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Destruction perfected
Pinpointing the nodes whose removal most effectively disrupts a network has become a lot easier with the development of 
an efficient algorithm. Potential applications might include cybersecurity and disease control. See Letter p.65
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An enduring truth of network science is 
that the removal of a few highly con-
nected nodes, or hubs, can break up 

a complex network into many disconnected 
components1. Sometimes, a fragmented and 
inactive network is more desirable than a 
functioning one. Consider, for example, the 
need to eliminate bacteria by disrupting their 
molecular network or by vaccinating a few 
individuals in a population to break up the 
contact network through which a pathogen 
spreads. In a quest to find the silver bullets 
that can effectively dismantle large networks, 
Morone and Makse2 (page 65 of this issue) 
have developed an algorithm that achieves this 
by identifying sets of network nodes known  
as influencers. 

It is not certain whether targeting and 
removing network hubs — defined as the 
nodes with the largest number of links — can 
inflict maximum disruption on a network. It 
may be more effective to eliminate a combi-
nation of hubs and central, but less-well-con-
nected, nodes. The removal of hubs is usually 
preferred because they are easy to locate, 
whereas identifying the optimal set of nodes for 

which deletion would cause maximum damage  
is a non-deterministic polynomial-time hard 

(NP-hard) problem3. This means that it is com-
putationally feasible only for small networks. 
Morone and Makse attack the problem of 
network disruption by mapping the integrity 
of a tree-like random network into optimal 
percolation4,5 theory. From this, they derive 
an energy function with a minimum that cor-
responds to the set of nodes that need to be 
eliminated, to yield a network whose largest  
cluster is as small as possible. Although  
identifying this minimum is still an NP-
hard problem, the authors were inspired by 
the energy function’s shape to find a simple  
algorithm that offers an approximate solution. 

To do this, Morone and Makse introduce 
the concept of collective influence, which is 
the product of the node’s reduced degree (the 
number of its links minus one) and the sum 
of the reduced degrees of the nodes that are a 
certain number of steps away from it (Fig. 1). 
Collective influence describes how many 
other nodes can be reached from a given node, 
assuming that nodes of high collective influ-
ence have a crucial role in the network. The 
collective-influence-based algorithm then 
sequentially removes nodes, starting with 
those that have the highest collective influence 

(known as influencers) and recalculating the 
collective influence of the rest following each 
operation. The authors show that, for large 
networks, removing the set of influencers 
identified by this algorithm is more effective 
in fragmenting a network than removing 
the hubs, or than removing nodes that are 
identified through other algorithms, such as 
PageRank6 or closeness centrality7. The set of 
influencers identified by the authors contains 
many nodes with few connections. This high-
lights the fact that the importance of a node in 
ensuring a network’s integrity is determined 
not only by the number of direct links it has to 
other nodes, but also by which other nodes it 
is connected to.

The collective-influence algorithm is 
remarkable for its computational complexity 
because it requires only N2logN computa-
tions to dismantle a network that contains N 
number of nodes. Its complexity is reduced to 
NlogN if, instead of individual nodes, a fixed 
fraction of the total is removed at each step of 
the computation. The authors compare their 
method to the predictions of spin-glass theory, 
which was originally developed to describe 
the properties of disordered magnets and has 
found a range of applications in network analy-
sis. They conclude that the nodes prioritized 

Figure 1 | Optimal network demolition.  Morone and Makse2 introduce an 
algorithm that allows them to efficiently dismantle networks. The authors 
define the collective influence of a network node as the product of its reduced 
degree (the number of its nearest connections, k, minus one), and the total 
reduced degree of all nodes at distance d from it (defined as the number of 
steps from it). a, In this network, for d = 2, the red node with k = 4 has the 
highest collective influence, because the total reduced degree of the nodes at 
d = 2 from it (green and yellow circles) is 21. This yields a collective influence 
of  3 × 21 = 63. The most connected hub, with k = 6 (yellow circle), has a 

collective influence of  60. b, Removing the 6 nodes with the highest k (white 
circles) causes considerable damage to the network, but leaves a sub-network 
that contains 12 nodes unperturbed. c, By contrast, the algorithm developed 
by the authors allows them to identify a set of nodes (known as influencers) 
according to their collective influence. Using this, the removal of four 
influencer nodes (white circles) results in a fragmented network in which  
the largest connected cluster that remains has only ten nodes. This illustrates 
the algorithm’s effectiveness over conventional methods for prioritizing 
network destruction.
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by the collective-influence algorithm represent  
an approximate solution, which has a size 
close to that of the theoretical optimal solu-
tion. On the basis of spin-glass theory, we 
expect that the collective-influence solution 
has only a small overlap with the optimal solu-
tion, and hence must be treated with caution. 
However, the influencers found by collective 
influence are more effective in destroying a 
network than nodes selected by other meth-
ods. So even though the collective-influence  
method is approximate, it is faster and  
more efficient.

As with any new algorithm, open questions 
abound. The collective-influence algorithm 
has only one free parameter — the distance, 
expressed in the number of steps, from any 
given node. At zero distance, the collective 
influence of a node is equal to the square of its 
reduced degree, and so in this case the algo-
rithm simply removes the hubs. To improve 
the algorithm’s accuracy, one must choose a 
non-zero distance — but one that is not too 
large, because for large distances the bounda-
ries of the network are reached, diminishing a 
node’s collective influence (the collective influ-
ence approaches zero). Although Morone and 
Makse find that any distance greater than one 
works, a firm criterion for choosing an optimal 
value is lacking and would be desirable. Finally, 
because the authors designed their algorithm 
to work on networks that are locally tree-like, 
further work and quantitative evidence are 
needed on its expected accuracy for networks 
with loops, such as most social networks.

The collective-influence algorithm, just like 
similar algorithms, removes a node together 
with all its links. However, for many systems, 
node removal is too drastic an intervention. 
Softer touches, such as removing or rewir-
ing specific links, are more tractable and 
desirable. For example, these approaches are 
relevant for networks in biological cells, in 
which many diseases are caused by mutations 
that result in deletion of links rather than the 
complete removal of nodes8. Understanding 
such ‘edgetic’ effects, and designing algorithms 
that can detect the minimum number of links 
to delete so as to achieve a given outcome, 
remains a challenge for future work. 

The identification of optimal influencers,  
at either the node or the link level, is the first 
step towards building networks that would 
be robust against both attacks and failures. 
Mastering the design principles of such 
super-robust networks could have profound 
implications for anything from cybersecurity 
to the design of an attack- and error-tolerant 
power grid, and may even allow us to develop 
drugs that can rescue a cellular network from 
its diseased state with minimal side effects. ■
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A smart insulin patch
A microneedle-containing patch that is designed to sense elevated blood glucose 
levels and to respond by releasing insulin could offer people with diabetes a  
less-painful and more-reliable way to manage their condition.

O M I D  V E I S E H  &  R O B E R T  L A N G E R

Diabetes is widely recognized as one of 
the biggest medical challenges of the 
twenty-first century, afflicting more 

than 280 million people globally1. People with 
diabetes must tirelessly self-monitor their 
blood glucose levels and inject the correct 
dose of the glucose-lowering hormone insu-
lin to keep their blood glucose levels in the 

normal range2. This treatment regime involves  
challenges — it requires painful and inconven-
ient subcutaneous injections, is imprecise, and 
can cause serious problems if insulin dosage 
is not closely tuned to the patient’s immediate 
physiological needs3. Reporting in Proceedings 
of the National Academy of Sciences, Yu et al.4 
describe a glucose-responsive microneedle 
patch that can be painlessly applied to the skin 
and that releases insulin as blood glucose levels 
increase.  

‘Smart’ glucose-responsive insulin-based 
therapies involve the automatic release of insu-
lin in response to increases in blood glucose 
concentration. Smart therapies can improve 
disease control and limit the potential for 
excessively low blood glucose levels, which is 
a potentially deadly effect of excessive insulin 
dosing3. To mimic the physiological needs 
of a patient accurately, such therapies must 
respond rapidly to elevated glucose levels, and 
must release insulin with kinetics that closely 
mirror those of a healthy pancreas. 

One type of smart therapy makes use of 
microcomputer-controlled insulin-delivery 
systems. These systems couple implant-
able continuous glucose monitors (CGMs) 
to automated pumps, and administer insulin 
through a subcutaneously inserted cannula 
tube. They are currently being evaluated in 
the clinic, and have shown promise in helping 
patients to achieve their target blood glucose 
level more regularly5,6. However, the sensors 
of current CGMs must be calibrated many 
times a day using hand-held glucometers. 
They produce blood-glucose measurements 
that lag behind true blood glucose levels by 
5–15 minutes, hampering efforts to maintain a 
healthy range3. They are also the size of pagers,  
and the implanted sensors and cannula 
increase the risk of infection and require fre-
quent maintenance and replacement to combat 
the body’s immune response, increasing incon-
venience, discomfort and cost to the patient3.

The microneedle-patch device developed 
by Yu and colleagues is a 6-millimetre-square 

Figure 1 | A microneedle patch to monitor 
glucose and release insulin.  Yu et al.4 have 
developed a smart insulin-releasing patch made 
of 121 nanoparticle-containing microneedles. 
The patch painlessly penetrates the interstitial 
fluid between subcutaneous skin cells. The 
nanoparticles in each needle contain insulin and 
the glucose-sensing enzyme glucose oxidase, 
which converts glucose to gluconic acid. These 
molecules are surrounded by a hypoxia-responsive 
polymer. Increases in glucose oxidase activity in 
response to glucose elevation produce a low-oxygen  
environment in the nanoparticles, which is sensed 
by the hypoxia-responsive polymer, triggering 
disassembly of the nanoparticles and the release 
of insulin.
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