Carlo algorithm, by choosing randomly a

site on the interface, induces time-dependent noise. Sinceﬁfﬁgz Véghﬂ?g Sg%%ftift?ﬁ; ?IS}l(t?i?]:Xttﬁ;n:flfg?%gitr'g;::?
zero temperature the motion of the string is deterministic, w 9 Y ' 9

which even and odd sublattices are updated simultaneousli Y, b

We simulate the discrete version @), concentrating on

The quenched noise is introduced by defining at every site g natel\?v?]tlecnatr: ;is:st(,%?'lsces;‘[{&?ulgt%gjgr:de{ﬁg ?rie\g:]umf'o\?é; find
the two-dimensional lattice uncorrelated random numberé . 9 ving

- . N are energetically more favorable than longitudinal fluctua-
w(i,j), uniformly distributed between- § and 4. . ) .

i ’ . . tions, the string is described by E() not only at the de-
During the simulations, the chosen bead is allowed to_. ™ s ) . .
. : ; .~ _pinning transition but only in the moving phase. However, if

move o one of itsfour nearest neighbors, if that motion longitudinal fluctuations are more favorable, a kinematic
decreases the total energy of the string giver(@y If there g '

is more than one possible move with#<0, then the one nonlinear term is induced so that its coefficient vanishes as
with most negativeA 7 is chosen. We focus on the deter- we approach the depinning transition. The directed percola-

mination of the nonlinear termn. measuring the tilt- tion depinning universality class is obtained when a RSOS
. : ' 9 condition is applied that favors the growth of regions with
dependent velocity of the string.

(@ Figure 48 shows the velocity of the driven elastic large local slopes. This last result is shown to be valid for

string as a function of the average tilt for different driving any value of the anisotropic parameter

forces. The results correspond to the anisotropic motion We thank L. A. N. Amaral, R. Cuerno, K. B. Lauritsen,
characterized by,=0.1 andvy=1 (¢=10), and disorder and S. Tomassone for valuable discussions. The Center for
strength5=3. We see that the velocity follows a parabola Polymer Studies is supported by the NSF.
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only. For larger tilts higher-order nonlinear termss
M 4(Vy)#] contribute to the equation of motiof#), and the
velocity deviates from the parabold). These terms are not
relevant regarding the scaling behavior of the string.



