
ARTICLES
PUBLISHED ONLINE: 10 AUGUST 2015 | DOI: 10.1038/NPHYS3422

Spectrum of controlling and observing
complex networks
Gang Yan1†, Georgios Tsekenis1†, Baruch Barzel2, Jean-Jacques Slotine3,4, Yang-Yu Liu5,6

and Albert-László Barabási1,6,7,8*

Recent studies have made important advances in identifying sensor or driver nodes, through which we can observe or control a
complex system. But the observational uncertainty induced bymeasurement noise and the energy required for control continue
to be significant challenges in practical applications. Here we show that the variability of control energy and observational
uncertainty for di�erent directions of the state space depend strongly on the number of driver nodes. In particular, we find that
if all nodes are directly driven, control is energetically feasible, as the maximum energy increases sublinearly with the system
size. If, however, we aim to control a system through a single node, control in some directions is energetically prohibitive,
increasing exponentially with the system size. For the cases in between, the maximum energy decays exponentially when
the number of driver nodes increases. We validate our findings in several model and real networks, arriving at a series of
fundamental laws to describe the control energy that together deepen our understanding of complex systems.

Many natural and man-made systems can be represented as
networks1–3, where nodes are the system’s components and
links describe the interactions between them. Thanks to

these interactions, perturbations of one node can alter the states
of the other nodes4–6. This property has been exploited to control
a network—that is, to move it from an initial state to a desired
final state7–9—by manipulating the state variables of only a subset
of its nodes10,11. Such control processes10–26 play an important role in
the regulation of protein expression27, the coordination of moving
robots28, and the inhibition of undesirable social contagions29. At the
same time the interdependence between nodesmeans that the states
of a small number of sensor nodes contain su�cient information
about the rest of the network, so that we can reconstruct the system’s
full internal state by accessing only a few outputs30. This can be
utilized for biomarker design in cellular networks, or to monitor in
real time the state and functionality of infrastructural31 and social–
ecological32 systems for early warning of failures or disasters33.

Although recent advances in driver and sensor node
identification constitute unavoidable steps towards controlling and
observing real networks, in practice we continue to face significant
challenges: the control of a large networkmay require a vast amount
of energy16–18, and measurement noise34 causes uncertainties in
the observation process. To quantify these issues we formalize the
dynamics of a controlled network with N nodes and ND external
control inputs as7–10

ẋ(t)=Ax(t)+Bu(t) (1)

where the vector x(t) = [x1(t), x2(t), . . . , xN (t)]T describes the
states of the N nodes at time t and xi(t) can represent the

concentration of a metabolite in a metabolic network35, the
geometric state of a chromosome in a chromosomal interaction
network14, or the belief of an individual in opinion dynamics29,36.
The vector u(t)=[u1(t),u2(t), . . . ,uND(t)]T represents the external
control inputs, and B is the input matrix, with Bij = 1 if control
input uj(t) is imposed on node i. The adjacency matrix A captures
the interactions between the nodes, including the possibility of self-
loops Aii representing the self-regulation of node i.

Control energy
The system (1) can be driven from an initial state xo to any desired
final state xd within the time t 2 [0, ⌧ ] using an infinite number
of possible control inputs u(t). The optimal input vector aims to
minimize the control energy7

R ⌧

0 ku(t)k2dt , which captures the
energy of electronic andmechanical systems or the amount of e�ort
required to control biological and social systems. If at t = 0 the
system is in state xo =0, the minimum energy required to move the
system to point xd in the state space can be shown to be7,16–18

E(⌧ )=xTdG�1
c (⌧ )xd (2)

where Gc(⌧ ) = R ⌧

0 eAtBBTeATtdt is the symmetric controllability
Gramian. When the system is controllable all eigenvalues of Gc(⌧ )
are positive. Equation (2) indicates that for a networkA and an input
matrix B the control energy E(⌧ ) also depends on the desired state
xd. Consequently, driving a network to various directions in the state
space requires di�erent amounts of energy. For example, to move
the weighted network of Fig. 1a to the three di�erent final states xd
with kxdk= 1, we inject the optimal signals u(t) shown in Fig. 1b
onto node 1, steering the system along the trajectories shown in
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Figure 1 | Controlling and observing a network. a, The control of a three-node weighted network with one external signal u(t) that is injected to the red
driver node. Hence the input matrix is B=[1,0,0]T. The nodes have negative self-loops that make all eigenvalues of the adjacency matrix A negative.
b, Optimal control signals that minimize the energies required to move the network from the initial state xo =[0,0,0]T to three di�erent desired states xd
with kxdk= 1 in the given time interval t2 [0,3]. c, Trajectories of the network state x(t) driven respectively by the control signals in b. d, Control energy
surface, showing the amount of energy required to move the network by one unit distance (that is, kxdk= 1) in di�erent directions. The surface is an
ellipsoid spanned by the eigen-energies for the controllability Gramian’s three eigen-directions (arrows). The squares correspond to the three final points
used in b and c. e, Observing the network with one output y(t). Node 1 is selected as the sensor (green), thus the output matrix is C=[1,0,0]. The
measurement noise w(t) is assumed as Gaussian white noise with zero mean and variance one. f, A typical output y(t) that is used to approximate the
initial state xo. g, A typical trajectory of the system state x(t). h, Estimation error x̃= x̂o� xo, where x̂o is the maximum-likelihood estimator of the initial
state. Starting from the same initial state we ran the system 5,000 times independently, each dot representing the estimation error of one run. The
uncertainty ellipsoid (black) corresponds to the standard deviation of x̃ in any direction.

Fig. 1c. The corresponding minimum energies are shown in Fig. 1d.
The control energy surface for all normalized desired states is an
ellipsoid, implying that the required energy varies drastically as we
move the system in di�erent directions.

As real systems normally function near a stable state—that
is, all eigenvalues of A are negative37—the control energy E(⌧ )

decays quickly to a nonzero stationary value when the control
time ⌧ increases16. Henceforth we focus on the control energy
E⌘E(⌧ !1) and the controllability Gramian G⌘Gc(⌧ !1).

Given a network A and an input matrix B, the controllability
Gramian G is unique, embodying all properties related to the
control of the system. To uncover the directions of the state space
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Figure 2 | Controlling a network through all nodes (ND=N). Distribution p(E) of eigen-energies required to control several model and real systems.
a, Scale-free model network without degree–degree correlation. b, Scale-free model networks with positive (r=0.25) or negative (r=�0.24)
degree–degree correlation. c, Erdős–Rényi model network. d, Airline transportation network. e, Internet AS-level network. f, US power grid network.
g, Israeli social network. h, User-interaction network of an online forum. i, Interlocking network of Norwegian companies. j, Human protein–protein
interaction network. k, Human heterogeneous network. l, Functional coactivation network of the human brain. The straight lines show prediction (4) and
the error bars represent standard deviations. For model networks the edges’ weights Aij are uniformly drawn from [0,1]. The self-loops Aii =�P

j Aij ��,
where �=0.25, representing a small perturbation to diagonal entries, to ensure that the network is stable. The data sources and basic characteristics of
these networks are discussed in Supplementary Section VI A.

requiring di�erent energies, we explore the eigen-space ofG. Denote
by Ei the eigen-energies (that is, the minimum energy required
to drive the network to the eigen-directions of G). According to
equation (2) Ei =1/µi, with µi corresponding to the eigenvalues of
G. Generally, the energy surface for a network with N nodes is a
super-ellipsoid spanned by theN eigen-energies ofG. To determine
the distribution of these eigen-energies we decompose the adjacency
matrix as A=V3V T, where V represents the eigenvectors of A
and 3=diag{��1,��2, . . . ,��N } are the eigenvalues. For stable

undirected networks all eigenvalues of A are negative, thus we
denote the eigenvalues by ��i so that the absolute eigenvalues are
�i >0 for all i. We sort the absolute eigenvalues in ascending order
0<�1 <�2 < · · ·<�N , finding that (Supplementary Section I)

G=V [(V TBBTV )�C]V T (3)

where � denotes Hadamard product, defined as (X �Y )ij =XijYij,
and C is a matrix with entries Cij = 1/(�i +�j). For a given
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Figure 3 | Controlling a network through a single node (ND=1). Panels show the complementary cumulative distribution p>(E) of eigen-energies required
to control several model and real systems. a, Scale-free model network without degree–degree correlation. b, Scale-free model networks with positive
(r=0.34) or negative (r=�0.36) degree–degree correlation. c, Erdős–Rényi model network. d, Sampled airline network. e, Internet AS-level network in
1997. f, IEEE power grid test network. g, Human-contact network of the ACM Hypertext 2009 conference. h, Email interaction network. i, Phone call
network between di�erent countries. j, Connected component of the human gene-coexpression network. k, Mutualism ecological network in Mauritius.
l, Inter-region network of cat cortex. The insets are log–log plots of probability distributions p(E) with logarithmic binning3. The straight lines show
prediction (5) and the error bars represent standard deviations. The data sources and basic characteristics of these networks are discussed in
Supplementary Section VI A.

network, (3) captures the impact of the inputmatrixB on the control
properties of the system, allowing us to analyse the distribution of
eigen-energies for di�erent numbers of driver nodes and determine
the required energy for each direction.

Controlling a system through all nodes
If we can control all nodes (that is, ND =N ), B becomes a unit
diagonal matrix. In this case G=Vdiag{1/2�i}V T and the eigen-
directions of the controlled system are the same as the network’s

eigenvectors. Thus Ei = 2�i and p(E) = (1/2)p(�), meaning the
distribution of eigen-energies is proportional to the distribution
of the network’s absolute eigenvalues. We add self-loops as
Aii =�(�+PN

j=1Aij), where � >0 is a small perturbation to ensure
that all eigenvalues of A are negative. This scheme has been widely
used in previous studies on dynamical processes taking place
on networks, such as opinion dynamics29, synchronization38 and
control16. For networks with degree distribution1–3 p(k) ⇠ k�� the
distribution of the absolute eigenvalues of A also obeys a power
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Figure 4 | Controlling a network through a finite fraction of its nodes. a, Multi-peak distributions p[ log(E)] for 1<ND <N, where the dots represent
numerical results. The solid curves and shaded areas are smoothed for illustration. END denotes the boundary of the first energy band that contains ND
eigen-energies. Emax is the maximum control energy corresponding to the most di�cult direction. The number of peaks is Npeak = int[N/ND] (see also
Supplementary Fig. 3). b,c, The eigen-energy spectrum for controlling the network (b). There is a gap in the logarithmic scale between the NDth and the
(ND + 1)th smallest eigen-energies, which leads to the two-peak distribution p[log(E)] shown in c. d, log(Emax) and log(END ) as functions of N/ND,
indicating that Emax ⇠eN/ND whereas END depends weakly on ND. e–j, We also test the prediction in real networks: the North European power grid network
(e), the interlocking network of Norwegian companies (f), the functional coactivation network of the human brain (g), an Internet AS-level network in
December 1998 (h), the user-interaction network of an online forum (i) and the metabolic network of Caenorhabditis elegans (j). The straight lines show the
prediction Emax ⇠eN/ND and the error bars represent standard deviations. The data sources and basic characteristics of these networks are discussed in
Supplementary Section VI A.

law39,40 p(�)⇠��� (see Supplementary Section II A). Consequently,

p(E)⇠E�� (4)

indicating that the system can be easily driven in most directions
of the state space, requiring a small E . A few directions require
considerable energy and the most di�cult direction needs41
Emax ⇠ N 1/(��1). The fact that Emax is sublinear in N for � > 2
indicates that, when ND =N , the energy density E/ND remains
bounded. In Fig. 2 we test the prediction (4) for several model,
infrastructural, social and biological networks. We find that p(E)
follows a power law for uncorrelated or correlated scale-free
model networks (Fig. 2a,b), the airline transportation network
(Fig. 2d), the Internet AS-level network (Fig. 2e), an Israeli social

network (Fig. 2g), the user-interaction network of an online
forum (Fig. 2h), the human protein–protein interaction network
(Fig. 2j) and the human heterogeneous network (Fig. 2l), in line
with the prediction (4). In contrast, for several networks with
bounded degree distribution, such as the ErdÆs–Rényi random
network (Fig. 2c), the US power grid network (Fig. 2f), the
interlocking network of Norwegian companies (Fig. 2i) and the
functional coactivation network of the human brain (Fig. 2l),
p(E) is also bounded, as predicted by � ! 1 in (4). Such
networks require even less energy to control their progress in
their most di�cult direction. Taken together, we find that for
ND =N the distribution of eigen-energies is uniquely determined
by network topology, and we lack significant energetic barriers
for control.
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Controlling a system through a single node
If there is not degeneracy in A’s eigenvalues we can control an
undirected network by driving only a single node11,42. In this
case V TBBTV = {VihVjh} ⇠O(1/N ), where h is the index of the
chosen driver node. Thus V TBBTV can be viewed as a small
perturbation to the matrix C in (3). The statistical behaviour of
the eigenvalues of G is mainly determined by the eigenvalues of C ,
which can be approximated by Cholesky factors43. As mentioned
above, for networks with p(k)⇠k�� , the distribution of the absolute
eigenvalues of A also follows a power law, providing the ith
eigenvalue �i ⇠(N/(N +1� i))1/(��1) (Supplementary Section II B).
If � ! 0—that is, for extremely heterogeneous networks15,44—
the eigenvalue gaps gi ⌘ �i+1 � �i are identical. For � ! 1
(homogeneous networks), gi is again uniform.Hence it is reasonable
to assume gi = g for all i, allowing us to analytically obtain
the distribution of eigen-energies as p(E) ⇠ 1/(1+ 1/E)E�1 (see
Supplementary Section III A, B). Therefore,

p(E)⇠E�1 (5)

for large E . Equation (5) predicts that, to drive a stable network
of N nodes with a single driver node, the most di�cult direction
in the state space requires Emax ⇠ eN energy (Supplementary
Section III C). This exponential N -dependence makes the control
of large networks in the most di�cult direction energetically
infeasible. For validation we also consider the complementary
cumulative distribution p>(E)=R Emax

E p(E 0)dE 0. Based on (5) we
obtain p>(E)⇠(lnEmax � lnE), decreasing linearly with ln E . We
test our prediction on several network models (Fig. 3a–c) and real
networks (Fig. 3d–l), finding that the corresponding eigen-energies
span over a hundred orders of magnitude and this exceptional range
of variations is reasonably well approximated by (5) for both p>(E)
and p(E). Taken together, if we attempt to control a network from
a single node (ND = 1), the required energy varies enormously for
di�erent directions, almost independently of the network structure,
making some directions prohibitively expensive energetically.

Controlling a system through a finite fraction of its nodes
When p(E)⇠ E�� , the distribution p(Ê)⇠ e(1�� )Ê , where Ê ⌘ ln E .
Thus, if ND =N , p(Ê) is an exponential (one-peak) distribution
for � > 2 in (4); if ND = 1, as p(E)⇠E�1 in (5), p(Ê) is a uniform
distribution. To understand the transition from (4) for ND =N to
(5) forND =1, we investigate the distribution p(Ê)when 1<ND <N
(that is, when we try to control a system through a finite fraction
of its nodes). In this case we find that p(Ê) has multiple peaks
(Fig. 4a), which are induced by gaps in the eigen-energy spectrum
(Fig. 4b). For ND/N = 0.6, a gap separates the eigen-energies into
two bands, such that the lower band contains ND eigen-energies.
This gap leads to two peaks in the distribution p(Ê), as shown
in Fig. 4c. When we have fewer driver nodes (ND/N decreases),
the number of peaks Npeak increases (Fig. 4a). We find that
Npeak = int[N/ND], predictingNpeak =2,4,5 forND/N =0.5,0.25,0.2,
respectively (see also Supplementary Fig. 3). The multi-peak nature
of p(Ê) has two important implications. First, the boundary of
the first energy band END varies only weakly with ND (Fig. 4d),
indicating that the energy required to move the network within
the subspace spanned by the first ND eigen-directions is relatively
small. Second, Ê (that is, log E) grows linearly from one band to
the next (Supplementary Fig. 4). Thus, log Emax (the boundary of
the last band) is linearly dependent on the number of peaks (that
is, Emax ⇠ eN/ND ) (Fig. 4d). Controlling a single node induces N
peaks in p(Ê), consequently the distribution p(Ê) becomes uniform
(Supplementary Fig. 3), resulting in p(E)⇠E�1 of (5) and Emax ⇠eN .
We numerically test the prediction Emax ⇠eN/ND for several real
networks (Fig. 4e–j), the result being in excellent agreement with
our prediction.

Table 1 | Controlling complex networks with di�erent numbers
of driver nodes.

Number of Distribution of eigen- Maximum control
driver nodes energies energy
ND =N p(E)⇠E�� Emax ⇠N1/(��1)

1<ND <N Npeak = int[N/ND] for p[log(E)] Emax ⇠eN/ND

ND = 1 p(E)⇠E�1 Emax ⇠eN

N is the total number of nodes and ND is the number of driver nodes. � is the exponent of the
degree distributions p(k)⇠k�� . For large � the network becomes degree-homogeneous,
behaving similarly to a random network.

In Table 1 we summarize our findings about the distribution
of eigen-energies and the maximum energy required to control a
system towards the most di�cult direction.

Implications to observational uncertainty
The results obtained above have direct implications for observability
as well. Indeed, consider a system governed by the dynamics

ẋ(t)=Ax(t)

y(t)=Cx(t)+w(t)

with an initial state xo 6= 0, where C is the output matrix
and y(t) are the output signals including measurement noise
w(t), which we assume to be a Gaussian white noise with
zero mean and variance one. We aim to estimate x̂o of the
initial state xo while minimizing the di�erence

R ⌧

0 ky(t)�ŷ(t)k2dt
between the output y(t) that is actually observed and the output
ŷ(t)=CeAt x̂o that would be observed in the absence of noise. With
themaximum-likelihood approximation45, the expectation hx̂oi=xo
and the covariance matrix45 hx̃x̃Ti=G�1

o (⌧ ), where x̃⌘ x̂o �xo is the
estimation error and Go(⌧ )= R ⌧

0 eATtCTCeAtdt is the observability
Gramian. Therefore, the variance � 2 of the approximation in
direction x̃ is

� 2(⌧ )= x̃TG�1
o (⌧ )x̃ (6)

indicating that the estimation uncertainty varies with the direction
of the state space. To illustrate this, consider the network in Fig. 1e
that moves along the trajectory of Fig. 1g, while we measure the
state of the sensor node and plot the noisy output y(t) in Fig. 1f.
With the maximum-likelihood approximation we reconstruct xo
from y(t) and show the estimation error x̃⌘ x̂o �xo for thousands of
independent runs (Fig. 1h). The estimation variance is di�erent for
various directions, forming an uncertainty ellipsoid. Thanks to the
duality between Gc(⌧ ) and Go(⌧ ), the control energy for a direction
in Fig. 1d represents the estimation variance for the same direction
in Fig. 1h.

To be specific, owing to the duality of the controllability Gramian
Gc in (2) and the observability Gramian Go in (6), we have � 2 =E
for the same direction, implying that the least controllable direction
(that is, the direction requiring the most energy) is also least
observable (having highest uncertainty). Therefore, our findings
about the distribution of eigen-energies apply directly to the
distribution of � 2 along the eigen-directions: if all nodes are sensor
nodes (NS =N ) we have p(� 2)⇠(� 2)�� ; if we attempt to observe the
system from a single node (NS =1) we have p(� 2)⇠(� 2)�1; and for a
finite fraction of sensor nodes (1<NS <N ) the largest observational
uncertainty � 2

max decreases exponentially when the number of sensor
nodes increases (that is, � 2

max ⇠eN/NS ).

Beyond the degree distribution
Real networks have a number of additional properties that are not
encoded by their degree distributions, such as local clustering46,
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degree correlations47 and community structure48 (Supplementary
Table 1). To assess the impact of these topological characteristics
we perform the degree-preserved randomization49 on each network,
eliminating local clustering, degree correlations and modularity.
We find that the distribution of eigen-energies required to drive
each randomized network follows the predictions (4) and (5)
(Supplementary Figs 6 and 7), indicating that degree distribution
is the main factor determining p(E). When the number of
driver nodes increases, the maximum control energy for the
randomized networks decreases exponentially, as predicted earlier
(Supplementary Fig. 8). We also validate the predictions (4) and (5)
on model networks with positive or negative degree correlations
(Figs 1b and 2b). All the tests indicate that the strength of local
clustering, degree correlations or community structure have only
minor influence on the behaviour of control energy. Consequently,
our calculations for uncorrelated networks capture the correct
fundamental dependence of control energy for real networks.

Many real networks have dead ends (that is, nodes with one
degree), which can undermine the stability of complex systems50.
To test the impact of dead ends on control energy we explored
several real networks that contain a considerable number of one-
degree nodes (see Supplementary Table 1). As shown in Figs 2–4
and Supplementary Figs 6–8, the predictions are robust against such
dead ends.

Discussion
The energy required for control is a significant issue for practical
control of complex systems. By exploring the eigen-space of
controlled systems we found that if all nodes of a system are directly
driven, the eigen-energies can be heterogeneous or homogeneous,
depending on the structure of underlying networks. Yet, if we wish
to control a system through a single node, the eigen-energies are
enormously heterogeneous, almost independently of the network
structure. Finally, if a finite fraction of nodes are driven, the
maximum control energy decays exponentially with the increasing
number of driver nodes. Taken together, our results indicate that
even if controllable, most systems still have directions which
are energetically inaccessible, suggesting a natural mechanism to
avoid undesirable states. Indeed, many complex systems, such as
transcriptional networks for gene expression51 and sensorimotor
systems for motion control52, need only to function in a low-
dimensional subspace. Owing to the duality between controllability
and observability, our results also imply that, if we monitor only a
small fraction of nodes, the observation can be extremely unreliable
in certain directions of the phase space.

It is worth noting that linear dynamics captures the behaviour
of nonlinear systems in the vicinity of their equilibria. The
formalism (1) has been widely used to model diverse networked
systems14,18,24,29,36 (see also Supplementary Section VII A, B),
allowing us to reveal the role of the network topology on the
fundamental control properties of complex systems10,11,14–24. Indeed,
if the linearized system (1) is controllable, the original nonlinear
system is locally controllable53. The corresponding control energy
is also highly heterogeneous for di�erent directions, if we constrain
the system’s trajectory to be local (Supplementary Section VII C).
Moreover, if the linearized dynamics of a nonlinear system is
controllable along a specific trajectory, the original nonlinear system
is locally controllable along the same trajectory53. This implies that
our results can be potentially extended to describe control properties
of nonlinear systems in the vicinity of their stability basin50,54. Yet, in
this case, the linearized dynamics becomes time-varying, and the
required energy for controlling time-varying systems remains an
open problem that deserves future attention.
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published online 10 August 2015

References
1. Albert, R. & Barabási, A.-L. Statistical mechanics of complex networks. Rev.

Mod. Phys. 74, 47–97 (2002).
2. Cohen, R. & Havlin, S. Complex Networks: Structure, Robustness and Function

(Cambridge Univ. Press, 2010).
3. Newman, M. E. J. Networks: An Introduction (Oxford Univ. Press, 2010).
4. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D. Complex

networks: Structure and dynamics. Phys. Rep. 424, 175–308 (2006).
5. Barrat, A., Barthelemy, M. & Vespignani, A. Dynamical Processes on Complex

Networks (Cambridge Univ. Press, 2008).
6. Barzel, B. & Barabási, A.-L. Universality in network dynamics. Nature Phys. 9,

673–681 (2013).
7. Rugh, W. J. Linear System Theory (Prentice-Hall, 1996).
8. Sontag, E. D.Mathematical Control Theory: Deterministic Finite Dimensional

Systems (Springer, 1998).
9. Slotine, J.-J. & Li, W. Applied Nonlinear Control (Prentice-Hall, 1991).
10. Liu, Y.-Y., Slotine, J.-J. & Barabási, A.-L. Controllability of complex networks.

Nature 473, 167–173 (2011).
11. Yuan, Z., Zhao, C., Di, Z., Wang, W.-X. & Lai, Y.-C. Exact controllability of

complex networks. Nature Commun. 4, 2447 (2013).
12. Sorrentino, F., di Bernardo, M., Garofalo, F. & Chen, G. Controllability of

complex networks via pinning. Phys. Rev. E 75, 046103 (2007).
13. Yu, W., Chen, G. & Lü, J. On pinning synchronization of complex dynamical

networks. Automatica 45, 429–435 (2009).
14. Rajapakse, I., Groudine, M. & Mesbahi, M. Dynamics and control of

state-dependent networks for probing genomic organization. Proc. Natl Acad.
Sci. USA 108, 17257–17262 (2011).

15. Nepusz, T. & Vicsek, T. Controlling edge dynamics in complex networks.
Nature Phys. 8, 568–573 (2012).

16. Yan, G., Ren, J., Lai, Y.-C., Lai, C.-H. & Li, B. Controlling complex networks:
How much energy is needed? Phys. Rev. Lett. 108, 218703 (2012).

17. Sun, J. & Motter, A. E. Controllability transition and nonlocality in network
control. Phys. Rev. Lett. 110, 208701 (2013).

18. Pasqualetti, F., Zampieri, S. & Bullo, F. Controllability metrics, limitations and
algorithms for complex networks. IEEE Trans. Control Netw. Syst. 1,
40–52 (2014).

19. Tang, Y., Gao, H., Zou, W. & Kurths, J. Identifying controlling nodes in
neuronal networks in di�erent scales. PLoS ONE 7, e41375 (2012).

20. Jia, T. et al. Emergence of bimodality in controlling complex networks. Nature
Commun. 4, 2002 (2013).

21. Ruths, J. & Ruths, D. Control profiles of complex networks. Science 343,
1373–1376 (2014).

22. Menichetti, G., Dall’Asta, L. & Bianconi, G. Network controllability is
determined by the density of low in-degree and out-degree nodes. Phys. Rev.
Lett. 113, 078701 (2014).

23. Summers, T. H., Cortesi, F. L. & Lygeros, J. On submodularity and
controllability in complex dynamical networks. Preprint at
http://arXiv.org/abs/1404.7665v2 (2014).

24. Tzoumas, V., Rahimian, M. A., Pappas, G. J. & Jadbabaie, A. Minimal actuator
placement with optimal control constraints. Preprint at
http://arXiv.org/abs/1503.04693 (2015).

25. Cornelius, S. P., Kath, W. L. & Motter, A. E. Realistic control of network
dynamics. Nature Commun. 4, 1942 (2013).

26. Whalen, A. J., Brennan, S. N., Sauer, T. D. & Schi�, S. J. Observability and
controllability of nonlinear networks: The role of symmetry. Phys. Rev. X 5,
011005 (2015).

27. Menolascina, F. et al. In-vivo real-time control of protein expression from
endogenous and synthetic gene networks. PLoS Comput. Biol. 10,
e1003625 (2014).

28. Rahmani, A., Ji, M., Mesbahi, M. & Egerstedt, M. Controllability of multi-agent
systems from a graph-theoretic perspective. SIAM J. Control Optim. 48,
162–186 (2009).

29. Acemoglu, D., Ozdaglar, A. & ParandehGheibi, A. Spread of (mis)information
in social networks. Games Econ. Behav. 70, 194–227 (2010).

30. Liu, Y.-Y., Slotine, J.-J. & Barabási, A.-L. Observability of complex systems.
Proc. Natl Acad. Sci. USA 110, 2460–2465 (2013).

31. Yang, Y., Wang, J. & Motter, A. E. Network observability transitions. Phys. Rev.
Lett. 109, 258701 (2012).

32. Pinto, P. C., Thiran, P. & Vetterli, M. Locating the source of di�usion in
large-scale networks. Phys. Rev. Lett. 109, 068702 (2012).

33. Sche�er, M. et al. Anticipating critical transitions. Science 338,
344–348 (2012).

34. Friedman, N. Inferring cellular networks using probabilistic graphical models.
Science 303, 799–805 (2004).

35. Almaas, E., Kovács, B., Vicsek, T., Oltvai, Z. N. & Barabási, A.-L. Global
organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427,
839–843 (2004).

NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics 7

© 2015 Macmillan Publishers Limited. All rights reserved



ARTICLES NATURE PHYSICS DOI: 10.1038/NPHYS3422

36. Castellano, C., Fortunato, S. & Loreto, V. Statistical physics of social dynamics.
Rev. Mod. Phys. 81, 591–646 (2009).

37. May, R. M. Stability and Complexity in Model Ecosystems (Princeton Univ.
Press, 1974).

38. Pecora, L. M. & Carroll, T. L. Master stability functions for synchronized
coupled systems. Phys. Rev. Lett. 80, 2109–2112 (1998).

39. Chung, F., Lu, L. & Vu, V. Spectra of random graphs with given expected
degrees. Proc. Natl Acad. Sci. USA 100, 6313–6318 (2003).

40. Kim, D. & Kahng, B. Spectral densities of scale-free networks. Chaos 17,
026115 (2007).

41. Cohen, R., Erez, K., ben Avraham, D. & Havlin, S. Resilience of the Internet to
random breakdowns. Phys. Rev. Lett. 85, 4626–4628 (2000).

42. Cowan, N. J., Chastain, E. J., Vilhena, D. A., Freudenberg, J. S. &
Bergstrom, C. T. Nodal dynamics, not degree distributions, determine the
structural controllability of complex networks. PLoS ONE 7, e38398 (2012).

43. Antoulas, A. Approximation of Large-Scale Dynamical Systems (SIAM, 2009).
44. Del Genio, C., Gross, T. & Bassler, K. All scale-free networks are sparse. Phys.

Rev. Lett. 107, 178701 (2011).
45. Kailath, T., Sayed, A. & Hassibi, B. Linear Estimation (Prentice-Hall, 2000).
46. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks.

Nature 393, 440–442 (1998).
47. Newman, M. E. J. Assortative mixing in networks. Phys. Rev. Lett. 89,

208701 (2002).
48. Girvan, M. & Newman, M. E. J. Community structure in social and biological

networks. Proc. Natl Acad. Sci. USA 99, 7821–7826 (2002).
49. Xulvi-Brunet, R. & Sokolov, I. M. Reshu�ing scale-free networks: From

random to assortative. Phys. Rev. E 70, 066102 (2004).
50. Menck, P. J., Heitzig, J., Kurths, J. & Schellnhuber, H. J. How dead ends

undermine power grid stability. Nature Commun. 5, 3969 (2014).
51. Müller, F.-J. & Schuppert, A. Few inputs can reprogram biological networks.

Nature 478, E4 (2011).

52. Todorov, E. & Jordan, M. I. Optimal feedback control as a theory of motor
coordination. Nature Neurosci. 5, 1226–1235 (2002).

53. Coron, J.-M. Control and Nonlinearity (American Mathematical Society, 2009).
54. Menck, P. J., Heitzig, J., Marwan, N. & Kurths, J. How basin stability

complements the linear-stability paradigm. Nature Phys. 9, 89–92 (2013).

Acknowledgements
We thank E. Guney, C. Song, J. Gao, M. T. Angulo, S. P. Cornelius, B. Coutinho and A. Li
for discussions. This work was supported by Army Research Laboratories (ARL)
Network Science (NS) Collaborative Technology Alliance (CTA) grant ARL NS-CTA
W911NF-09-2-0053; DARPA Social Media in Strategic Communications project under
agreement number W911NF-12-C-002; the John Templeton Foundation: Mathematical
and Physical Sciences grant number PFI-777; European Commission grant numbers FP7
317532 (MULTIPLEX) and 641191 (CIMPLEX).

Author contributions
All authors designed and performed the research. G.Y. and G.T. carried out the
numerical calculations. G.Y. did the analytical calculations and analysed the empirical
data. G.T., B.B., J.-J.S., Y.-Y.L. and A.-L.B. analysed the results. G.Y. and A.-L.B. were the
main writers of the manuscript. G.T., B.B. and Y.-Y.L. edited the manuscript. G.Y. and
G.T. contributed equally to this work.

Additional information
Supplementary information is available in the online version of the paper. Reprints and
permissions information is available online at www.nature.com/reprints.
Correspondence and requests for materials should be addressed to A.-L.B.

Competing financial interests
The authors declare no competing financial interests.

8 NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics

© 2015 Macmillan Publishers Limited. All rights reserved


