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The critical exponents for a class of one-dimensional models of interface depinning in disor
media can be calculated through a mapping onto directed percolation. In higher dimensions
models give rise to directed surfaces, which do not belong to the directed percolation universality
We formulate a scaling theory of directed surfaces, and calculate critical exponents numerically,
a cellular automaton that locates the directed surfaces without making reference to the dynamics
underlying interface growth models.

PACS numbers: 61.43.-j, 68.35.-p
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The last decade’s intense theoretical, numerical,
experimental interest in the growth and roughening
interfaces has been fueled in part by the interdisciplin
aspects of the subject [1]. Applications include flui
fluid displacement [2], imbibition in porous media [3
and the motion of flux lines in superconductors [4].
such systems, an interface advances through a disord
(typically porous) medium, under the influence of
external driving force,F. There exists a critical value
Fc, of this force, such that forF , Fc the interface is
pinned by the disorder, while forF . Fc it moves with
a constant velocityy. In the vicinity of the depinning
transition (F ­ Fc), y , fu , wheref ­ sF 2 FcdyFc.
The correlation length (j) characterizing the size of th
pinned regions in the plane of the interface diverges atFc

as j , f2n . For F . Fc the width of the interface in
steady state varies with the system sizeL aswsLd , La.
Hereu, n, anda are the velocity, correlation length, an
roughness exponents, respectively.

In this paper we consider “directed percolation dep
ning” (DPD) models [3,5], which are believed to d
scribe the depinning transitions in a variety of system
among them interfaces described by the Kardar-Pa
Zhang equation [6] with quenched noise [7] and imbi
tion experiments [3]. The DPD model is defined on
d-dimensional lattice [8], with periodic boundary cond
tions in thed 2 1 interface dimensions and open boun
ary conditions in the dimension corresponding to t
direction of motion of the interface (thez direction, say).
Sites are randomly occupied by impurities with probab
ity p, and a fluid is imagined to push its way upwa
from below. At each time we randomly choose one
the impurity-free “dry” sites neighboring the interface th
separates the wet and dry regions. The interface adva
by “wetting” the chosen site, andany site below it in the
same column(along thez direction) [3]. In this model
only continuous, unbroken surfaces of impurities that co
the entiresd 2 1d-dimensional cross section of the lattic
and contain no overhangscan successfully block the in
terface [3,5]. In 2D, this blocking surface is a collectio
0031-9007y96y76(9)y1481(4)$06.00
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of 1D lines, which can be viewed as the backbone
of the infinite cluster of as1 1 1d-dimensional DP prob-
lem that starts from one side of the lattice and percola
towards the other. Thus the scaling exponents (a, u, n)
for the DPD model in 2D can be obtained from the ma
ping to the s1 1 1d-dimensional DP problem [3,5]. In
particular, the correlation length of DPD can be identifie
with the longitudinal correlation length of DP, givingn ­
n

DP
k ø 1.73. Similarly, one obtains the exponentsa andu

as a ­ n
DP
' yn

DP
k ø 0.63 and u ­ n

DP
k 2 n

DP
' ø 0.63,

wheren
DP
' ø 1.10 is the transverse correlation length ex

ponent of DP.
While the DP theory correctly predicts all relevan

exponents for 2D DPD models, the mapping fails
higher dimensions. There is a simple topological reas
for this: In s1 1 1d dimensions, the directed percolatio
backbone is a collection of 1Dlines, capable of blocking
the motion of the one-dimensional interface in 2D DP
In 3D, however, only an unbroken 2Dsurfaceof pinning
sites without overhangs can block the advance of
2D interface. The collection of such surfaces formin
the backbone of a blocking cluster in 2D (or in an
other dimension) is referred to as adirected surface
[10]. Numerical measurements of the critical exponen
characterizing the depinning transition of DPD mode
for d . 2 [11] confirm that directed surfaces belong
a universality class different from DP.

Here we take several steps toward a description
the DPD depinning transition ford . 2 in terms of
directed surfaces. First we introduce a deterministic tw
state cellular automaton (CA) that finds the direct
surface for a system with an arbitrary distribution
impurities, and in arbitrary dimension. The CA produc
this surface without making reference to the dynamics
the underlying DPD interface growth models. Focusi
on the directed surfaces allows us to formulate a scal
theory of the transition, and thus describe this proble
using the standard formalism of critical phenomen
Moreover, the CA allows us to measure numerica
exponents not available from the DPD models. Using t
© 1996 The American Physical Society 1481
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derived scaling laws we thereby obtain a complete set
scaling exponents characterizing the static properties
directed surfaces.

Cellular automata and directed surfaces.—We first de-
fine the CA rules, and then explain why they generate t
desired directed surfaces. Consider a square 2D lattic
thesx, zd plane. At timet ­ 0 each sitesx, zd is either in-
dependently occupied by an impurityfs0sx, zd ­ 1g with
probability p or is emptyfs0sx, zd ­ 0g. The CA rule is
defined asst11sx, zd ­ 1 if the following three conditions
are simultaneously satisfied:stsx, zd ­ 1; stsx 2 1, z 2

1d 1 stsx 2 1, zd 1 stsx 2 1, z 1 1d . 0; stsx 1 1,
z 2 1d 1 stsx 1 1, zd 1 stsx 1 1, z 1 1d . 0. If any
of these are not satisfied, thenst11sx, zd ­ 0. Boundary
conditions are periodic inx and open inz. The CA rule
leaves untouched any occupied site that locally belon
to an unbroken 1D path roughly perpendicular to th
z direction. If an occupied sitesx, zd has an occupied
neighbor or next near neighbor in both thesx 2 1dst and
sx 1 1dst columns [see Fig. 1(a)], then it is part of suc
a path. However, if the occupied site is at the tip of
dangling branch [e.g., the siteB in Fig. 1(a)], then at
the next time step it will be removed, since it is missin
a neighbor in one of the adjacent columns. OnceB is
removed, however,A is left without a neighbor in one
adjacent column, and so is itself removed at the followin
time step. In this fashion, all dangling branches a
isolated clusters of impurity sites are systematica
eliminated. Thus under successive applications of t
rule, all impurities that donot belong to the backbone of
the infinite cluster of the equivalents1 1 1d-dimensional
DP problem [e.g., the shaded path in Fig. 1(a)], where
z and x, respectively, correspond to space and tim
ultimately disappear. If such an infinite DP cluster do
not exist, then the fixed point of the CA has all site
empty. Figure 1(b) shows the result of applying this ru
in a system of sizeL ­ 100 with p ­ 0.55.

The generalization to higher dimensions is straightfo
ward. We discuss only the 3D case, defined on a cu
lattice with axes labeledsx, y, zd; the extension tod . 3
is obvious. In 3D,st11sx, y, zd ­ 1 if the following five
conditions are simultaneously satisfied:stsx, y, zd ­ 1;
stsx 2 1, y, z 2 1d 1 stsx 2 1, y, zd 1 stsx 2 1, y, z 1

1d . 0; stsx 1 1, y, z 2 1d 1 stsx 1 1, y, zd 1 stsx 1

1, y, z 1 1d . 0; stsx, y 2 1, z 2 1d 1 stsx, y 2 1,
zd 1 stsx, y 2 1, z 1 1d . 0; stsx, y 1 1, z 2 1d 1

stsx, y 1 1, zd 1 stsx, y 1 1, z 1 1d . 0. If at least
one of these conditions fails, thenst11sx, y, zd ­ 0.
Periodic and open boundary conditions apply in thesx, yd
andz directions, respectively.

As in 2D, for d $ 3 the CA rule removes any site
that does not belong to a locally continuoussd 2 1d-
dimensional surface perpendicular to thez direction.
It retains only unbroken surfaces, without overhang
capable of blocking the advance of an interface
the associated DPD model. It therefore locatesexactly
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FIG. 1. (a) Schematic representation of the action of the C
rule. The final state of the CA contains only the backbone
the underlying DP cluster (solid circles). Open circles represe
dangling branches or isolated clusters that will eventually
eliminated. (b) Directed surfaces produced by the CA rule
2D with p ­ 0.55 andL ­ 100.

all directed surfaces in arbitrary dimension. Thus on
expects the critical exponents measured for the DP
model and for the directed surfaces generated by
CA to coincide. This conclusion is supported by th
numerical results presented below.

Scaling exponents for directed surfaces.—The final
state (fixed point) of the CA depends onp. For smallp
there are no directed surfaces in the system, so the ave
density of the final state,rspd ­ 1yLd

P
r ssrd, wherer ­

si1, i2, . . . , idd is zero. Increasingp, one reaches a critical
valuepc so that, forp . pc, rspd is nonzero. In analogy
with percolation, one expects thatrspd , sp 2 pcdb .
The exponentb is not known, and has not previously bee
measured numerically, except in 2D, where the direct
surface is the backbone of the infinite cluster ofs1 1 1d-
dimensional DP. Since the exponentb for this backbone
is known to be2bDP [12], wherebDP , 0.28 in s1 1 1d
dimensions, we haveb ø 0.56 in 2D.

To characterize further the directed surfaces for arbitra
d, it is helpful to define parallel (to the average orientatio
of the surface) and perpendicular correlation lengthsjk

andj', respectively. Near the depinning transition the
diverge asjk , sp 2 pcd2nk andj' , sp 2 pcd2n' .

Finally, one can define exponents associated with t
distribution of the sizes of voids or holes in the directe
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surface, i.e., empty regions totally surrounded by s
face sites [11,13]. The probability distribution function
Pysyd for the void volumesy and Pissd for linear void
sizess in the ith direction are expected to behave alg
braically:Pysyd , y2ty , and, in 3D, e.g.,Px,yssd , s2tk

andPzssd , s2t' . As recent work by Huber, Jensen, an
Sneppen shows [14], in 2D the void exponentsty , tk, and
t' can be related to the exponents characterizing the
distribution of avalanches associated with the dynamics
the DPD model [11] or its self-organized version, the “se
organized depinning” model [13,15].

Scaling theory.—The first advantage of describin
directed surfaces in static terms similar to those fruitfu
employed for the percolation problem is that we c
use the standard scaling arguments familiar from criti
phenomena to characterize the correlations and the fra
nature of those surfaces [16]. As a first step, we der
a set of scaling relations for the critical exponents
directed surfaces. Imagine a coarse-grained density fi
cs $xd for the surface. Under rescaling of distances
the directions parallel and perpendicular to the surfa
via xk ­ bx0

k and x' ­ bax0
', the field c and the

distanceD ; p 2 pc from the critical point are assume
to rescale according tocsxk, x'd ­ bxc 0sx0

k, x0
'd and

D ­ b21yhz jD0, respectively. Hereb s. 1d is the length
rescaling factor, anda, z , andx are critical exponents.

The rescaling of lengths implies that the correlati
length exponents are given bynk ­ z and n' ­ az :
Denoting the average density of the surfacekcsxdl by
M, it follows that M vanishes likeDb as D ! 01, with
b ­ 2xnk.

To expressx in terms of the exponents for othe
correlation functions, note that the scaling relations abo
imply

Gs $x, Dd ­ D22xnkhsxkDnk , x'Dn'd , (1)

where Gs $x, Dd ; kcs $xdcs$0dl. For D . 0, G has two
parts, a disconnected piece equal toM2 and a connected
pieceGcs $x, Dd ; Gs $x, Dd 2 M2. Gs $x, Dd is proportional
to the steady-state probability that both sites$0 and $x
belong to the directed surface, i.e., to the product of
probability of site $0 belonging to the directed surfac
and the conditional probability that$x belongs to the
directed surface, given that$0 does. This makes it clea
that Gs $x, Dd vanishes such asM as D ! 0, whereupon

close topc, Gcsxk,'d , Mx
2bynk,'

k,' . Using the standard
notation of critical phenomena, we define the expone

hk andh' via Gcsxk,'d , Mx
2sd221hk,'d
k,' , leading to the

scaling laws [17]

b ­ nk,'sd 2 2 1 hk,'d . (2)

The exponentshk andh' are straightforwardly related
to the fractal dimensions [18]Dk andD' of the directed
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surface in thek and ' directions by [19]Dk ­ 1 2 hk

and D' ­ 3 2 d 2 h'. Moreover, the overall fractal
dimension D, defined by the total number of surfac
points within a distanceR of a given point on the surface
growing likeRD , is D ­ 2 2 h' ­ d 2 byn'.

Finally, for voids, we have the scaling relationstk ­
1 1 sty 2 1dsd 2 1 1 ad and t' ­ 1 1 sty 2 1d 3

sd 2 1 1 adya. In 2D the void exponents can be
related to n', nk, and b through the formula [14]
ty 2 1 ­ snk 1 n' 2 2bdysnk 1 n'd.

Numerical results.—In 2D all the exponents defined
here are available from the DP analogy. For higherd,
nk, n', and hencea have been obtained from DPD
simulations [11]. Others, such asb, hk,', andDk,', are
difficult to compute from DPD, and so have not been me
sured. The CA representation makes numerical deter
nation of these rather straightforward. Moreover, Eq. (
shows that, givennk andn', one additional independen
exponent suffices to fix all the others, except the void e
ponents, which ford . 2 have so far not been related t
the others.

In principle, the most straightforward exponent to me
sure numerically isb, obtained from plotting the den-
sity of the final state of the CA as a function ofp. In
2D the data show a fairly unambiguous scaling regim
yielding the valueb ø 0.5, consistent with the known
value bBB ­ 2bDP ø 0.56. In 3D nearpc, r shows a
rather precipitous jump that sharpens with increasing sa
ple size, suggestive of either a first order phase transit
or a very small exponentb. The data forrspd are insuf-
ficient for one to choose between these possibilities. W
therefore resort to determiningb by measuringDk and
D', and using the scaling relationsDk ­ d 2 1 2 bynk

andD' ­ 1 2 byn', and the valuesnk ­ 1.18 6 0.10
andn' ­ 0.57 6 0.05, taken from DPD simulations [11].
The values forb thus obtained, together with our values o
Dk andD', are listed in Table I. Our numerical values fo
the void exponents are also given. The existence of a fa
clear scaling regime forDk with a value less than 2 argue
against the occurrence of a first-order phase transition
of course, does the continuous phase transition observe
the 3D DPD model). The scaling observed in the data
Fig. 2(b) (spanning, forPy, more than 2 orders of magni-
tude in void sizes) also strongly supports the inference

TABLE I. Exponents obtained from numerical simulation
using the CA rule, and from scaling relations.

Exponent 2D 3D

b 0.5 6 0.07 0.1 6 0.02
Dk 0.71 6 0.03 1.9 6 0.05
D' 0.54 6 0.05 0.8 6 0.1
ty 1.7 6 0.1 2.2 6 0.1
tx 2.2 6 0.1 3.9 6 0.2
tz 2.8 6 0.2 7.0 6 0.4
1483
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FIG. 2. Void size distributions determined numerically usin
the CA rule. (a) 2D: The upper, middle, and lower curv
correspond toPysyd, Pxssd, andPzssd, respectively. We used
p ­ 0.54, L ­ 1000 3 1000, and averaged over 250 runs
(b) 3D: The upper and lower curves correspond toPysyd
and Pzssd, respectively. In the middle we have two curve
superposed, corresponding toPx,yssd. We used p ­ 0.74,
L ­ 100 3 100 3 100, and averaged over 1500 runs.

a second-order transition. The 2D value forty is consis-
tent with the predictionty ­ 1.80 by Huber, Jensen, and
Sneppen [14]. Using the 3D numerical values, we e
mate from the scaling relations above the valuea ø 0.48,
in good agreement with the value obtained from the DP
model. This provides further confirmation that the direct
surface generated by our CA indeed belongs in the sa
universality class as DPD.

One of the major benefits of the CA approach intr
duced here is that it replaces the dynamic models use
study the properties of directed surfaces with a static p
ture. Dynamic models cannot capture all directed surfa
existing in the system. Models with random updatin
such as DPD, remove small patches of the directed sur
in an uncontrolled fashion during large avalanches. T
SOD models [13] also systematically eliminate branch
of directed surfaces. By contrast, the CA is the first
gorithm that identifiesall underlying directed surfaces
which in turn determine static exponents such asnk, n',
and a, some of which (such asb) are not accessible
from dynamic models. The CA also allows direct ca
culation of the void-size exponents, from which, at lea
in 2D, avalanche exponents of the dynamic models can
derived [14].

We thank Sid Redner for helpful discussions.
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