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A quantitative description of a complex system is inherently limited
by our ability to estimate the system’s internal state fromexperimen-
tally accessible outputs. Although the simultaneous measurement of
all internal variables, like allmetabolite concentrations in a cell, offers
a complete description of a system’s state, in practice experimental
access is limited to only a subset of variables, or sensors. A system is
called observable if we can reconstruct the system’s complete inter-
nal state from its outputs. Here, we adopt a graphical approach de-
rived fromthedynamical laws that govern a system to determine the
sensors that are necessary to reconstruct the full internal state of
a complex system. We apply this approach to biochemical reaction
systems, finding that the identified sensors are not only necessary
but also sufficient for observability. The developed approach can
also identify the optimal sensors for target or partial observability,
helping us reconstruct selected state variables from appropriately
chosen outputs, a prerequisite for optimal biomarker design. Given
the fundamental role observability plays in complex systems, these
results offer avenues to systematically explore the dynamics of
a wide range of natural, technological and socioeconomic systems.
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The internal variables of a complex system are rarely in-
dependent of each other, as the interactions between the

system’s components induce systematic interdependencies be-
tween them. Hence, a well-selected subset of variables can con-
tain sufficient information about the rest of the variables, allowing
us to reconstruct the system’s complete internal state, making the
system observable. To address observability in quantitative terms,
we focus on systems whose dynamics can be described by the
generic state-space form

_xðtÞ= fðt; xðtÞ; uðtÞÞ; [1]

where xðtÞ∈RN represents the complete internal state of the
system (e.g., the concentrations of all metabolites in a cell),
and the input vector uðtÞ∈RK captures the influence of the en-
vironment. Observing the system means that we monitor a set of
variables yðtÞ∈RM that depend on the time t, the system’s in-
ternal state xðtÞ, and the external input uðtÞ,

yðtÞ=hðt; xðtÞ; uðtÞÞ: [2]

Observability requires us to establish a relationship between
the outputs yðtÞ, the state vector xðtÞ, and the inputs uðtÞ in
a manner that we can uniquely infer the system’s complete initial
state xð0Þ. The observability criteria can be formulated algebra-
ically for dynamical systems consisting of polynomial or rational
expressions (1, 2) stating that [1] is observable if the Jacobian
matrix J = ½Jij�NM ×N has full rank,

rank  J =N; [3]

where Jij =
∂L

�
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, bxc is the largest integer

not greater than x, and % is the modulo operation (SI Text,

section I). For a linear time-invariant dynamic system (3, 4),
_xðtÞ=A  xðtÞ+B  uðtÞ and yðtÞ=C  xðtÞ, J reduces to the observ-
ability matrix O= ½CT; ðC  AÞT;⋯; ðC  AN − 1ÞT�T.
To simplify the observability analysis, we assume that

we can monitor a selected subset of state variables, i.e.,
yðtÞ= ð⋯; xiðtÞ;⋯ÞT, which we call sensors. Observability of com-
plex systems can then be posed as follows: Identify the minimum
set of sensors from whose measurements we can determine all
other state variables. Whereas [3] offers a formal answer to the
observability issue in the context of small engineered systems, it
has notable practical limitations for natural and complex systems.
First, it can only confirm (or deny) if a specific sensor set can be
used to observe a system, without telling us how to select it.
Second, a brute-force search for a minimum sensor set requires us
to inspect via [3] of about 2N sensor combinations, a computa-
tionally prohibitive task for large complex systems. Third, the
rank test of the Jacobian matrix via symbolic computation is
computationally limited to small systems (5). Hence, the funda-
mental and the practically useful question of identifying the
minimum set of sensors through which we can observe a large
complex system remains unsolved.
To resolve these limitations, one can exploit the dynamic in-

terdependence of the system’s components through a graphical
representation, a common approach used in structured system
theory (6–10). This procedure consists of the following steps:

i) Inference diagram: We draw a directed link xi → xj if xj
appears in xi’s differential equation (i.e., if ∂fi

∂xj is not identi-
cally zero), implying that one can collect information on xj by
monitoring xi as a function of time. Because the constructed
network captures the information flow in inferring the state
of individual variables, we call it an inference diagram (Fig.
1C). By flipping the direction of each edge, the procedure
recovers the system digraph encountered in structured sys-
tems theory (11–13).

ii) Strongly connected component (SCC) decomposition: We
decompose the inference diagram into a unique set of max-
imal SCCs, which are the largest subgraphs chosen such that
there is a directed path from each node to every other node
in the subgraph (14). The SCCs of the inference diagram of
Fig. 1C are surrounded by dashed circles. Note that each
node in a SCC contains information pertaining to all other
nodes within the SCC.

iii) Sensor node selection: We call root SCCs those SCCs that
have no incoming edges (shaded circles in Fig. 1C). We
choose at least one node from each root SCC to ensure ob-
servability of the whole system. For example, the inference
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diagram of Fig. 1C contains three root SCCs, hence, we need
at least three sensors to observe the system.

Results
The graphical approach (GA) described above reduces observ-
ability, a dynamical problem of a nonlinear system with many
unknowns, to a property of the static map of the inference dia-
gram, which is accurately mapped for an increasing number of
complex systems (15, 16). This leads us to our first result: we find
that monitoring the root SCCs identified by the GA are necessary
for observing any nonlinear dynamic system. In other words, we
prove that the number of root SCCs yields a strict lower bound of
the size of the minimum sensor set (SI Text, section II, A).
Consequently any state observer, a dynamical device that aims to
estimate the system’s internal state, will fail if it does not monitor
these sensors.
If the dynamics [1] is linear, we can use the maximum matching

(MM) algorithm to predict not only the necessary, but also the
minimum sensor set sufficient for observability (17). Numerical
simulations on model networks indicate that for linear systems
the sensor set predicted by MM is noticeably larger than the
necessary sensor set predicted by GA (Fig. 2B). The reason is that
any symmetries in the state variables that leave the inputs, out-
puts, and all their derivatives invariant will make the system un-
observable. Indeed, a dynamical system with internal symmetries
can have infinitely many temporal trajectories that cannot be
distinguished from each other by monitoring the outputs (5). For
example, a dynamical system defined by the equations _x1 = x2x4 +
u; _x2 = x2x3; _x3 = _x4 = 0 is predicted by GA to be observable by

monitoring y= x1. However, the system has a family of symmetries
σλ: {x1, x2, x3, x4} → {x1, λx2, x3, x4/λ}, so that the input u and the
output y and all their derivatives are independent of λ (18). This
means that we cannot distinguish whether the system is in state
(x1, x2, x3, x4)

T or its symmetric counterpart (x1, λx2, x3, x4/λ)
T,

because they are both consistent with the same input–output
behavior. Hence, we cannot uncover the system’s internal state by
monitoring x1 only. For linear systems, the symmetries correspond
to topological features detectable from the inference diagram
(Fig. 2A).
In summary, we find that for an arbitrary network topology

with linear dynamics, the minimum sensor set predicted by the
GA is generally not sufficient for full observability. However, the
vast majority of systems of practical interest are not linear. Next
we offer a rather surprising result, showing that for several
much-studied nonlinear dynamical systems the symmetries in
state variables are extremely rare; therefore the sensor set pre-
dicted by GA is not only necessary but also sufficient for ob-
servability. Hence, for these systems we can provide the full
solution to the observability problem, which is our second and
main result.

Biochemical Reaction Networks. We apply GA to biochemical re-
action networks, which, with their well-characterized wiring di-
agram and dynamics but largely unknown parameters (kinetic
constants), represent an appropriate prototype of complex sys-
tems. Consider a biochemical reaction system of N species
{S1, S2,. . .,SN} involved in R reactions {R1, R2,. . .,RR} with
Rj :

PN
i=1αjiSi →

PN
i=1βjiSi, where αji ≥ 0 and βji ≥ 0 are the

stoichiometry coefficients. Under the continuum hypothesis and
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Fig. 1. Graphical approach. (A) Chemical reaction
system with 11 species (A,B,. . .,J,K) involved in four
reactions. Because two reactions are reversible, we
have six elementary reactions. (B) Balance equations
of the chemical reaction system shown in A. Con-
centrations of the 11 species are denoted by x1,
x2,. . .,x10, x11, respectively. Rate constants of the six
elementary reactions are given by k1, k2,. . .,k6, re-
spectively. Balance equations are derived using the
mass-action kinetics. (C) Inference diagram is con-
structed by drawing a directed link (xi → xj) if xj
appears in the right-hand side of xi’s balance equa-
tion shown in B. SCCs, which are the largest sub-
graphs chosen such that there is a directed path
from each node to every other node in the sub-
graph, are marked with dashed circle; root SCCs,
which have no incoming links, are shaded in gray. A
potential minimum set of sensor nodes, whose
measurements allow us to reconstruct the state of
all other variables (metabolite concentrations), is
shown in red.
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the well-mixed assumption (19) the system’s dynamics is de-
scribed by [1], where xiðtÞ is the concentration of species Si at
time t, the input vector uðtÞ represents regulatory signals or ex-
ternal nutrient concentrations, and the vector yðtÞ may capture
the set of experimentally measurable species concentrations or
reaction fluxes. The flux vjðxÞ of reaction Rj follows mass-action
kinetics (20, 21)

vjðxÞ= kj ∏
N

i= 1
xαjii [4]

with rate constants kj > 0. The system’s dynamics is therefore
described by the balance equations

_xi = fiðxÞ=
XR

j= 1

Γij   vjðxÞ; [5]

where Γij = βij − αji is the element of the N × R stoichiometric
matrix. The right-hand side of [5] represents a sum of all fluxes vj
that produce and consume the species Si.
Assuming that the outputs yðtÞ are the concentrations of

a particular set of sensor species, observability aims to identify
a minimum set of sensor species from whose concentrations we
can determine the concentration of all other species. The ad-
vantage of GA in this context is that it bypasses the need to
know the system’s kinetic constants (which are largely unknown
in vivo), and only requires accurate information about the to-
pology of the inference diagram. In the context of metabolism
or an arbitrary biochemical reaction system, this is uniquely
provided by the full reaction list, which is relatively accurately
known for several model organisms (22).
Applying GA to biochemical reaction systems leads to a number

of results that elucidate the principles behind biochemical network
observability:

a) Species that are not reactants in any reaction, i.e., pure prod-
ucts, will be root SCCs of size 1; hence they are always sensors
(e.g., x6 in Fig. 1C).

b) For root SCCs of size larger than 1 (e.g., {x4, x5} and {x7, x8, x9} in
Fig. 1C), any node could be chosen as a sensor. For example, in
Fig. 1C we can choose x7, x8, or x9 as the sensor for the root SCC
{x7, x8, x9}. Given that some root SCCs can be quite large, and
we need only one node from each root SCC, this considerably
reduces the number of sensor nodes (except some pathological
cases discussed in SI Text, section II, B.

c) The minimal number of sensor nodes that are necessary to
observe a biochemical reaction system equals the number of
root SCCs of its inference diagram. A minimum set of sensors
consists of all pure products and one node from each root
SCC with multiple species (e.g., {x5, x6, x7} in Fig. 1C).

d) As any node from a root SCC can be chosen as a sensor node,
there are Ωs =∏Nroot−SCC

i=1 ni equivalent sensor node combina-
tions, representing the product of all root SCCs’ sizes. For
example, in Fig. 1C we have three root SCCs with sizes ni =
1, 2, 3; hence Ωs = 1 × 2 × 3 = 6. This multiplicity offers
significant flexibility in selecting experimentally accessible sensors.

The principles a–d allow us to formulate the second and main
finding: In biochemical networks the minimum set of sensors
identified by GA is not only necessary but also sufficient for
observability (SI Text, section II, B). To demonstrate this we
randomly generated 1,000 chemical reaction systems, testing
each system’s observability using the rank criteria (3). We find
that in all connected reaction networks the minimum set of
sensors obtained by the GA achieves full observability for the
whole system. This sufficiency is rooted in the fact that, when
monitoring the GA-predicted minimum sensor set, the proba-
bility of developing symmetries in the state variables is close to
zero. Indeed, we find that the only systems that fail sufficiency
are those with isolated reactions, but such isolated reactions are
not only useless from biological perspective, but their chance of
occurrence goes to zero exponentially as the number of species
(or reactions) increases (SI Text, section II, B). Hence, apart
from a few pathological cases, there are always algebraic rela-
tions between the system’s state variables and the successive
derivatives of the outputs selected by GA, guaranteeing that the
system is observable (5). In the following we discuss a series of
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Fig. 2. Sensor nodes in linear systems. For linear systems _xðtÞ=A  xðtÞ+B  uðtÞ
and yðtÞ=C  xðtÞ, the minimum set of sensors sufficient for full observability can
be calculated exactly using the maximummatching (MM) algorithm (17), where-
as the necessary sensor set is provided by the GA. (A) Erdös–Rényi (ER) network
withmean degree〈k〉∼ 3.5. The necessary sensor set predicted byGA is shown in
red; the additional nodes that we also need to be monitor to obtain full observ-
ability are shown in blue. Hence, red and blue nodes together form the sufficient
sensor set.Dilationsarehighlighted ingreen.Dilationoccurs if there is a subset Sof
the nodes (i.e., the state variables) such that jTðSÞj< jSj, where the neighborhood
set TðSÞ of a set S is defined tobe the set of all nodes jwhere adirectededgeexists
from j to a node in S (6). Such dilations can be identified via MM algorithm.
If the blue nodes are notmonitored then their dilationswill cause symmetries that
leave theoutputsandderivativesofoutputs invariant. Forexample, inA, ifxb isnot
monitored, the subset S1 = {xa, xb} will cause a dilation D1 and a family of sym-
metries σλ : f⋯; xa; xb;⋯g→ f⋯; xa − kbλ; xb + kaλ;⋯g that leave the outputs
(and their derivatives) invariant because σλð _xcÞ= σλðkaxa + kbxbÞ= kaðxa − kbλÞ+
kbðxb + kaλÞ= kaxa + kbxb = _xc . (B) ns representing the fraction of sensors, pre-
dicted by GA (green “x”) or MM (red “+”), as a function of〈k〉for ER random
networks of sizen= 104. The results are averagedover 10 realizations with error
bars defined as SEM. The difference between the two curves indicates that
for such linear systems GA underestimates the necessary sensor set. (Similar
results are also obtained for linear systems with scale-free random network
topology; refs. 15, 32.) We find, however, that for nonlinear dynamics, the
GA-identified nodes can be both sufficient and necessary for observability, as
symmetries in state variables are very unlikely for large systems.
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application of our main results, demonstrating its impact on the
study of biological systems.

Small Biochemical Networks. We applied GA to two well-studied
biochemical reaction systems, the simplified glycolytic reaction
map and a model for ligand binding, confirming that each of these
systems is observable through the minimum set of sensor nodes
predicted by GA (Fig. 3). The simplified glycolytic reaction map
(20) consists of 10 chemical species [glucose (Gluc); ADP; glucose
6-phosphate (G6P); ATP; glucose 1-phosphate (G1P); AMP;
fructose 6-phosphate (F6P); fructose 2,6-biphosphate (F26BP);
triose phosphate (TP); pyruvate (Pyr)] involved in nine reactions
(see Fig. 3A and SI Text, section III, A for the balance equations).
GApredicts that Pyr, which is the pure product of the system, forms
the only root SCC of the inference diagram (Fig. 3B), hence the
system should be observable by measuring Pyr only. We confirm
this prediction by calculating the rank of the Jacobian matrix,
finding that with sufficient data points on the Pyr concentration one
can reconstruct all other metabolite concentrations in the system.
The core model of erythropoietin (Epo) and Epo receptor (EpoR)
interaction and trafficking (23) consists of six species involved in
ligand binding: Epo, EpoR, Epo_EpoR complex, internalized
complex Epo_EpoR_i, degraded internalized ligand dEpo_i, and
degraded extracellular ligand dEpo_e (see Fig. 3C and SI Text,
section III, B for the balance equations). GA predicts that the
minimum sensor set contains two pure products, dEpo_i and
dEpo_e (Fig. 3D), confirmed via the rank test of the Jacobianmatrix.

Exploring the Complete Metabolism. The developed framework is
not limited to small pathways, but allows us to study an organism’s
genome-scale metabolism as well, involving hundreds of metabo-
lites engaged in thousands of reactions. These systems are too large
to identify the sensors via brute-force search or to explicitly verify
observability via the rank condition [3]. However, we can efficiently
identify the sensors using GA. We applied GA to the metabolic
networks of three well-studied model organisms, Escherichia coli,
Saccharomyces cerevisiae, and Homo sapiens, using their complete
metabolic reconstruction (22) to identify the sensor nodes.We find
that the sensor set necessary for observability of the genome-scale
metabolisms represents∼5–10% of the total metabolites (Table 1).
This is because the vast majority of metabolites (91% for E. coli,
88% for S. cerevisiae, and 83% forH. sapiens) are in a giant nonroot
SCC. Overall, the GApredicts that in principle one can reconstruct
the state of the whole metabolism from the concentration of
a relatively small fraction of metabolites. We also find that this
result is not very sensitive to the assignment of the reaction re-
versibility during genome-scale metabolic reconstructions (SI Text,
section III, D).

Target Observability. Notwithstanding the fundamental impor-
tance of full observability, aiming to derive the state of each
variable in a system, for most applications it is sufficient to infer
the state of a certain subset of variables, that we call target
variables, like the concentrations of metabolites whose activi-
ties are altered by a disease (24). If those target variables
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Fig. 3. Biochemical reaction systems and their in-
ference diagrams. (A) Simplified glycolytic reaction
map (20), where the symbols denote G6P, F6P, TP,
F2-6BP, ATP (adenosine 5′-triphosphate), and ADP
(adenosine 5′-diphosphate). Source (glucose) and
sinks (G1P and Pyr) are also included in this model.
Different chemical species are shown in different
colors. (B) Inference diagram of the reaction system
shown in A consists of a nonroot SCC of nine species
(marked with dashed circle) and a root SCC of one
species––the pure product Pyr (shaded in gray),
hence indicating that the system can be observed
through monitoring the concentration of Pyr only.
(C) Simple model of ligand binding (23). The symbols
denote Epo, EpoR, Epo_EpoR, Epo_EpoR_i, dEpo_i,
and dEpo_e, marked with different colors. Bmax is
the maximal amount of receptor at the cell mem-
brane. (D) Inference diagram of the reaction system
shown in C consists of a nonroot SCC of four species
(marked with dashed circles) and two root SCCs
(shaded in gray). Each root SCC contains one pure
product. The system can be observed through mon-
itoring the concentrations of the two pure products,
dEpo_i and dEpo_e.
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cannot be directly measured, we can invoke target observability,
identifying the optimal sensor(s) that can infer the state of the
target variables, thus discovering the optimal biomarkers for the
respective disease. GA helps us select such optimal sensors as
well, following these general principles, representing our third
main result:

i) The state of a target node xt can be observed from a sensor node
xs only if there is a directed path from xs to xt in the inference
diagram. For example, in Fig. 1C x4 can only be inferred from
x5, whereas x1 can be inferred from any other nodes.

ii) There are important differences in the complexity of the in-
ference process, depending on the size of the subsystem we
need to infer for a given sensor choice. The SCC decompo-
sition of the inference diagram helps us formulate the fol-
lowing result: To observe xt from xs, we need to reconstruct
N s =

P
ni ⊂Ss

ni metabolite concentrations, where Ss denotes
the set of all SCCs that are reachable from xs, and ni is the
size of the ith SCC. This formula can be easily extended to
multiple targets.

iii) To identify the optimal sensor node for any target node, we
can minimize

P
ni ⊂Ss

ni, representing the minimum amount of
information required for the inference process. For example, if
xt is inside an SCC of size larger than 1 (e.g., x1 in Fig. 1C),
then the optimal sensor can be any other node in the same
SCC (e.g., x2 or x3 in Fig. 1C). If no node in the same SCC is
experimentally accessible, then the optimal sensor node
belongs to the smallest SCC that points to xi (e.g., x6 in
Fig. 1C).

Note that this minimization procedure can be implemented for
any inference diagrams in polynomial time. Hence, GA can aid
the efficient selection of optimal sensors for any targeted node,
offering a potentially indispensable tool for biomarker design.

Beyond Metabolism. Although we illustrated GA on biochemical
reaction systems, we emphasize that the inference diagram can
be constructed for arbitrary nonlinear dynamical systems of form
[1]; hence, GA can identify the necessary sensor set for arbitrary
systems. Moreover, as general nonlinear dynamical systems lack
symmetries in their state variables, we expect the GA-predicted
sensor set to be sufficient for observability. To show this we have
explicitly verified observability for several much-studied dynam-
ical systems, such as Michaelis–Menten kinetics in reaction dy-
namics (SI Text, section III, C), Lotka–Volterra dynamics in
ecological systems (SI Text, section V, A), and Hindmarsh–Rose
model for neuronal systems (SI Text, section V, B), in each case
finding that the sensors identified by GA are both sufficient and
necessary for observability. Given the significant current efforts
to elucidate the dynamics of complex systems (25), GA is bound
to find applications in a wide range of natural, socioeconomic, or
technological system whose dynamics can be cast in the highly
general form [1], helping identify optimal quantities to monitor
their internal state.

Discussion
In many complex systems experimental access is often limited to
only a subset of state variables. Hence, we need efficient tools to
identify the variables that allow us to infer the state of the whole
system. Otherwise, the experiments may waste resources on
measuring system variables that are redundant. Our theoretical
work helps us identify the necessary sensors for an arbitrary
nonlinear dynamical system, serving as the lower bound of the
number of system variables we need to monitor. We also show that
for many biological systems the necessary sensors are actually
sufficient. Hence, our results significantly narrow the candidate
variables that one needs to monitor to ensure observability. Given
the unprecedented rapid development of biotechnology in the last
decade, driving the development of sensitive real-time monitoring
tools, our results could have implications from metabolic engi-
neering to synthetic biology and network medicine. For example,
studying the role of the GA-identified sensors in cell communi-
cation or biomarker design might offer better diagnostic tools,
as well as offer rational predictions for potential biomarkers.
Moreover, if we consider those unknown system parameters Θ
as a special type of state variables with time derivative _Θ= 0, we
can extend the system to contain a larger set of state variables
fxðtÞ;Θg. In this case we can study whether/how those system
parameters can be reconstructed or identified from the input–
output behavior of the extended system, using the framework of
the observability problem developed here. This parameter
identifiability problem has its own merit and deserves systematic
study. We believe our results could shed light on this challenging
problem as well.
Our work also raises a series of fundamental questions worthy

of future pursuit. First, for general nonlinear systems GA cannot
tell which node in a root SCC should be chosen as a sensor node.
Hence in such cases identifying the sensor nodes requires de-
tailed knowledge about the system dynamics. Second, currently
the sufficiency of the predicted minimum sensor set can be
checked only for rational dynamics (5), raising the need for tools
capable of demonstrating the sufficiency for arbitrary complex
dynamical systems, like that involved in the Kuramoto model
describing synchronization in coupled oscillators (26). Further-
more, noise and measurement uncertainties will likely increase
the number of sensors, the degree of which remains to be ex-
plored in the context of stochastic control (27, 28). Finally, ob-
servability only guarantees that the sensors have access to the
necessary information to reconstruct the state of the whole sys-
tem. To explicitly extract this information we need to construct
observers, a well-developed subject in engineering control the-
ory. We demonstrate the construction of such an observer for
a linear reaction system in SI Text, section IV. However, the
systematic adoption of these tools to natural and complex sys-
tems could open new avenues in our quest to understand com-
plexity (29).

Materials and Methods
Maximum Matching for Linear Systems. We use the duality between con-
trollability and observability to identify the minimum number of sensors
sufficient for observability in a linear system (3, 4, 30). A linear time-invariant
system _xðtÞ=A  xðtÞ+B  uðtÞ is called a structured system if the state matrix A
and the input matrix B are structured, i.e., their elements are either fixed
zeros or independent free parameters. For a structured system with state
matrix A representing the wiring diagram of its underlying directed
weighted network GðAÞ, the minimum number of inputs (or equivalently the
minimum number of driver nodes which accept independent signals) re-
quired to fully control the system can be calculated by applying the maxi-
mum matching algorithm to GðAÞ (17). For a directed network, an edge
subset M is matched if no two edges in M share a common starting node or
a common ending node. A node is matched if it is an ending node of an
edge in the matching. Otherwise, it is unmatched. A matching of maximum
cardinality/size is called a maximum matching. The minimum set of driver
nodes which accepts independent signals and enables us to fully control the

Table 1. Genome-scale metabolic networks

Name* N L R Nscc Sgscc Npr Npp Ns

E. coli (iAF1260) 1,668 12,719 3,231 120 1,523 56 60 96
S. cerevisiae (iND750) 1,060 9,080 1,793 112 931 106 78 99
H. sapiens (Recon1) 2,763 21,026 5,283 335 2,290 166 144 293

*For each metabolic network we show the number of nodes (metabolites) N,
edges (L), number of elementary reactions (R) and the number of strongly
connected components (Nscc), and the size of the giant SCC (Sgscc) in the
inference diagram. The table also lists the number of pure reactants (Npr),
pure products (Npp, which are always sensor nodes), and the minimum num-
ber of sensor nodes (Ns) predicted by the graphical approach.
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structured system is given by the set of unmatched nodes with respect to any
maximum matchings (17). In case all nodes are matched, any single node can
be chosen as the driver node. To assure controllability, each root SCC of GðAÞ
requires an input signal. If there is an unmatched node i inside a root SCC R,
then R will be controlled by the same signal connected to node i. If all of the
nodes inside a root SCC R are matched, then R can be controlled by any other
signal connected to any other unmatched node in the network. Hence the
number of actuator nodes,which directly accept signals, can be calculated by
counting the unmatched nodes (i.e., the driver nodes) and the root SCCs
inside which all of the nodes are matched. Note that by controlling those
root SCCs with all nodes matched, we eliminate “inaccessibility” in the sys-
tem. And, by controlling unmatched nodes, we eliminate all possible “dila-
tions” in the system. A dilation occurs if there is a subset S of the nodes such
that its neighborhood set TðSÞ, i.e., the set of all nodes j where a directed
edge exists from j to a node in S, has fewer nodes than S itself (6). A
structured system is controllable if and only if both inaccessibility and dila-
tions are avoided. By invoking the duality between controllability and ob-
servability in linear system, the actuators in system GðAÞ are just the sensors
in its dual (or transposed) system GðATÞ, which is obtained by flipping the
direction of all edges. By monitoring those sensors, the system GðATÞ is
guaranteed to be observable.

Observability Test of Rational Systems. To perform the algebraic observ-
ability test of rational dynamic systems, we use Sedoglavic’s algorithm with
a Maple implementation (5). If a system is algebraically observable, then
there are algebraic relations between the state variables and the succes-
sive derivatives of the system’s inputs and outputs (1, 2). These algebraic
relations guarantee that the system is observable and will forbid symme-
tries. A family of symmetries is equivalent to infinitely many trajectories of
the state variables that fit the same specified input–output behavior. If the
number of such trajectories is finite, the system is locally observable. If
there is a unique trajectory, the system is globally observable. If there are
infinitely many trajectories, the system is not observable. Sedoglavic’s
algorithm tests local algebraic observability for rational systems in poly-
nomial time. The algorithm is mainly based on the generic rank compu-
tation of the Jacobian matrix using the techniques of symbolic calculation
(5). This algorithm certifies that a system is locally observable and its

answer for a nonobservable system is probabilistic with high probability of
success. A predicted nonobservable system and its nonobservable variables
can be further analyzed to find a family of symmetries, which then can
confirm the result.

Generation of Random Chemical Reaction Systems. We generate random
chemical reaction systems as follows.We assure each reaction is mass balanced,
i.e., it is chemically feasible with respect to mass conservation—the sum of its
substrate atoms equals the sum of its product atoms (31). To generate random
reaction systems under the constraint of mass balance, we start with several
initial chemical compounds composing a few elements, e.g., the six most
abundant elements in biological systems: carbon (C), hydrogen (H), nitrogen
(N), oxygen (O), phosphorus (P), and sulfur (S). Each compound can be repre-
sented by a mass vector. For instance, the mass vector of glucose (C6H12O6) is
given by mC6H12O6 = ð6; 12; 0; 6;0; 0Þ · ðC;H;N;O; P; SÞT. From the initial com-
pounds, we can generate new compounds through chemical reactions. The
stoichiometry coefficients in the reactions are randomly chosen with the
constraint that the mass balance is strictly preserved. This can be achieved by
tracking the mass vectors of all of the compounds. For example, starting from
two compounds C3H6O3 and C3H2O6P1, we may have the following reaction
C3H6O3 +C3H2O6P1→C3H5O6P1 +C3H3O3 with a randomly assigned rate
constant k1 > 0. The two new compounds C3H5O6P1 and C3H3O3 will then be
added to the compounds pool and used to generate more compounds. Note
that neither the initial nor generated compounds may exist in nature. They are
just used to assure that mass balance is exactly preserved. We start from a few
randomly generated compounds, and perform the above procedure to create
1,000 chemical reaction systems with up to 221 compounds involved in 121
mass-balanced reactions.
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