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Abstract

We review the recently introduced Directed Percolation Depinning (DPD) and Self-
Organized Depinning (SOD) models for interface roughening with quenched disor-
der. The differences in the dynamics of the invasion process in these two models are
discussed and different avalanche definitions are presented. The scaling properties
of the avalanche size distribution and the properties of active cells are discussed.

1. INTRODUCTION

Recently the growth of rough interfaces has witnessed an explosion of theoretical, numerical,
and experimental studies, fueled by the broad interdisciplinary aspects of the subject.!®
Applications can be as diverse as imbibition in porous media, fluid—fluid displacement, bac-
terial colony growth, fire front motion, and the motion of flux lines in superconductors.” 18

In general, a d-dimensional self-affine interface, described by a single-valued function
h(zx, t), evolves in a (d + 1)-dimensional medium. Usually some form of disorder n affects
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the motion of the interface leading to its roughening. Two main classes of disorder have
been discussed in the literature. The first, called thermal or “annealed”, depends only on
time. The second, referred to as “quenched”, is frozen in the medium. Early studies focused
on time-dependent uncorrelated disorder as being responsible for the roughening. Here, we
focus on the effect of quenched disorder on the growth.

The roughening process can be quantified by studying the global interface width W:

W(L, t) = (R(=, &) - Rz, ©)/?), (1.1)

where L is the system size, the bar denotes a spatial average, and the brackets denote an
average over realizations of the disorder. The study of discrete models!®2?2 and continuum
growth equations®®24 leads to the observation that during the initial period of the growth,
i.e., for t « t«(L), the width grows with time as:

C W) ~ 1P [t < by, (1.2)

where ( is the growth exponent. For times much larger than ¢4, the width saturates to a
constant value. It was observed that the saturation width of the interface Wj,: scales with
L as:

Wieat ~ L* [t > t«], (1.3)

where « is the roughness exponent. The dependence of tx on L allows the combination of
Egs. (1.2) and (1.3) into a single scaling law!®:

W(L, t) ~ L*f1(t/tx), (1.4a)

where
tx ~ LZ . (1.4b)

Here z = a/f is the dynamical exponent, and fi(u) is a universal scaling function that
grows as uf when u < 1, and approaches a constant when u > 1.

An alternative way of determining the scaling exponents is to study the local width w in
an observation window of length £ < L. The scaling law [Eq. (1.4)], and the fact that the
interface is self-affine, allow us to conclude:

w(l, t) ~ £2f2(€/Lx), (1.5a)
where
b ~ 7 [t < ty], (1.5b)
or
b ~L o t>t]. (1.5¢)

«

Here fa(u) is a universal scaling function that decreases as ©~® when v > 1 and ap-
proaches a constant when u < 1.

The simulation of discrete models gives exponents that agree with the predictions of
phenomenological continuum approaches, such as the Edwards-Wilkinson (EW) equation??
and the Kardar-Parisi-Zhang (KPZ) equation.?* However, experimental studies find expo-
nents significantly larger than the predictions of theory, e.g., for (1+1) dimensions, Refs. 23
and 24 predict o = 1/2 but experiments show a ~ 0.6 — 1.0.7'8 Although various expla-

nations have been proposed — long-range correlations,?® power-law distribution?® for the
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disorder, or coupling of the interface to impurities?” — it is currently accepted that quenched
disorder plays an essential role in those experiments,!3-1828,30-38,40-44

The presence of quenched disorder allows an interesting analogy with critical phenomena.
The continual motion of the interface requires the application of a driving force F. There
exists a critical value F, such that for F < F,, the interface will become pinned by the
disorder after some finite time. For F' > F,, the interface moves indefinitely with a constant
velocity v. This means that the motion of driven rough interfaces in disordered media can
be studied as a phase transition — called the depinning transition. The velocity of the
interface v plays the role of the order parameter, since as F — F.t, v vanishes as:

vao, (1.6)

where 6 is the velocity exponent, and f = (F — F,)/F, is the reduced force.
For F — F7, large but finite regions of the interface are pinned by the disorder. Near
the transition, the characteristic length £ of these pinned regions diverges,

E~f7Y, (1.7)

where v is the correlation length exponent.

Several models in which quenched disorder plays an essential role have been proposed
recently.13-18:28:30-44 Eor one class of models,'3142840 jp (1 + 1) dimensions, @ can be ob-
tained by mapping the interface, at the depinning transition onto Directed Percolation (DP).
In higher dimensions the interface can be mapped to Directed Surfaces (DS).1 In (1 +1)
dimensions, DP and DS are equivalent. We refer to this class of models as the Directed
Percolation Depinning (DPD) universality class.

Recent numerical studies,*® supported by analytical arguments,?! showed that this class
of models can be described by a stochastic differential equation of the KPZ type®:

Oh 2 2
s = F + V°h + A(Vh)* + n(z, h), (1.8)
where 7n(z, h) represents the quenched disorder, and the coefficient A of the nonlinear term
diverges at the depinning transition.?? This equation was originally proposed in the context
of interface roughening in the presence of quenched disorder in Ref. 38. The numerical
integration of Eq. (1.8) yielded exponents in agreement with the calculations for the mod-
els in the DPD universality class.3® A recent attempt3? at using a renormalization group
approach for Eq. (1.8) suggests that there is a strong coupling fixed point at which the
coupling constant associated with the KPZ nonlinearity diverges at the threshold, which is
in agreement with Ref. 40. Hence, the high-dimensional behavior of Eq. (1.8) remains an
unsolved problem. For a number of different models3®-3%4? belonging to a second univer-
sality class — referred to as isotropic growth models — we have either A =0 or A — 0 at
the depinning transition.‘® Therefore, near the depinning transition, they can be described
by an equation of the EW type with quenched disorder?:
Oh

e =F 4+ V2h+n(z, h). (1.9)

This equation has been studied by means of the functional renormalization group,3:44

yielding a = ¢/3, v =1/(2 — @), and z = 2 — 2¢/9, where € = 4 — d. Thus the upper critical
dimension for Eq. (1.9) is 4. When F > F_, the size of the pinned regions in the interface
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& decreases to values much smaller than the system size L. For length scales ¢ larger
than £, the quenched disorder becomes irrelevant and time-dependent noise dominates the
roughening process. This means that for £ < £, we should recover the results of either the
EW or the KPZ equation with annealed noise (depending on the absence or presence of
nonlinear terms). This behavior has been observed in some of the experiments’~'2
simulations of discrete models,13-16,28,30-35:42

Theoretical interest in the behavior of Eq. (1.8) in high dimensions motivated the inves-
tigation of the DPD problem on the Cayley Tree,%® which is usually believed to describe the
infinite dimensional limit of the system. The exact solution on the Cayley Tree yields a = 0
and suggests that the upper critical dimension is infinity, the conclusion being supported by
numerical simulations.4” The roughness exponent a remains positive for every finite dimen-
sion similar to the original KPZ equation, but unlike Eq. (1.9), in which o = 0 at d > 4.
However, recent numerical results?® support the latter conclusion. The relation between
Egs. (18) and (19) and the DPD model is also discussed in Ref. 49. The numerical and
theoretical results of Refs. 48 and 49 reveal small but significant discrepancies compared
with Ref. 47 which await further investigation.

The DPD model, discussed in this paper, was introduced in Refs. 13 and 14 to explain
a set of simple imbibition experiments — a somewhat different model, belonging to the
same universality class, was independently introduced by Tang and Leschhorn.?® In these
experiments a colored suspension (coffee or ink) imbibes a sheet of paper, in the (1 + 1)-
dimensional case — or a porous, spongy-like brick, in the (2+ 1)-dimensional case.'>~!® The
experimentally measured roughness exponents are in good agreement with the predictions
of the DPD models.!3-16:28 However, a number of experimental features cannot be explained

and in

by this model?® (See also Ref. 11). For example, in the experiments, the saturation width
and the average height of the pinned interface depend on the rate of evaporation, which is
not taken into account in the DPD model. A variant of the DPD model that explains the
experimental results in terms of the effect of evaporation is discussed in Ref. 18.

A self-organized variant of the DPD model has been introduced by Havlin et al.!* who
used the analogy with invasion percolation. Similar model was studied by Sneppen and
others.?® We will call these models the models of Self-Organized Depinning (SOD). In these
models growth proceeds by avalanches, whose properties are of interest not only for the
study of interface roughening,%0-53 but also for other fields, including biological evolution in
ecological systems.>*37 In this paper we will address some open questions concerning static
and dynamic properties of the DPD and SOD models.

2. AVALANCHES IN DPD AND SOD MODELS

In both the DPD and SOD models the fluid interface propagates in a lattice with quenched
disorder. Each cell on the lattice has a pinning threshold 7; that is uniformly distributed
between 0 and 1. However, the rules of update in these models are different. The question
is: What are the similarities and the differences in the dynamics of these models?

In the DPD model, at each time step, each dry cell that is a nearest-neighbor to a wet
cell becomes wet if its threshold #; is less than the value of a driving force p. In addition,
there is a rule of erosion of overhangs: all the cells that are below a wet cell become wet
instantaneously.
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Fig. 1 (a) A three dimensional “airplane” view of a directed surface that completely pinned an avalanche
in (2 + 1) dimensions for p = 0.801, presented as an island surrounded by a flat “sea”. We used definition
B, i.e., the avalanche was started at the center of the figure from the initial flat horizontal surface shown
in blue. The Sneppen update rule was used. The diameter of the avalanche is approximately 2!°. The
uniform blue area shows the region left unchanged since the beginning of the process. The color code for
heights corresponds to a conventional color code often used in geographical maps. The white “snow caps”
corresponds to the largest heights of the interface. Note that the interfaces of a completely pinned avalanche
are the same in the DPD and the SOD models.

Other rules of erosion may be implemented: the bounded slope rule implemented by Tang
and Leschhorn,?® or the rule of instantaneously-adjusting slopes introduced by Sneppen.3°
The DPD model can be introduced on other types of lattices, e.g., on a tilted square
or cubical lattice. In this case the DPD model becomes equivalent to the diode-resistor
percolation problem introduced more than a decade ago®®5?; see also Refs. 17 and 46. The
initial condition of the DPD model may be different. One way to start the process is from a
single wet cell on a flat interfacel” (see Fig. 1). Another way is to start from a flat interface
with periodic boundaries in which each cell is wet.'®

In the SOD model, at each time step all the cells which are in contact with wet cells are
examined and the one with the minimal value of #; is selected and becomes wet. In addition
there is a rule of eroding overhangs'® or adjusting slopes introduced by Sneppen®: all the
neighboring cells become wet until all neighboring cells on the interface satisfy a condition
that the difference in heights of neighboring points is less than or equal to one. In other
words, cells instantaneously become wet if their heights h; and horizontal coordinates z;;,
(1 < j < d) satisfy the inequality:

d
hi < ho = |zij — mojl, (2.1)
Jj=1

where hy and zg; are coordinates of the cell that becomes wet due to minimal value of 7;.
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In the DPD model, the interface is eventually pinned if the value of p is below p., where p,
is the critically directed percolation threshold. Otherwise the interface in the infinite system
propagates indefinitely. In the DPD model, one can, however, modify a rule of growth!® and
allow the cells whose 7; > p (those that are blocked) to erode at an infinitesimal rate. Thus
the removal of a random blocked cell produces an avalanche of growth until, once again, all
the cells on the interface are blocked. The distribution of the total avalanche volume s is:

P@)~S”f(i), (2.2)
Sc
where s; ~ §ﬁl§ 1, and &, £, are horizontal and vertical correlation lengths that scale as:
)~ |p = pel™W, (2.3)
and
£~ |p—pe|™*. (2.4)

In analogy with percolation theory,59-52 the function f(x) in Eq. (2.2) is a cutoff function:
f(z) =1 when z <« 1 and f(z) = 0 when = > 1. The typical volume of an avalanche s,
diverges when p — p, as |p — p¢|~/?, where 1/0 = dvj + v1. The average avalanche size
(s) diverges when p — p, as:

() ~Ip—pel 7, (2.5)

where ;9

1
Y= == =B, (2.6)

and fp is an exponent of the order parameter. The physical meaning of the order parameter
is the probability for an avalanche to percolate through the characteristic volume s.. In
analogy with percolation 8, = (d —- dc)v", where d. is the fractal dimension of points on the
interface which can start a percolating avalanche. Using Eq. (2.6) one gets$3:

d—d.
d+a’

T=1+ (2.7)

For length scales smaller than £, the interface is self-affine with roughness exponent of
a completely blocked interface:
vy
a=—=. (2.8)
Y

Another way of generating avalanches in the DPD model is to start every avalanche with
a single unblocked cell on a flat surface and wait until the interface is entirely blocked by
a directed surface.l” We will call this definition of the avalanche definition “B” to contrast
it with the original avalanche definition!® described above, which we will refer to as def-
inition A. One may expect that the exponent o and 7, characterizing the distribution of
the avalanches, should be the same for both definitions of the avalanches. However numer-
ical studies of Gat and Olami*® showed that 74 < 7, leading to the inequality v4 > 7g.
Note that for the Cayley tree model, the exact results of the exponents for definition B are
vy =1/4 (for p > p.), vy = 3/4 (for p < p.),v1 =0,a=0,78 =2,0 =0, B, = o0 and
v8 =0.

Definition A appears to be also exactly solvable on the Cayley Tree,6¢ and it yields
exponents identical to those in definition B except for v; v4 = 1. Exponent 74 is equal to 2
in both cases, but Eq. (2.2) has different logarithmic corrections, thus yielding an average
cluster size that diverges in model A (y4 = 1) and converges in model B (yg = 0).
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The numerical results in high dimensions in avalanche definition A demonstrate that v4
monotonically approaches 1 from above when dimensionality increases, and for avalanche
definition B that yp — 0 for d — oco. For both definitions, exponents v and v, are the
same, and in both cases the hyperscaling relation (d — 1)y + v, = 1/0 = oo suggests the
same upper critical dimension, d = oo. )

In the SOD model, the inteface organizes itself to a critical state in which it becomes
self-affine on arbitrarily large length scales with the same exponent o. The maximum value
of n; of a cell that has been selected for erosion never exceeds p. for an infinite system.

It should be pointed out that at any moment of time when the next record fmax of 7;
is reached, the interface is the same as it would be in the DPD model in which the value
of the driving force equals 7max. In this definition of SOD, no avalanches occur. However,
one can artificially define an avalanche as a time span during which the minimum of #; on
the interface is below a certain value p. See also the definition of an associated process in
Ref. 52.

The scaling formulae for the avalanche size distribution are the same as in DPD, since
the avalanches are bounded by the surfaces of the same geometry. When the avalanche
starts or stops, the interface is the same as one of the interfaces that completely stops the
growth in the DPD model. One can expect that the exponents 7, v, v,, and « are exactly
the same in the DPD for definition A and SOD models, since they can be derived from
the properties of the same subset of interfaces. Numerical simulations support this point of
view.

If one starts the SOD model from a single point on a flat interface, every other cell
having the strongest possible value of blocking force n; = 1, then the distribution of the
first avalanches, i.e., the distribution of the amount of material that becomes wet at the
moment when the cell with 7; > p was removed for the first time, would be the same as in
definition B for DPD.

For the SOD model it is possible to derive an additional scaling relation®2°3;
ya=14+v,. (2.9)
Using Eq. (2.6), one gets:
14 (2.10)
A= d+a ’ ’
Analogous relations are well known for invasion percolation®®:
dp — d,
=1 , 2.11
m=1+—F% (2.11)

where dp,, d, = 1/v, and D denotes the fractal dimensions of the hull, the red bonds, and
the percolation cluster, respectively. Equations (2.9) and (2.10) seem to be in agreement
with numerical simulations in high dimension for definition A of DPD, and with the infinite-
dimension limit on the Cayley tree. Comparing relations (2.7) and (2.10), one concludes that
for definition A, d. = 1/ Y- Thus d. for definition A is analogous to the fractal dimension
of the red bonds in percolation.%

For definition B, neither Eq. (2.9) nor Eq. (2.10) is valid. However, for both definitions,
7 and « are still related by Eq. (2.6). Moreover, for both definitions, relation (2.7) is
satisfied, but for definition B, d. is not equal to 1/v. The same phenomenon is observed
for invasion percolation,%® where the exponents characterizing the invaded regions analogous
to avalanches of definition A are not equal to the exponents of the cluster size distribution
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of classical percolation which can be grown from a single wet cell by the Leath algorithm
in analogy to definition B. In invasion percolation, this simply means that dj — d, is not
equal to d — D, and thus 7 = d/D # 74. It is also known®® that the exponents 7 and 7 of
a percolation cluster started on the half plane boundary differ from the classical values for
clusters started from the bulk. The reason for this discrepancy is the complex self-similar
or self-affine structure of the interface from which the avalanches of definition A start to
grow. Note that for the Bak-Sneppen model of biological evolution,®*:56 both definitions of
avalanches yield the same exponents, since the properties of the interface in this model do
not affect the growth.

3. ACTIVE CELLS AND DYNAMIC EXPONENTS
IN THE DPD AND SOD MODELS

In the DPD model, during an avalanche that starts at time ¢ = 0, at each time step there
is a certain number n,(t) of “active” columns on the interface that contain unblocked cells
on the interface. In the SOD model the active cells are those whose 7; < p, where p is
the value of the first cell removed during a particular avalanche. In order to give time in
the SOD model a physical meaning, one must redefine the time interval needed to erode
one cell as:

dt, = —. (3.1)

This definition of time is called parallel time t,.%
The number of active columns scales with time ¢t and volume s as:

Na(t) ~ 18 ~ s . (3.2)

The active columns form a fractal dust with a fractal dimension dg.
The durations of the avalanches are distributed according to the scaling law:

P(t) ~t77u f (i) , (3.3)

where ¢, = §|z|.

The dynamical exponents of the avalanches and active cells appear to differ in SOD and
DPD models. However, in both classes models, z, 6, ds, 7, and Ty are related in the same
way. Indeed, the size of avalanches and the time are related as:

s~ EiEL ~ g ~ ttrelz, (3.4)
Because p(s)ds = P(t)dt, the avalanche distributions are related as:

d+ o

(r=-1) = (Tsuro — 1) . (3.5)
In the DPD and SOD models some of the avalanche sites are invaded by oncoming fluid
when these sites are active sites on the interface; other sites are occupied due to an erosion
rule. It is interesting to note that the number of eroded sites for each invaded site is a fixed,
model-dependent constant which does not grow with the total size of an avalanche.*® Thus
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the total volume of an avalanche is proportional to the sum of all active cells n, invaded
during the avalanche:

t t
5~ / ne(t)dt = / tddt = tld+e)/z = ¢5+1 (3.6)
0 0
then: p
=2+ 1 (3.7)
z

Finally, we can also relate the velocity of the interface to the number of active cells, as
defined in Eq. (3.2). The velocity at each instant can be obtained as the number of active
cells divided by the size of the parallel projection of the invaded region:

v~ ng(8) /€] ~ /€] ~ €554~ fED, (3.8)
Comparing with Eq. (1.6), we obtain:
6 =y (d - 26). (3.9)

The fractal dimension of the live cells is related to the distribution of voids between them,
i.e., the distribution of linear sizes of the avalanches. If the probability density used to find
the void of length £ is equal to £~ 7!, then:

dp =7 —1. (3.10)

If we assume that the number of active points in an avalanche of linear size ¢ scales as

£9F | we conclude that:
Na(t) ~ 09F ~ t9F/7 (3.11)

Hence from Eq. (3.7) we conclude that:
drp=d+a-z. (3.12)

Also, since s ~ £2%4, we have [see Eq. (3.2)]:

ds =dr/(a+4d), (3.13)
and
(-1 =(-1)d+a). (3.14)
After some algebra, we get5°:
z2=02-7)d+a). (3.15)

However, the assumption n(t) ~ £9F is not necessarily true.

We know that in DPD, z is very close to the chemical dimension of the regular isotropic
percolation in d-dimensions.%” Thus, in d = 1, z = 1. However, plugging into Eq. (3.15)
the numerical values'®52 for 7 = 1.29 and o = 0.63 ind = 1, we get z = 0.71-1.63 = 1.16.
This apparent contradiction happens because in DPD the live cells clump together in blocks
within which the density of active cells is constant while the blocks are forming a fractal set.
The correlation function G(r) of active cells in DPD undergoes crossover from small slope
for small r to large slopes for large (7): G(r) ~ r%~4, In d = 1, using Egs. (3.10) and (3.14)
we get G(r) ~ r2~T ~ r=033 This is consistent with our numerical calculations of G(r).
However, for small r, G(r) is almost constant. Note that the shape of the moving front
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(b)

Fig. 2 Ilustration of the dynamics of the DPD model at p = p. = 0.539 (a), and the SOD model (b), in
(1+41) dimensions. In both cases the Sneppen update rule is used. In both cases the interface is shown after
1000 time steps starting from a single cell near the center on a flat interface (definition B). For the SOD
model, the parallel definition of time is used. The “Rainbow” color code indicates time of invasion. Regions
invaded at the beginning of the process are displayed in red. The color code changes with time from red
to orange, yellow, green, cyan, blue and finally to violet. Note that in DPD model the invasion is caused
by lateral propagation of steep slopes that corresponds to constantly changing color in lateral direction. In
contrast, in the SOD model the invasion jumps constantly from one part of the interface to the next, that
can be seen in part (b) as small alternating “patches” of different colors.

within an avalanche in the SOD model differs from that of the DPD model (see Fig. 2).
In the SOD model, the interface is consistently self-affine with the exponent ¢, and the
activity constantly jumps from place to place according to a Lévy flight rule.’5% In the
DPD model, the moving interface is not self-affine; it consists of blocked parts interrupted
by steep slopes moving as large quasi-particles. Both the horizontal and vertical dimensions
of such slopes are of typical size £;. In d = 1 they move with a constant speed z = 1. In
higher dimensions z is probably equal to the chemical dimension of d-dimensional regular
percolation.®” In the SOD model, the set of active cells is fractal on all length scales and
Eq. (3.11) is correct. Thus it is the self-organization rule — by which we select a site with
the smallest value of n; present in the interface — that causes the value of z in SOD to
differ from that of DPD.

To this end, it seems that z cannot be completely determined with the help of only static
properties of completely pinned avalanches. In contrast, z depends on the dynamics of
active cells that involve the unknown exponent § [see Eq. (3.7)]. Hence, for any value of §,
one can always satisfy this relation by taking;

d+ «a
§+1

= . (3.16)
That is why it is quite possible that in DPD the upper critical dimension is equal to 6
for dynamic exponents®” and infinity for static exponents.%6 (See also Ref. 48 for different
interpretation.) The dynamics of the SOD model in which the update rule assumes an
infinitely fast propagation of the information along the interface or an infinitesimally slow

“creeping” 8 growth of the interface, differs from the dynamics of KPZ with quenched
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disorder and fixed driving force F [see Eq. (1.8)], which is probably in the same universality
class as DPD.
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