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Genome wide association studies (GWAS) identify sus-
ceptibility loci for complex traits, but do not identify par-
ticular genes of interest. Integration of functional and
network information may help in overcoming this limita-
tion and identifying new susceptibility loci. Using GWAS
and comorbidity data, we present a network-based ap-
proach to predict candidate genes for lipid and lipoprotein
traits. We apply a prediction pipeline incorporating inter-
actome, co-expression, and comorbidity data to Global
Lipids Genetics Consortium (GLGC) GWAS for four traits
of interest, identifying phenotypically coherent modules.
These modules provide insights regarding gene involve-
ment in complex phenotypes with multiple susceptibility
alleles and low effect sizes. To experimentally test our
predictions, we selected four candidate genes and geno-
typed representative SNPs in the Malmö Diet and Cancer
Cardiovascular Cohort. We found significant associations

with LDL-C and total-cholesterol levels for a synonymous
SNP (rs234706) in the cystathionine beta-synthase (CBS)
gene (p � 1 � 10�5 and adjusted-p � 0.013, respectively).
Further, liver samples taken from 206 patients revealed
that patients with the minor allele of rs234706 had signif-
icant dysregulation of CBS (p � 0.04). Despite the known
biological role of CBS in lipid metabolism, SNPs within the
locus have not yet been identified in GWAS of lipoprotein
traits. Thus, the GWAS-based Comorbidity Module (GCM)
approach identifies candidate genes missed by GWAS stud-
ies, serving as a broadly applicable tool for the investigation
of other complex disease phenotypes. Molecular & Cel-
lular Proteomics 12: 10.1074/mcp.M112.024851, 3398–3408,
2013.

Genome wide association studies (GWAS)1 meta-analyses
have pinpointed a number of new gene regions contributing to
multifactorial diseases. GWAS typically find limited numbers
of loci that contribute modestly to complex phenotypes (1),
and GLGC meta-analysis of GWAS data has reached the limit
of what can be expected (2) without the use of alternative
strategies. Given that susceptibility loci for complex traits
are unlikely to be randomly distributed in the genome (3), we
might expect that the genes associated with a disease will be
more likely to be present within the same pathways or func-
tional groupings. In published cases, pathway based GWAS
analysis provides an alternative approach to the dissection of
complex disease traits (4, 5). In addition, nominal GWAS p
values superimposed upon the human molecular network
have been used to identify genes associated with multiple
sclerosis (6), and the disease association protein–protein link
evaluator (DAPPLE) has been used to find significant interac-
tions among proteins encoded by genes in loci associated
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with other particular diseases (7) . Other approaches incorpo-
rate heterogeneous molecular data such as linkage studies,
cross species conservation measures, gene expression data
and protein–protein interactions to better understand GWAS
results (8, 9). Integrating molecular network information, path-
way analyses, and GWAS data thus holds promise for iden-
tifying new susceptibility loci and improving the identification
of relevant candidate genes.

If a gene is involved in a specific functional process or
disease, its molecular network neighbors might also be sus-
pected to have some role (3). In line with this “local” hypoth-
esis, proteins involved in the same disease show a high pro-
pensity to interact (10) or cluster together (11) with each other.
Interactions between variations in multiple genes, each with
strong or modest effects, perturbing the same pathways or
modules, may govern complex traits (3, 6). The molecular
triangulation (MT) algorithm can be applied to rank seed
genes according to their common disease associated neigh-
bors, assigning closer and more connected neighbors higher
values (12). Interactions between modestly associated MT
genes may be indicative of coherent disease pathways or of
genes conferring susceptibility to disease in a coordinated
manner. The jActiveModule method (13) combines seed gene
scores with biologically relevant interactions to identify net-
work modules where perturbations causative of disease are
more likely to reside. Lastly, although not yet implemented at
the module level, phenotypic coherence between interacting
pairs of genes has been quantified using the combination of
molecular level gene to disease relationships and Medicare
comorbidity data (14, 15).

We believe that GWAS significant SNPs and variants rep-
resenting potential candidate genes can use the above strat-
egies to reveal more about the missing heritability of complex
phenotypes. The most important risk factors for coronary
artery disease (CAD) include serum concentrations of total
cholesterol (TC), low-density lipoprotein cholesterol (LDL-C),
high-density lipoprotein cholesterol (HDL-C) and triglycerides
(TG). We present a GWAS-based meta-analysis Comorbid
Module (GCM) approach that uses significant (p � 5 � 10�8)
GWAS signals for these four traits in the context of molecular
networks to prioritize modules of disease-associated candi-
date genes. We evaluate our approach experimentally
through allelic association and genotyping within the Malmö
Diet and Cancer Cardiovascular Cohort (MDC-CC) for SNPs
representing top candidate genes.

MATERIALS AND METHODS

The GWAS Comorbid Module (GCM) approach to predict lipid/
lipoprotein trait candidate genes involves the following steps:

(1) Mapping of GLGC GWAS meta-analysis SNPs to genes.
(2) Construction of a human interactome, pooling protein interac-

tion data from different sources.
(3) Identification of candidate genes associated with lipid/lipopro-

tein traits using molecular triangulation (MT).

(4) Identification of modules of seed and neighboring genes using
the jActiveModule method (jAM).

(5) Selection of phenotypically coherent (GCM) modules of seed
and candidate genes using comorbidity analyses.

(6) Validation of pipeline outputs (MT, jAM, and GCM) and compar-
ison to other methods (CANDID and MetaRanker).

(7) Selection of SNPs representing GCM candidate genes for geno-
typing in the MDC-CC.

In summary, we curate GWAS-based seed genes (p � 5 � 10�8),
constructed an interactome, implement the MT method, filter MT
candidate genes by jActiveModule results, select phenotypically co-
herent modules, validate the outputs of every step, and genotype
SNPs representing GCM candidate genes of interest for lipid and
lipoprotein traits.

(1) Mapping of GLGC GWAS Meta-analysis SNPs to Genes—The
GLGC GWAS meta-analyses data is based on 46 lipid/lipoprotein
GWAS involving over 100,000 individuals of European descent as
ascertained in the United States, Europe, or Australia (16). The GLGC
consortium contributed genome wide analysis data for analyses,
including �2.6 million genotyped or imputed SNPs associated with
four traits (TC, LDL-C, HDL-C and TG). The entire set of HapMap
phase III SNPs and pairwise LD estimates (Release 27) for the CEU
population was downloaded, and LD pruning and SNP to gene map-
ping was performed as described previously (3). If a SNP could be
mapped to more than one gene, all genes were included, and SNPs
located in gene desert regions were excluded from our analysis. To be
sure of the robustness of our results, we also annotated SNPs using
the ProxyGeneLD tool (17) and found similar SNP to gene annota-
tions. Genes representing SNPs with GWAS significant p values of
less than 5 � 10�8 were used as “seed” genes.

(2) Construction of a Human Interactome, Pooling Interaction Data
From Different Sources—We created a human interactome consisting
of proteomic, transcriptional, and metabolic interactions. Protein-
protein interactions from three high-throughput yeast-two-hybrid da-
tasets were combined with the binary subset of interactions reported
in the IntAct and MINT databases (18–22). Together, these data sets
describe 15,315 interactions between 6101 gene-coding proteins. For
regulatory interactions, we used the TRANSFAC database version
2008.2, which included 1340 links between 271 human transcription
factors and their 564 targets (23). Metabolic coupling interactions
were derived from the Kyoto Encyclopedia of Genes and Genomes
(KEGG) and the Biochemically, Genetically, and Genomically struc-
tured genome scale metabolic network reconstruction (BiGG) data-
base as described in (15); 10,642 such metabolic links between 921
enzymes were included. The union of these sets of interactions
yielded an interactome of 7117 (N) proteins and 21,964 (M) links, with
an average shortest path length �l� of 4.52.

(3) Identification of Candidate Genes Associated With Lipid/Lipo-
protein Traits Using Molecular Triangulation (MT)—MT begins with
sets of seed (disease) genes known to be associated with phenotypes
and suggests additional disease genes, typically network neighbors
of multiple seed genes (12, 24). Here, we used the strengths of GWAS
signals for lipoprotein traits and SNP to gene mappings to assign
primary evidence scores to seed genes. MT used these primary
evidence scores and the position of these seed genes within the
interactome to calculate secondary evidence scores for neighbors
(12). To calculate the significance of the secondary evidence scores,
we performed 1000 degree-preserving network randomizations. The
significance of the scores was then calculated as described by Ios-
sifov et al. (supplementary material) (24). We applied Benjamini and
Hochberg false discovery rate (FDR) corrections with a 0.05 FDR
threshold to our predictions; this meant that we expected less than
5% of our predictions to be false positives.
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(4) Identification of Modules of Seed and Neighboring Genes Using
the jActiveModule Method (jAM)—The MT method results in a large
number of statistically significant predictions, but some of the pre-
dictions may be artifacts of low or excessive connectivity (24). To
address this concern, we independently implemented the jActive-
Module method to determine modules with maximal proportions of
the lowest p value genes. Later we pruned the MT gene sets to only
include genes that were within these modules.

The jActiveModule method uses GWAS association p values of
seed genes and interactome context to produce aggregated module
scores. The method compares real network modules to those derived
from to 10,000 matched randomized network Monte-Carlo simula-
tions (13). To examine the effect of the GWAS signal strength distri-
bution by itself, we compared the real module scores to distributions
based on randomized gene to trait association p values. Matched
numbers of seed genes were chosen from the set annotated by NCBI
(Ver. 36) and from the set described by the Online Mendelian Inher-
itance in Man database (OMIM, December 2009 release). The differ-
ences between outputs after either randomization strategy are de-
scribed in supplementary material.

As additional controls for the jActiveModule results, we imple-
mented the Molecular COmplex DEtection (MCODE) algorithm, the
Markov Clustering algorithm (MCL), and the Klein-Ravi Steiner tree
algorithm with submodule detection using MCL (GenRev package
(25)). Parameters for the MCL and MCODE algorithms were adopted
from a previous study (26). To compare the results from different
approaches, we used the Jaccard similarity (J) between the sets of
seed genes (S) and putative module genes (T) determined using each
method:

J � �S�T� / �S�T� (Eq. I)

where, �S�T� is the intersection of sets S and T and �S�T� is the union).
(5) Selection of Phenotypically Coherent (GCM) Modules of Seed

and Candidate Genes Using Comorbidity Analyses—To further rank
the modules, we used OMIM gene-disease associations to perform
analyses of comorbidity based on the co-occurrence of ICD-9 codes
taken from a 13 million patient Medicare data set (14). OMIM diseases
were manually mapped to ICD9 codes so that interactions between
genes could be supported by comorbidity between their associated
diseases. To quantify comorbidity, Relative Risk (RR) scores were
calculated for every pairwise combination of diseases associated with
at least one of the genes in the module:

RR �
C12 � np
P1 � P2

(Eq. I)

C12 � number of patients who had both disease 1 and 2
P1 � number of patients who had disease 1
P2 � number of patients who had disease 2
np � 13,039,018 (total number of patients)
Lower and upper bounds (lb and ub) of 99% confidence intervals

were calculated according to the Katz et al. method (24):

lb � RR � exp� � 2.576 � �� (Eq. II)

ub � RR � exp�2.576 � �� (Eq. III)

where � is given by:

� � � 1
C12

�
1

P1 � P2
�

1
np

�
1

np � np
(Eq. IV)

The relative risk was taken to be significant when the 99% confi-
dence interval did not include the expected value of one, which would
indicate findings of no consequence. To summarize the pairwise

comorbidities for each module and rank them, we averaged the
pairwise RR scores between associated ICD9 disease codes, creat-
ing a module relative risk (mRR) score. A Mann-Whitney U test was
used to compare the observed mRR scores to those of 100 randomly
constructed modules.

(6) Validation of Pipeline Outputs (MT, jActiveModule and GCM)
and Comparison to Other Methods (CANDID and MetaRanker)—We
validated the MT, jActiveModule and GCM steps using data from
Teslovich et al. (1) as a benchmarking set. Several measures of
predictive power were used: (1) precision [TP/(TP	FP)], (2) specificity
[TN/(TN	FP)], and (3) accuracy [(TP	TN)/(TP	FP	FN	TN), where
TP is number of true positives or candidate genes correctly identified
as disease genes, TN is number of true negatives or correctly iden-
tified nondisease genes, FP is number of false positives or nondis-
ease genes identified as candidate genes, and FN is number of false
negatives of disease associated genes that were not identified as
candidates. We evaluated the functional coherence of candidate
genes relative to seed genes by comparing their enrichment, as a set,
for functional annotations. These allowed us to evaluate the consis-
tency of candidate gene sets with respect to phenotypically similar
diseases (27). After determining the GO biological process terms
enriched within the sets of seed genes, we tested the enrichment of
these terms in candidate genes.

To perform a comprehensive comparison of GCM to other meth-
ods, we implemented MetaRanker (8) and CANDID (9). MetaRanker
predicts candidate genes by integrating complementary layers of
protein interaction, linkage, GWAS, differential expression and dis-
ease data. These five different data sources are integrated into a
single meta-evidence rank, quantifying the likelihood of genes being
involved in a disease of interest (8). CANDID is designed to rank
candidate genes by eight evaluation criteria, considering associated
publications, protein domains, conservation, expression, interactions,
linkages, SNP associations, and custom data (9). We compared the
top 200 MetaRanker and CANDID candidate genes to the outputs of
the MT, jActiveModule and comorbidity analysis steps. We then
benchmarked candidate gene sets sharing GO terms with the seed
genes, computing precision, specificity and accuracy as described
previously for the candidate genes from each step of the GCM
method as well as the CANDID and MetaRanker outputs.

In addition, using GeneWanderer, we tested how parsimoniously
candidate genes from the GCM approach were involved in obesity,
which is known to be related to lipid/lipoprotein traits. GeneWanderer
was provided with genomic locations 1Mb in either direction of SNPs
representing GCM genes and ranked candidate genes within these
windows according to their single shortest path through the STRING
(28) network to obesity genes.

(8) Selection of SNPs representing GCM candidate genes for geno-
typing in the MDC-C—GCM genes with the strongest co-expression
correlations to the seed genes were selected for genotyping. Genome
wide mRNA expression data of 79 human tissues were obtained from
the Gene Expression Atlas (29). Spearman’s test was used to assess
correlation between GCM gene and seed gene mRNA expression,
with the criterion for significance set at Rho�0.5 and p � 0.05. The
second criteria considered was sequence conservation of the regions
in which SNPs were located, as alterations at conserved sites have
more drastic functional effects when changed (30) The third criteria
considered was the position of the SNPs relative to the candidate
genes. Among conserved SNPs with GLGC GWAS p values �0.05,
we used following hierarchy to rank importance for further genotyp-
ing: coding�intronic�5
UTR�3
UTR�5
upstream�3
upstream (31).

Study Population: The Malmö Diet and Cancer Cardiovascular co-
hort (MDC-CC)—The Malmö Diet and Cancer (MDC) study is a com-
munity-based prospective cohort of 28,449 persons originally re-
cruited for baseline examination between 1991 and 1996 (32, 33).
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From this cohort, 6103 persons were randomly selected to participate
in the Cardiovascular Cohort (MDC-CC), which seeks to investigate
risk factors for cardiovascular disease. All participants underwent
questioning regarding their medical history, a physical examination,
and a laboratory assessment for cardiovascular risk factors. In fasting
venous blood samples, TC, HDL-C, and triglyceride levels were
measured according to standard procedures by the Department of
Clinical Chemistry at University Hospital Malmö. Levels of LDL-C
were calculated according to Friedewald’s formula, with the assign-
ment of missing values to subjects with a triglyceride level of more
than 4.5 mmol per liter. DNA was available from 5763 individuals for
genotyping, and of these individuals, lipid levels were available for
5056 individuals that were not on lipid lowering medication. The
ethics committee of Lund University approved the MDC-CC study
protocols, and all participants provided written informed consent.

Genotyping—Genotyping of the selected SNPs was performed
using genomic DNA from 5763 individuals using the allelic discrimi-
nation method using an ABI 7900 instrument (Applied Biosystems,
Foster City, CA). Samples that were successfully genotyped for at
least 50% of the SNPs were included in further analyses (n � 5698).
We confirmed that the genotypes were at Hardy-Weinberg equilib-
rium. The overall genotyping success rate was 98.2%. For this epis-
tasis analysis, we created a variable indicating how many risk alleles
(increasing total cholesterol, LDL-cholesterol or triglycerides and/or
lowering HDL cholesterol) each individual in the population cohort
was carrying, i.e. summing up the number of risk-alleles to a variable
“risk-allele score.” For the four SNPs, the theoretical maximal number
of risk-alleles was eight (for individuals homozygous for risk alleles of
all four SNPs) and the minimum was zero. In MDC-CC cohort, indi-
viduals ranged from zero to six risk alleles, and the risk-allele score
was used as a variable in a linear regression analysis adjusting for age
and sex to analyze if the combined effect of the four SNPs resulted in
an association with lipid levels.

Expression Quantitative Trait (eQTL) Analysis—RNA extracted from
the livers of 206 patients patients undergoing aortic valve surgery
and/or surgery for aortic aneurysms (34) was hybridized to Affymetrix
ST 1.0 Exon arrays. DNA extracted from circulating blood cells was
hybridized to Illumina 610w-Quad BeadArrays. The association was
tested using a linear additive model with corrections for age and
gender. The average age of patients was 63.9 � 11.8 years, with
average total cholesterol levels of 5.05 � 1.09 mM and average LDL-C
levels of 3.11 � 0.93 mM. None of the patients were known to have
liver disease.

Gene Set Enrichment for Biological Pathways—To find statistically
over-represented Gene Ontology (GO) annotations for candidate
genes at each of the analysis steps, we used the Biological Networks
Gene Ontology tool (BiNGO) implemented in Cytoscape. Enrichment
analyses were performed using a hyper-geometric test followed by a
Benjamini and Hochberg multiple hypothesis correction with a 0.05
FDR threshold (35). Odds ratios to measure the magnitudes of the
enrichment were calculated using raw BiNGO outputs.

RESULTS

Introducing a network-based integrative approach, we
identified novel candidate genes for lipid and lipoprotein traits
(Fig. 1).

Prediction of Lipid/Lipoprotein Trait Candidate Genes Using
Molecular Triangulation (MT)—We used the MT method to

FIG. 1. Schematic representation of GCM approach. (1): Map-
ping of GLGC GWAS meta-analysis SNPs to genes. (2): Construction
of a human interactome by pooling protein interaction data from
different sources and mapping seed genes within the network. (3):
Identification of candidate genes associated with lipid/lipoprotein
traits using molecular triangulation (MT). (4): Identification of seed and
neighbouring gene modules using the jActiveModule (jAM) method,
pruning of MT candidate gene sets. (5): Selection of phenotypically
coherent (GCM) modules of seed and candidate genes using comor-
bidity analyses. (6): Validation of MT, jAM and GCM gene set outputs
and comparison to CANDID and MetaRanker methods. (7): Selection
of SNPs, representing GCM candidate genes, for genotyping in the
MDC-CC. GCM genes were prioritized based on their co-expression

with seed genes and hierarchical criteria including the genomic loca-
tions of SNPs, if the SNPs were synonymous variations, if the SNPs
were in conserved regions of the genome, and GLGC GWAS-meta-
analysis p-values (p � 0.05).
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identify phenotypically related candidate genes (MT-genes)
based on their proximity within the interactome to seed genes
associated with HDL-C, LDL-C, TG and TC traits (supplemen-
tal Table S1). The MT method had an accuracy of 98% in
classifying true positives and true negatives for the four traits,
with 33% precision and 98% specificity (Fig. 2).

Refinement of Candidate Gene Sets Using the jActiveMod-
ules Method—Although direct interactions can be used to
identify candidate genes, modules in biological networks rep-
resent connected components contributing to cellular func-
tions in a coordinated manner. Disruptions of these modules,
which include both identified and unidentified disease genes,
result in disease phenotypes (36). To avoid method specific
biases, we implemented the jActiveModule algorithm in par-
allel with MT and used the intersection of the two result sets
to identify more cohesive modules of seed and MT genes.
Comparision of MT and jAM genes, based on their degree of
connectivity, indicated that only retaining genes within the
intersection of the two groups removed a significant number
of the nodes having only one or greater than one hundred
connections. (p � 0.0017, odds ratio � 2.01, supplementry
Fig. S1). Furthermore, after the jActiveModule filtering step,
precision increased from 33% to 44%, with 99% specificity
and accuracy (Fig. 2).

The jActiveModule method uses GWAS association p val-
ues of seed genes within the interactome context to produce
aggregated module scores, and these scores determined the
extent to which randomized inputs could create coherent
modules. Confirming the usefulness of the network context
using randomized controls, the top 20 jActiveModule subnet-
work scores were significantly higher than those from 100
randomization controls for each of the four traits (p � 0.001,
supplemental Fig. S2).

Compared with the Steiner tree-MCL approach (supple-
mental Fig. S3), the jActiveModule algorithm identified mod-
ules with greater percentages of seed genes. Gene sets iden-

tified by jActivemodule were smaller and localized more tightly
around seed genes within the interactome. This was likely
because of jActivemodule’s flexible search for multiple mod-
ules, as opposed to the Steiner tree based method’s strategy
of attempting to find a single module connecting all of the
seed genes in the interactome (37). Comparison with conven-
tional clustering methods such as MCL and MCODE suggest
that these methods are more suited to the identification of
individual protein complexes (37) as well, while the jActive-
Module method is more suited to the identification of multiple
modules of seed genes spread throughout the interactome.

Retention of Modules According to Comorbidity Analyses
Using Medicare Data (GCM)—To determine those modules
with the most phenotypically coherent associations, we quan-
tified the strengths of comorbidities between diseases asso-
ciated with their genes. We implemented mRR scores, as
explained in the methods section, because we believed that
co-occurring diseases might be driven by related molecular
machinery. We found 48 comorbid modules with mRR scores
higher than one for HDL-C, (mean mRR score of 1.8, average
P�0.002), 15 modules for LDL-C, (mean mRR score of 2.9,
average P�0.001), 15 modules for TC, (mean mRR score of
2.8, average P�0.05 and 23 modules for TG, (mean mRR
score of 1.8, average P�0.001). (Table I). Filtering the mod-
ules to only include thoses with above average mRR scores,
precision increased from 44% to 55%, with 99% specificity

FIG. 2. Performance of CANDID, MetaRanker, MT, jActiveModule and GCM with respect to benchmarking dataset. The histograms
show an increase in specificity, precision and accuracy with each of the steps.

TABLE I
Mean relative risk (mRR) scores of the network modules. TC trait had
the highest mRR score among the four. mRR-score is given as

mean � S.D.

Trait Number of modules mRR-Score *p value

HDL-C 157 1.8 � 1.0 �0.002
LDL-C 64 2.9 � 2.5 �0.001
TC 89 2.8 � 2.4 0.03
TG 85 1.8 � 0.6 �0.001
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and accuracy (Fig. 2). ICD-9 codes associated with the re-
tained GCM modules in all four of the primary traits included
lipid metabolism, carbohydrate and transport metabolism,
amino acid transport metabolism, being overweight, essential
hypertension, cardiomyopathy, symptoms concerning nutri-
tion, chronic ischemic heart disease, acute mycordial infrac-
tion, and diabetes mellitus (supplemental Fig. S4).

In addition to highlighting the phenotypic cohesiveness of
the final GCM gene sets using ICD9 codes, the progressive
benefit of the filtering steps was also quantified using GO term
enrichment tests of the gene sets found at each step. We
found that filtering MT genes by jActive module membership
and only retaining modules with the most significant comorbidi-
ties yielded enrichments of progressively more specific GO
terms annotating fewer genes (Fig. 3A). The cost of this was that
the numbers of genes contributing to particular GO term enrich-
ments decreased as genes were filtered away (Fig. 3B), and that
except for the TG set of genes, fewer GO terms were detected
(Fig. 3C) This filtered subset of more specific GO terms, how-
ever, displayed a trend of increasingly drastic effect size as
measured by odds ratios of enrichment (Fig. 3D).

Validation of Pipeline Outputs (MT, jActiveModule and
GCM) and Comparison to Other Methods (CANDID and
MetaRanker)—Enrichment for GO term effect sizes (supple-
mental Fig. S5) and functional coherence of candidate and
seed gene sets (Fig. 2) for the MT, jActiveModule, and GCM

methods was greater than that of MetaRanker (8) and
CANDID (9). Comparing overlaps between the candidate gene
sets (Fig. 4), we found that predictions from CANDID and Me-
tRanker had 9% (p � 0.0001) overlap with each other. Each
step in our method resulted in greater overlap with the consen-
sus set of genes predicted by both CANDID and MetaRanker
(supplemental Table S2). However, given that the maximum
overlap between any pairwise combination of the gene sets was
15% (CANDID and MetaRanker versus TC-GCM), we were still
assured of the complementarity of each of the gene sets.

We further evaluated our results using DAPPLE (7) and GRAIL
(38). DAPPLE looks for significant protein-protein interaction
connectivity among proteins encoded by genes in loci associ-
ated with disease (7). GRAIL describes the degree of functional
connectivity between regions using literature based relation-
ships between genes (38). Our method had 31% similarity to
DAPPLE prioritized candidate genes when the same seed
genes were used, and 18% similarity to GRAIL results.

Because of GeneWanderer’s top rating among network
based approaches for gene prioritization (39), we used it to
rank GCM genes with respect to the polygenic trait of obesity.
GeneWanderer identified 48 of the 51 GCM genes as highly
ranked candidates in genomic locations related to obesity. In
our interactome, these 48 genes were immediate neighbors of
genes within loci identified by GLGC GWAS (p � 0.0001)
(supplemental Fig. S6).

Relevance of GCM Genes to Lipid Related Diseases Based
on Literature—Many of the GCM candidate genes associated
with all four traits have been linked to lipid metabolism, car-
diovascular disease and coronary artery disease (supplemen-
tal Table S3). Retinoid x-receptor alpha (RXRA) variant

FIG. 3. GO term enrichments for gene sets. A, Mean numbers of
genes, anywhere in the genome, associated with GO terms for which
significant enrichments were found. B, Mean numbers of genes,
within the sets of genes being tested, found to be associated with GO
terms for which the gene sets were enriched. C, Counts of GO terms
for which sets of candidate genes were enriched. D, Median odds
ratios of GO term enrichment as a measure of enrichment effect size.

FIG. 4. Percentage of overlapping candidate genes between
CANDID or MetaRanker and each of the GCM steps.
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rs11185660 has been associated with low HDL-C and coro-
nary heart disease (40, 41). TG and nonesterified fatty acid
(NEFA) levels were increased in the livers and serum of cys-
thathionine-beta-synthase (CBS) knock out mice (41). Dele-
tion of the four and a half LIM domains 2 (FHL2) gene atten-
uates the formation of atherosclerotic lesions normally
present with a cholesterol-enriched diet (42).

Selection of SNPs for Genotyping in the MDC-CC—Be-
cause we expected elements of phenotype-specific modules
to act cooperatively, we tested whether GCM genes were
co-expressed with seed genes. Most of the GCM genes
(90%) were significantly co-expressed with at least one of the
seed genes (supplemental Table S1). Within the HDL-C,
LDL-C, TC and TG GCM gene sets, 19, 9, 13 and 12 genes
were co-expressed with seed genes having GWAS p values
�0.05. As evolutionary conservation of genomic regions im-
plies greater biological significance (30), we prioritized co-
GCM genes represented by SNPs in evolutionarily conserved
regions for further genotyping in MDC-CC cohort (Table III).
The numbers of SNPs representing co-GCM genes in con-
served regions for HDL-C, LDL-C, TC and TG traits were 11,
4, 4, and 6, respectively (Table II). The SNPs with the lowest
GLGC GWAS p values in each of these gene groups were
genotyped in the 5763 MDC-CC participants (Table III, Table
IV).

Logistic regression analysis of the four SNPs revealed that
the minor A-allele of the synonymous SNP rs234706 in CBS
(Y233Y) was significantly associated with higher total choles-
terol levels than the G-allele (p � 0.013 after Bonferroni cor-
rection, Table IV). The A-allele also associated significantly
with higher LDL-C (p � 0.00001) and TG (p � 0.04) levels. The
three other SNPs did not associate significantly with their
respective traits. Despite this, we found that the combined
effect of all four risk-alleles was nominally significant for an
association with lower HDL-cholesterol and higher triglyceride
levels (p � 0.041 and 0.026, respectively, Supplemental Table
4). No evidence for pairwise epistasis between the SNPs was
found.

TABLE II
Prioritized co-GCM genes represented by SNPs in evolutionarily conserved regions for further genotyping in Malmö Diet and Cancer

Cardiovascular cohort (MDC-CC) cohort

Trait Gene SNP
GLGC
p-vlaue

Variant type/location DAPPLE
Genewanderer

ranking
GRAIL
p value

HDL-C INSR rs8101064 2.03E-05 INTRONIC ✓ 1 0.9
ASCC2 rs140147 0.0006 SPLICE_SITE 3 0.99
CYP3A4 rs12721617 0.002 INTRONIC 1 0.031
APP rs380713 0.003 INTERGENIC 1 0.3
SMURF2 rs6504248 0.006 INTERGENIC 1 0.96
EHMT2 rs9267659 0.008 INTRONIC 7 4.92E-11
SKIL rs6763533 0.009 INTRONIC 1 0.96
PSMA1 rs12362721 0.02 INTRONIC 3 0.126
TERT rs6554691 0.02 INTRONIC 1 0.636
RALYL rs6473532 0.03 INTERGENIC NA 0.956
FASN rs6502051 0.04 INTRONIC 1 0.45

LDL-C NDUFA4L2 rs11172134 0.0003 UPSTREAM ✓ NA 0.0006
CDK5RAP2 rs3739822 0.0008 SYNONYMOUS_CODING ✓ 5 0.65
ITGB3BP rs6588048 0.003 INTRONIC 3 0.98
SH3GL3 rs8025427 0.03 INTRONIC 1 0.48

TC CBS rs234706 0.007 SYNONYMOUS_CODING 2 0.13
ASAP1 rs7462286 0.02 INTRONIC ✓ 1 0.42
ITSN1 rs9984662 0.03 3PRIME_UTR 13 NA
EXOSC10 rs11583740 0.03 INTRONIC 5 0.75

TG DNM2 rs3826803 0.003 INTRONIC 5 0.85
HNF4A rs3212198 0.003 INTRONIC 1 0.22
PAFAH1B3 rs3826706 0.02 INTRONIC ✓ 5 0.7
COPS6 rs2307345 0.02 INTRONIC 5 0.43
ATP6V1E1 rs3532 0.02 3PRIME_UTR 3 0.86
NR2F2 rs4310804 0.04 INTERGENIC 2 NA

TABLE III
Characteristics of the subjects in the Malmö Diet and Cancer Cardio-

vascular cohort

Clinical character All (n � 5056)

Males/Females N (%) 2054 (40.6)/3002 (59.4)
Age (years) 57.5 � 5.9
Body mass index (kg/m2) 25.8 � 3.9
HDL-cholesterol (mmol/l) 1.4 � 0.4
LDL-cholesterol (mmol/l) 4.2 � 1.0
Total cholesterol (mmol/l) 6.2 � 1.1
Triglycerides (mmol/l) 1.4 � 0.8
Diabetes N (%) 416 (8.2)
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Expression of the CBS gene was associated with the di-
rectly measured rs234705 SNP, which served as a perfect
proxy for rs234706 (HapMap CEU LD of R2 � 1). The

rs234706 SNP was genotyped in the GLGC GWAS, and an
association between CBS gene expression and the rs234706
genotype was determined (43). The minor allele of SNP

FIG. 5. GCM module with CBS gene and the associated diseases. Combination schema including protein-protein interactions (purple),
metabolic interactions (red), and transcriptional interactions (yellow), gene-disease associations (dashed black), and relative risk associations
between diseases greater with magnitude greater than 1 (black line). Seed genes (red ovals), CBS GCM genes (dark blue ovals) and diseases
(gray) are linked within a highly interconnected module that includes Homocystinuria, venous embolism and thrombosis diseases associated
with CBS gene in OMIM.

TABLE IV
Association of selected GCM gene SNPs with their respective traits in MDC-CC. A synonmyous SNP (rs234706) in CBS gene was significantly

associated with the TC trait in MDC-CC

Trait N SNP (Chr) Gene Minor Allele (frequency, %) Beta (S.E.) p value

HDL-C 4916 rs8101064 (19) INSR T (3.9) �0.001 (0.001) 0.50
LDL-C 4822 rs11172134 (12) NDUFA4L2 A (23.7) 0.003 (0.02) 0.91
TC 4962 rs234706 (21) CBS A (45.9) 0.06 (0.02) 0.0032
TG 4933 rs3826803 (19) DNM2 C (35.0) 0.004 (0.01) 0.68
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rs234706 was significantly associated with mRNA levels of
CBS in the 206 liver biopsy samples (p � 0.04). In the disease
to gene mappings, homocystinuria, venous embolisms, and
thrombosis were associated with the CBS gene (Fig. 5). Co-
agulation defects, Diabetes mellitus and Charcot-Marie-Tooth
disease were associated with other genes in the CBS GCM
module, and comorbidities were found between these dis-
eases (with all disease pairs having RR �1, Fig. 5). We also
found genes associated with homocystinuria and APOA1 as-
sociated amyloidosis within the CBS GCM module. These
comorbid diseases have a RR score of 6.4, and the relation-
ship between TC, CBS, homocystinuria, APOA1, and amyloi-
dosis is supported by the observation that plasma cholesterol
and APOA1 are significantly decreased in homozygous CBS-
deficient mice (44).

DISCUSSION

Although the human interactome is far from complete,
merging network topological features with heterogeneous
GWAS data provides experimentally verifiable insights into
complex biological traits. Unlike approaches that test genes in
GWAS identified loci for overrepresentation in pathways (3),
our approach uses network context to prioritize specific can-
didate genes. The improvement in the precision of our pre-
dictions, related to the high coverage of seed genes by our
modules, is supported by coherent gene-disease and comor-
bidity associations. This highlights how seemingly unrelated
diseases may be the product of complex combinations of
shared molecular mechanisms. We believe that this allows our
three step procedure to compete with more established meth-
ods such as CANDID and MetaRanker, and to capture addi-
tional candidate genes missed by other methods (Table II).

The GCM approach prospectively allows us to use nomi-
nally significant GWAS p values in the hunt for missing heri-
tability while minimizing spurious hits. Many of our prioritized
candidates for lipid traits are related to cardiovascular and
coronary artery disease in the literature (40, 42, 45) (supple-
mental Table S3), providing a common sense measure of the
usefulness of our raw data and methodology.

The significant association of the synonymous SNP
rs234706 within the CBS gene to the TC and LDL-C traits,
together with the association between the synonymous SNP
and variable CBS mRNA levels in the liver (likely because of
linkage disequilibrium with the gene’s transcriptional regula-
tory elements (46)) suggests that CBS expression levels are
related to aberrant lipid profile traits in humans. It has been
shown that CBS knockout mice have altered distributions of
cholesterol and triglyceride lipoprotein fractions, and that mu-
tations in the CBS gene cause altered lipoprotein metabolism
as well as hyperhomocysteinemia (47). This finding demon-
strates the usefulness of the GCM approach in selecting lipid
and lipoprotein trait associated candidate genes.

Population level disease comorbidity between genes re-
vealed interconnected complex phenotypes. Integrating lipid

interactome data with patient medical records uncovered mo-
lecular associations for diseases unexpectedly comorbid with
lipid related disorders. Despite the incompleteness of current
protein-protein interactions and our incomplete knowledge of
disease gene associations, the GCM method validated in one
of the four SNPs tested. This 25% validation success rate
surpasses that of other candidate gene prediction methods
(8, 48, 49).

Although the GCM approach has been demonstrated using
GWAS of lipid traits, it can be used to interpret GWAS of other
traits as well. By capturing phenotypically coherent modules
of candidate and seed genes, the GCM approach provides
insights regarding involvement in complex phenotypes with
multiple susceptibility alleles and low effect sizes. In this way,
GCM as well as other network-based approaches may be of
broad use in dissecting complex diseases in the coming era of
systems medicine.
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