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Abstract 

The use of scaling concepts in understanding growth by molecular beam epitaxy (MBE) is increasingly important these 
days. Here we present a critical discussion on the advantages and disadvantages of kinetic theories and continuum models, 
two main methods frequently used to study the roughening and scaling of surfaces grown by MBE. Finally, some open 
problems faced by these approaches are also discussed. 

1. Introduction 

Fueled by MBE’s potential to produce novel elec- 
tronic materials, one can observe an increasing activ- 
ity for understanding and modeling the basic pro- 
cesses taking place at the surface of crystals. Joining 
forces with various disciplines of physics and chem- 
istry, this lead to the introduction of new techniques 
and concepts for understanding growth [ 11. In partic- 
ular, approaches based on modem ideas of statistical 
mechanics resulted in the development of new ideas 
from which benefitted not only the MBE community, 
but also the field of irreversible and far from equilib- 
rium statistical mechanics [2-51. The motivation of 
these approaches lies in the observation that many 
processes taking place at the surface during growth 
are inherently stochastic, and a successful theoretical 
approach has to incorporate this randomness. 

A prominent question regards the roughening of 
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surfaces grown by atom deposition. One can take a 
sarcastic approach and affirm that all surfaces in 
Nature are rough, and that by itself is enough moti- 
vation for studying roughening. While this is cer- 
tainly correct, for completeness one needs to add the 
following sentence: The roughness depends on the 
length scale on which one views the system. This has 
a number of theoretical and practical consequences. 
For understanding the motivation behind the contin- 
uum theories and kinetic models, one has to have a 
clear picture of what roughening and roughness 
means. For this in Section 2 we discuss certain issues 
that one needs to understand in order to grasp the 
motivation of the following sections. Section 3 dis- 
cusses briefly the main ideas behind kinetic model- 
ing, focusing on their advantages and disadvantages. 
In Section 4 the continuum theories are discussed 
briefly, with their advantages and disadvantages. Re- 
cent advances in ion sputtering, reviewed in some 
detail, support the hope that continuum theories can 
play an essential role in understanding the experi- 
mentally observed morphologies Finally, in Section 
5 we discuss some open problems. 
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2. Roughening and scaling 

We become accustomed to the shape of the inter- 

faces we encounter, so it can be surprising that their 

morphologies can appear to be quite different de- 

pending on the scale with which we observe them. 

For example, an astronaut in space sees Earth as a 

smooth ball. However, Earth appears to be anything 

but smooth when climbing a mountain, as we en- 

counter a seemingly endless hierarchy of ups and 

downs along our way. 

A second example, closer to our focus of study, is 

the surface of a crystal. There we can also encounter 
the same scale dependence as for the Earth: While a 

crystal may seem and feel completely smooth when 

one observes it unaided with any magnifying tool, it 

may look rather rough under the microscope. Simi- 

larly, a semiconductor surface may seem rather 

smooth, but the STM reveals its rugged surface, that 
is unacceptable for many electronic devices. 

We can already draw one conclusion: Surfaces 
can be smooth, such as the Himalayas viewed from 
space, but the same surface can also be rough, such 
as the same mountains viewed from earth. In general 
the morphology depends on the length scale of ob- 

servation! 

The interjkzce width, which characterizes the 

roughness of the interface, is defined by the rms 
fluctuation in the height h(x, y), 

1 

w(L) = ; 27 [h(x, Y) -xl2 1 (1) 
.,,y- l.L 

where L is the linear size of the sample, and the 
mean height of the surface, h, is defined by 

7,~; c h(x, y). 
x.y= I .L 

Instead of measuring the roughness of a surface 
over the whole sample size L X L, we can choose a 
window of size 1 X 1, and measure w(1). As we 
mentioned above, a general property of many rough 
surfaces is that the roughness depends on the length 
scale of observation. This can be quantified by plot- 
ting w(l) as a function of 1. A typical plot is shown 
in Fig. 1. There are two characteristic regimes one 
can distinguish. 

L-----h .. .‘* 
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Fiu 1. Typical scaling behavior of the local width, w(l), as a 

fuktion of the length scale of observation, 1. 

(i) For length scales smaller than I,, the local 

width increases as 

IV(/) = Al”. (3) 
where cy is the roughness exponent and A is a 

proportionality constant. If we are interested in sur- 
face phenomena that take place at length scales 
shorter than I,, then we can not neglect the rough- 
ness of the surface. In this regime the roughness is 
not simply a number, but it depends on the length 
scale available to the method probing the surface. 

(ii) For 1 B l,, w(l) is independent of 1. For 
most processes that take place at length scales larger 
than I,, the surface is smooth, i.e. we can neglect 
the roughness. In this regime we can characterize the 

surface roughness with a single number, namely the 
saturation value w,,,(l). 

In general reporting a number for characterizing 
the surface roughness, as it is frequently done, is a 
misleading and unsatisfactory procedure. The con- 
cept of roughness, for many application, has to be 
replaced with the length scale dependent roughness, 
requiring the determination of the full w(l) curve. 

Regarding the dynamics of the roughening pro- 
cess, at early times the total width increases as w(L, 
t) - P, where /3 is the growth exponent. 

Next we need to understand what determines the 
w(l) curve. Can we develop models and theories that 
can provide/predict A, CY, p, 1, and wSat? 

Studying scaling relations, such as Eq. (3), allows 
us to define universality classes. The universality 
class concept is a product of modem statistical me- 
chanics, and codifies the fact that there are but a few 
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essential factors that determine the exponents charac- 
terizing the scaling behavior. Thus different systems, 
which at first sight may appear to have no connec- 
tion between them, behave in a remarkably similar 
fashion. 

The values of the exponents (Y and p are inde- 
pendent of many ‘details’ of the system. They are 
universal, i.e. they do not depend on the details of 
the crystal lattice or on the implementation of the 
model, as long as the mechanism generating the 
roughening does not change. In contrast, other quan- 
tities, such as A, I,, or wSat, are non-universal, i.e. 
they depend on almost every detail of the system. It 
is the goal of the next two sections to show to which 
degree these numbers can be calculated using vari- 
ous approaches, and how reliable these predictions 
are. 

during MBE is to study an activated type of model 
for which all surface atoms are mobile, with a hop- 
ping probability given by the Arrhenius law [7,16- 
20]. These are intrinsically finite-temperature mod- 
els, with temperature as a tunable parameter. Due to 
the time-consuming activation process, these models 
are limited to small system sizes and short simula- 
tion times. In addition it is common to find strong 
finite size effects, again hampering efforts to deter- 
mine the scaling exponents. However, combined with 
the experience gained from the study of irreversible 
models, models with reversible sticking and diffu- 
sion are extremely useful in tracing the effect of 
activated diffusion on the scaling behavior. 

3. Kinetic (atomistic) models 

(iii) Third, there are a number of phenomenologi- 
cal models, which do not start from the elementary 
processes observed during MBE, but rather use acti- 
vated processes driven by a Hamiltonian 121,221. 
Despite rather little resemblance to MBE, these mod- 
els can capture some essential properties of the 
scaling behavior generated by surface diffusion. 

The elementary processes taking place at the crys- 
tal surfaces suggest that numerical simulations on 
discrete models might be helpful in understanding 
the collective behavior of the atoms during growth. 
In recent years a number of models have been 
proposed to describe the roughening of the crystals. 

The most widely used models can be classified 
into three main categories. 

(i) The simplest set of models is motivated by the 
desire to understand the scaling behavior and the 
corresponding universality classes. These are intrin- 
sically nonequilibrium models, and encompass ran- 
dom deposition, local relaxation and sticking rules 
[6-151. They capture the essential properties of the 
roughening process, but do not include the effects of 
thermal activation of the atoms on the surface. The 
deposited atoms usually take a few steps on the 
surface, after which they stick irreversibly. For this 
reason we call them irreversible growth models. Due 
to the simplicity of the relaxation rules, these models 
are the most efficient from numerical point of view, 
allowing large scale simulations with long running 
times, and thus the possibility of reaching the asymp- 
totic scaling behavior characteristic of the underlying 
relaxation mechanism. 

Models (i) and (ii> are used to model a wide 
variety of processes observed during atom deposi- 
tion, ranging from surface roughening [l] to sub- 
monolayer epitaxy [1,23-251. We shall not discuss 
molecular dynamics simulations, which consider the 
interatom potentials acting between different atoms. 
Molecular dynamics is extremely useful in under- 
standing the local effects taking place on the surface 
of the crystals, but is limited by very small sixes and 
short simulation times. 

3.1. Advantages and disadvantages of kinetic models 

One of the main advantages of the kinetic models 
is their conceptual and technical simplicity, coming 
from the simplicity of the elementary processes tak- 
ing place on the atomic surface. Most of these 
models include simple processes as atom deposition, 
surface (activated) diffusion, desorption. Thus the 
mechanisms acting in these models are easy to un- 
derstand, and also easy to implement on a computer. 
As a result, the effect of various processes can be 
separated, providing an insight into the role played 
by each of them in determining the morphology of 
the surface. 

(ii) A second, more realistic, approach regarding Interestingly, the simplicity of the kinetic models 
the resemblance to the typical processes taking place can be viewed as a disadvantage as well. In many 
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experimental situations the particularities of the sys- 
tem play a leading role in shaping the surface mor- 
phology at the interesting time and length scales. 
Thus generic models, such as most kinetic models 
are, have a hard time capturing this behavior. Of 
course, many system specific properties can be added 
to these models at the expense of the computation 
times, limiting the time span and the size of the 
system. 

Another advantage of these models is that the 
time and length scales one can reach with them is 
fairly large. In most experimental situations one 
needs to deal with a large number of atoms, and the 
growing time can also be long. Currently only ki- 
netic models are able to get close to the experimental 
probes regarding these two, sometimes rather criti- 
cal, parameters. 

4. Continuum theories 

Kinetic models are well suited for measuring 
numerically the scaling exponents. However, this 
does not necessary tell us much about the mecha- 
nism of the growth. Thus we need guidance on what 
exponents we should expect for the various models. 
This guidance is even more important when the 
observed scaling behavior is hampered by various 
crossover effects, that question the accuracy of the 
measured values. 

Continuum theories represent a further step of 
abstractization compared to the kinetic models, since 
many of the ‘hands on’ aspects of the kinetic models 
are absent. However, they are rather successful in 
addressing questions that range from the collective 
behavior of atoms to the universality of the roughen- 
ing processes. There are only a few universal num- 
bers, namely the scaling exponents, such as o or p. 
These numbers are independent of the particular 
system under study, and depend only on the elemen- 
tary processes taking place on the surface. Only in 
the context of continuum theories can we understand 
the full strength of the universality concept, and 
identify the relevance or irrelevance of various phys- 
ical processes in shaping the surface morphology [I]. 

The full strength of continuum theories comes 
from the prediction of the asymproric, or hydrody- 

namic behavior of the growth process, which means 

that the predictions are valid in the long time limit, 
and for the large scale limit regarding the morphol- 
ogy of the surface. These limits are often beyond the 
experimentally or practically interesting time and 
length scales. However, by providing rather reliable 
information about the asymptotic limits, they allow 
us to separate the asymptotic from the transient 
behavior observed in the growth models and experi- 
ments, and thus lead to a much complete understand- 
ing of roughening. 

Although the prediction of the continuum theories 
are rarely applicable directly to the experimental 
situations, there are cases when continuum models 
can help understand directly the experimental behav- 
ior, without being aided by the intermedial role of 
the kinetic models. To show this, next we present an 
example in some detail, regarding the roughening 
and pattern formation observed in ion sputtering 
[26,27], a common experimental procedure, that al- 
most every MBE experimentalist uses in its labora- 
tory. 

4. I. Example: ion sputtering 

Much of the attention has focused on the kinetics 
of interfaces generated in growth processes. How- 
ever, for a class of technologically important phe- 
nomena, such as sputter etching, the surface mor- 
phology evolves as a result of erosion processes 
[28]. Motivated by the advances in understanding 
growth, recently a number of experimental studies 
have focused on the scaling properties of surfaces 
eroded by ion bombardment [29-311. For graphite 
bombarded with 5 keV Ar ions, Eklund et al. [29] 
reported (Y = 0.2-0.4, and z = U/P = 1.6-1.8, val- 
ues consistent with the predictions of the Kardar- 
Parisi-Zhang (KPZ) equation in 2 + 1 dimensions 
[32-371. Krim et al. [30] observed a self-affine sur- 
face generated by 5 keV Ar bombardment of an Fe 
sample, with a larger exponent, (Y = 0.52. On the 
other hand, there exists ample evidence about the 
development of a periodic ripple structure in sputter 
etched surfaces (see e.g. [38]). Chason et al. [31] 
have recently studied the dynamics of such eroded 
surfaces for both SO, and Ge bombarded with Xe 
ions at 1 keV, and found that it differs from the 
dynamics expected for the self-affine morphologies 
observed in [29] and 1301. 
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Fig. 2. Following a straight trajectory (solid line) the ion pene- 
trates an average distance a inside the solid (dotted line) after 
which it completely spreads out its kinetic energy. The dotted 
curves are equal energy contours. Energy released at point P 
contributes to erosion at 0. (After [26].) 

Ion-sputtering is in general determined by atomic 
processes taking place along a finite penetration 
depth inside the bombarded material. The incoming 
ions penetrate the surface and transfer their kinetic 
energy to the atoms of the substrate by inducing 
cascades of collisions among the substrate atoms, or 
through other processes such as electronic excita- 
tions. Whereas most of the sputtered atoms are lo- 
cated at the surface, the scattering events that might 
lead to sputtering take place within a certain layer of 
average depth (Y. 

A convenient picture of the ion bombardment 
process is sketched in Fig. 2. According to it the ions 
penetrate a distance (Y inside the solid before they 
completely spread out their kinetic energy with some 
assumed spatial distribution. An ion releasing its 
energy at point P in the solid contributes an amount 
of energy to the surface point 0, that may induce the 
atoms in 0 to break their bonds and leave the 
surface. Following 139,401, we consider that the av- 
erage energy deposited at point 0 due to the ion 
arriving at P follows the Gaussian distribution. How- 
ever, the sample is subject to a uniform flux J of 
bombarding ions. A large number of ions penetrate 
the solid at different points simultaneously and the 
velocity of erosion at 0 depends on the total power 
co contributed by all the ions deposited within the 
range of the Gaussian distribution. If we ignore 
shadowing effects among neighboring points, as well 

as further redeposition of the eroded material, we can 
calculate the normal velocity of erosion, 0, at 0. 
From the expression of u we can obtain the equation 
of motion for the profile h(x, y, r). The time 
evolution of h is given by 

ah ah a*h a*h 

at- -+v 
--UO+Y~+v~~x2 Yay2 

- KV*( V*h) + 7, 

where two additional relevant physical processes 
were taken into account. First, the bombarding ions 
reach the surface at random positions and times. We 
account for the stochastic arrival of ions by adding a 
Gaussian white noise 71(x, y, r) with zero mean and 
variance proportional to the flux J. Second, at finite 
temperature atoms diffuse on the surface. To include 
this surface self-diffusion we allow for a term 
-KV2(V2h), where K is a temperature dependent 
positive coefficient. 

We can also compute the expressions for the 
coefficients appearing in Eq. (4) in terms of the 
physical parameters characterizing the sputtering 
process. 

The scaling behavior of the surface described by 
Fq. (4) depends on the relative signs of vX, vy , h, 
and A,. The variations of these coefficients as func- 
tions of aa and 8 lead to the phase diagram shown 
in Fig. 3. 

To summarize, at short length scales the morphol- 
ogy consists of a periodic structure oriented along 
the direction determined by the largest in absolute 
value of the negative surface tension coefficients 
[31]. Modifying the values of (Y, or 8 changes the 
orientation of the ripples [38,4O]. At large length 
scales we expect two different scaling regimes. One 
is characterized by the KPZ exponents, which might 
be observed in region I in Fig. 3. Indeed, the values 
of the exponents reported by Eklund et al. [29] are 
consistent within the experimental errors with the 
KPZ exponents in 2 + 1 dimensions. The other re- 
gions (II and III) are characterized by logarithmic 
scaling ( (Y = O), which has not been observed experi- 
mentally so far. Moreover, by tuning the values of 8 
and/or cy, one may induce transitions among the 
different~ scaling behaviors. For example, fixing CY, 
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Fig. 3. Phase diagram for the isotropic case (T = p = I. Region I: 

Y, < 0, vy < 0, A, < 0, A, < 0; Region II: vx < 0, v, < 0, A, > 0, 

A, < 0; Region III: Y, > 0, vg < 0, A, > 0, A, < 0. Here a is 

measured in arbitrary units and 0 is measured in degrees. (After 

1261.) 

and increasing the value of 0 would lead from KPZ 
scaling (region I> to logarithmic scaling (II, III) for 
large enough angles. 

4.2. Advantages and disadvantages of continuum 

theories 

One of the clear advantage of continuum theories 
is that they provide analytic predictions regarding 
the scaling properties of growth models. These pre- 
dictions help in (i> understanding the nature of the 
basic processes that lead to certain universality 
classes; (ii) understanding the mechanism by which 
these universality classes are generated; and (iii) 
guide us in interpreting the properties of kinetic 
models and experiments. 

The robustness of the continuum theories against 
additional (irrelevant) effects can be quoted as both 
advantage and disadvantage. We can add a number 
of terms that affect the short scale morphology of the 
surface but do not influence the scaling exponents. 
This is closely related to the robustness of the kinetic 
models against additional microscopic effects. But 
this robustness also means that one can not ask 
system specific questions, since the results are not 
affected by irrelevant terms. Thus the continuum 
theories can be used to describe only generic sys- 

tems, and additional methods have to be used to 
include system specific effects. 

Similarly, these theories provide a description of 
the system at a coarse grained length scale, thus any 
attempt to use them to provide microscopic informa- 
tion is bound to fail. 

5. Open problems 

In the previous sections we discussed the main 
role of the kinetic models and continuum theories. 
They work rather successfully within their limits of 
applicability. In this section to mention some of the 
problems that one faces when one tries to apply 
these methods to experimental systems. It is difficult 
to give a complete list, so the following can be 
regarded only as a rather personal collection of 
problems that need to be addressed in the near future 
so that the applicability of the continuum theories 
become more widespread. 

5.1. From discrete models to continuum theories 

One of the major unsolved problems is to find the 
continuum theory that describes a particular kinetic 
model. Even if we limit ourselves to simple models, 
such as ballistic deposition, we do not have a method 
for deriving the continuum theory starting from the 
microscopic rules defining the model. This does not 
mean that there are no attempts in this direction. In 
fact, for a number of growth models very encourag- 
ing advances have been achieved [41,42], however, 
they are rather exceptions than prove the rule that no 
general methods exist to connect rigorously these 
two methods of study. On the other hand, it is rather 
unfair to call this a specific problem of MBE, but it 
is rather a problem that is characteristic of statistical 
mechanics in general. 

The link between the kinetic models and contin- 
uum theories is provided by phenomenological meth- 
ods, that relay on symmetry and conservation law 
arguments [l]. These methods provide continuum 
theories that predict successfully the asymptotic scal- 
ing of the discrete models, but are not capable of 
predicting more specific connections, such as the one 
we have seen in the case of ion sputtering, where the 
continuum equation has been derived starting from a 
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model of the physical processes that take place on 
the surface. 

5.2. Stress 

Currently the applicability of the stochastic con- 
tinuum theories is limited to homoepitaxial systems, 
for which stress plays no or negligible role. How- 
ever, due to the growing application of strained 
layers in microelectronics, much of the current ex- 
perimental and theoretical efforts in MBE have fo- 
cused on understanding the effect of stress on the 
morphology of epitaxial surfaces. Due to the nonlo- 
cal character of the stress so far it was not possible 
to incorporate stress in the continuum stochastic 
equations. Coupling the local properties of the growth 
process to the nonlocal stress field deprives us from 
the very nature of the continuum stochastic equations 
that makes them attractive and useful from theoreti- 
cal point of view, their locality. 

This does not mean that there is no continuum 
theory for describing stress, for it is rather straight- 
forward to formulate the continuum theory of stress 
[43,44]. The problem lies in the nonlocal nature of 
the stress field, that depends not only on the local 
morphology of the surface, but also on the stress on 
the surface and in the bulk. Introducing such nonlo- 
cality in the continuum theories studied in the con- 
text of MBE, that are all local, strips us from the 
advantages of the continuum theories, namely that 
one can predict analytically their behavior. 

Thus the dynamics of a growing interface, cou- 
pled to a dynamically varying stress seems to be a 
hopelessly complicated open problem. However, ad- 
vances can be obtained if one tries to understand 
specific effects, such as nucleation affected by the 
stress [45]. Hopefully, the solution of such specific 
problems will guide us in understanding the general 
problem of stress dominated roughening as well. 
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