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Directed Surfaces in Disordered Media
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The critical exponents for a class of one-dimensional models of interface depinning in disordered
media can be calculated through a mapping onto directed percolation. In higher dimensions these
models give rise to directed surfaces, which do not belong to the directed percolation universality class.
We formulate a scaling theory of directed surfaces, and calculate critical exponents numerically, using
a cellular automaton that locates the directed surfaces without making reference to the dynamics of the
underlying interface growth models.

PACS numbers: 61.43.-j, 68.35.-p

The last decade’s intense theoretical, numerical, andf 1D lines, which can be viewed as the backbone [9]
experimental interest in the growth and roughening ofof the infinite cluster of g1 + 1)-dimensional DP prob-
interfaces has been fueled in part by the interdisciplinaryem that starts from one side of the lattice and percolates
aspects of the subject [1]. Applications include fluid-towards the other. Thus the scaling exponetsf( v)
fluid displacement [2], imbibition in porous media [3], for the DPD model in 2D can be obtained from the map-
and the motion of flux lines in superconductors [4]. Inping to the (1 + 1)-dimensional DP problem [3,5]. In
such systems, an interface advances through a disorderpdrticular, the correlation length of DPD can be identified
(typically porous) medium, under the influence of anwith the longitudinal correlation length of DP, giving=
external driving force,F. There exists a critical value, v|]|)P ~ 1.73. Similarly, one obtains the exponentandd
F., of this force, such that foF < F. the interface is asa = »?"/p" = 0.63 and 6 = »" — 27 = 0.63,
pinned by the disorder, while faF > F. it moves with  where»?" = 1.10 is the transverse correlation length ex-
a constant velocity. In the vicinity of the depinning ponent of DP.
transition ¢ = F.), v ~ f%, wheref = (F — F.)/F.,. While the DP theory correctly predicts all relevant
The correlation length&) characterizing the size of the exponents for 2D DPD models, the mapping fails in
pinned regions in the plane of the interface divergeB.at higher dimensions. There is a simple topological reason
as¢é ~ f77. For F > F, the width of the interface in for this: In (1 + 1) dimensions, the directed percolation
steady state varies with the system sizasw(L) ~ L*.  backbone is a collection of 1bnes capable of blocking
Hered, v, anda are the velocity, correlation length, and the motion of the one-dimensional interface in 2D DPD.
roughness exponents, respectively. In 3D, however, only an unbroken 28urfaceof pinning

In this paper we consider “directed percolation depin-sites without overhangs can block the advance of the
ning” (DPD) models [3,5], which are believed to de- 2D interface. The collection of such surfaces forming
scribe the depinning transitions in a variety of systemsthe backbone of a blocking cluster in 2D (or in any
among them interfaces described by the Kardar-Parisiether dimension) is referred to as directed surface
Zhang equation [6] with quenched noise [7] and imbibi-[10]. Numerical measurements of the critical exponents
tion experiments [3]. The DPD model is defined on acharacterizing the depinning transition of DPD models
d-dimensional lattice [8], with periodic boundary condi- for d > 2 [11] confirm that directed surfaces belong to
tions in thed — 1 interface dimensions and open bound-a universality class different from DP.
ary conditions in the dimension corresponding to the Here we take several steps toward a description of
direction of motion of the interface (thedirection, say). the DPD depinning transition foel > 2 in terms of
Sites are randomly occupied by impurities with probabil-directed surfaces. First we introduce a deterministic two-
ity p, and a fluid is imagined to push its way upward state cellular automaton (CA) that finds the directed
from below. At each time we randomly choose one ofsurface for a system with an arbitrary distribution of
the impurity-free “dry” sites neighboring the interface thatimpurities, and in arbitrary dimension. The CA produces
separates the wet and dry regions. The interface advanc#ss surface without making reference to the dynamics of
by “wetting” the chosen site, anahy site below it in the the underlying DPD interface growth models. Focusing
same columr(along thez direction) [3]. In this model on the directed surfaces allows us to formulate a scaling
only continuous, unbroken surfaces of impurities that covetheory of the transition, and thus describe this problem
the entire(d — 1)-dimensional cross section of the lattice using the standard formalism of critical phenomena.
and contain no overhangsan successfully block the in- Moreover, the CA allows us to measure numerically
terface [3,5]. In 2D, this blocking surface is a collection exponents not available from the DPD models. Using the

0031-900796/76(9)/1481(4)$06.00 © 1996 The American Physical Society 1481



VOLUME 76, NUMBER 9 PHYSICAL REVIEW LETTERS 26 EBRUARY 1996

derived scaling laws we thereby obtain a complete set of (a) ( T

scaling exponents characterizing the static properties of T ]

directed surfaces. k‘&‘AB) ( !
Cellular automata and directed surfacesWe first de-

fine the CA rules, and then explain why they generate the

desired directed surfaces. Consider a square 2D lattice in

the(x, z) plane. Attimer = 0 each sitdx, z) is either in- z
dependently occupied by an impurityo(x, z) = 1] with

probability p or is empty[so(x,z) = 0]. The CA rule is I
defined as,.1(x,z) = 1 if the following three conditions (b) - ——
are simultaneously satisfied;(x,z) = 1; s,(x — 1,z — %@gp&%.&@ﬁﬁﬁw
)+ s;(x —1,2) +s5;(x —1,z+1) >0; s:(x+1, ; "-.,q_,,;;.'gfé"- +
z— 1D+ s+ 1,z2) +sx+1,z+1) >0. Ifany . .
of these are not satisfied, then.;(x,z) = 0. Boundary =£3'.ét§:§:h..,:,.-<‘wa§&% %”'ﬁz
conditions are periodic i and open irc. The CA rule Pl «‘;mﬁ:rﬁ;;‘* ’
leaves untouched any occupied site that locally belongs ¢

to an unbroken 1D path roughly perpendicular to the
z direction. If an occupied sitéx, z) has an occupied .
neighbor or next near neighbor in both the— 1)st and e T - LY
(x + 1)st columns [see Fig. 1(a)], then it is part of such .:: iﬁﬁ&%ﬂ_ﬂ %ﬁ;
a path. However, if the occupied site is at the tip of a i;ff‘i%‘:mp,;,%ym”" ’ "“"'-aaf:::-:::u.,,.:-:f;
dangling branch [e.g., the sitB in Fig. 1(a)], then at e
the next time step it will be removed, since it is missing L e,

a neighbor in one of the adjacent columns. Oiftés FIG. 1. (a) Schematic representation of th; action of the CA
removed, howeverA is left without a neighbor in one rule. The final state of the CA contains only the backbone of

a_ldjacent column, gnd so_is itself remoyed at the followinghe underlying DP cluster (solid circles). Open circles represent
time step. In this fashion, all dangling branches andiangling branches or isolated clusters that will eventually be

isolated clusters of impurity sites are systematicallyeliminated. (b) Directed surfaces produced by the CA rule in
eliminated. Thus under successive applications of théP with p = 0.55 andL = 100.
rule, all impurities that daot belong to the backbone of
the infinite cluster of the equivaleiit + 1)-dimensional
DP problem [e.g., the shaded path in Fig. 1(a)], whereirall directed surfaces in arbitrary dimension. Thus one
z and x, respectively, correspond to space and timegxpects the critical exponents measured for the DPD
ultimately disappear. If such an infinite DP cluster doesmodel and for the directed surfaces generated by the
not exist, then the fixed point of the CA has all sitesCA to coincide. This conclusion is supported by the
empty. Figure 1(b) shows the result of applying this rulenumerical results presented below.
in a system of sizé& = 100 with p = 0.55. Scaling exponents for directed surfacesThe final
The generalization to higher dimensions is straightforstate (fixed point) of the CA depends pn For smallp
ward. We discuss only the 3D case, defined on a cubithere are no directed surfaces in the system, so the average
lattice with axes labeledy, y, z); the extension tal > 3  density of the final statgy(p) = 1/L >, s(r), wherer =
is obvious. In 3D,s,+1(x,y,z) = 1 if the following five (i1, i»,...,i4) iS Zero. Increasing, one reaches a critical
conditions are simultaneously satisfied(x,y,z) = 1; valuep. so that, forp > p., p(p) is nonzero. In analogy
six — Ly,z — 1) + s;(x — 1,y,2) + s;(x — 1,y,z +  with percolation, one expects that(p) ~ (p — p.)~.
1) >0; s;(x +1,y,z —1) + s;(x + 1,y,z) + s;,(x +  The exponenp is not known, and has not previously been
ILy,z+ 1) >0; six,y = 1L,z = 1) + s,(x,y — 1, measured numerically, except in 2D, where the directed
z2) + sile,y — 1,z +1) >0,  silx,y +1,z—1)+ surface is the backbone of the infinite cluster(bf+ 1)-
six,y +1,2) + s;(x,y + 1,z + 1) > 0. If at least dimensional DP. Since the exponghtfor this backbone
one of these conditions fails, them . (x,y,z) =0. is known to be28P? [12], whereBP? ~ 0.28in (1 + 1)
Periodic and open boundary conditions apply inthgy)  dimensions, we havg = 0.56 in 2D.
andz directions, respectively. To characterize further the directed surfaces for arbitrary
As in 2D, for d = 3 the CA rule removes any site d, itis helpful to define parallel (to the average orientation
that does not belong to a locally continuots$ — 1)-  of the surface) and perpendicular correlation lengis
dimensional surface perpendicular to thedirection. andé¢,, respectively. Near the depinning transition they
It retains only unbroken surfaces, without overhangsdiverge ast) ~ (p — p.) " andé, ~ (p — p.) "
capable of blocking the advance of an interface in Finally, one can define exponents associated with the
the associated DPD model. It therefore locagasctly distribution of the sizes of voids or holes in the directed
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surface, i.e., empty regions totally surrounded by sursurface in the| and L directions by [19]D = 1 — g
face sites [11,13]. The probability distribution functionsand D, = 3 — d — »n,. Moreover, the overall fractal
P,(v) for the void volumesv and P;(s) for linear void dimension D, defined by the total number of surface
sizess in the ith direction are expected to behave alge-points within a distanc®& of a given point on the surface
braically: P,(v) ~ v~ ™, and, in 3D, e.g.P,,(s) ~ s~ ™  growing likeR?,isD =2 —n, =d — B/v,.
andP,(s) ~ s~ . Asrecentwork by Huber, Jensen, and Finally, for voids, we have the scaling relationg =
Sneppen shows [14], in 2D the void exponergstj,and 1+ (r, — 1)(d — 1 +a) and 7, =1 + (7, — 1) X
7, can be related to the exponents characterizing the siz@ — 1 + a)/a. In 2D the void exponents can be
distribution of avalanches associated with the dynamics ofelated to »,, »;, and 8 through the formula [14]
the DPD model [11] or its self-organized version, the “self-7, — 1 = (v + v, — 2B)/(y + vL).
organized depinning” model [13,15]. Numerical results—In 2D all the exponents defined
Scaling theory—The first advantage of describing here are available from the DP analogy. For higher
directed surfaces in static terms similar to those fruitfully»), »,, and hencea have been obtained from DPD
employed for the percolation problem is that we cansimulations [11]. Others, such & » ., andD) ., are
use the standard scaling arguments familiar from criticatlifficult to compute from DPD, and so have not been mea-
phenomena to characterize the correlations and the fractalired. The CA representation makes numerical determi-
nature of those surfaces [16]. As a first step, we derivenation of these rather straightforward. Moreover, Eq. (2)
a set of scaling relations for the critical exponents ofshows that, giverv and v, one additional independent
directed surfaces. Imagine a coarse-grained density fieleixponent suffices to fix all the others, except the void ex-
(x) for the surface. Under rescaling of distances inponents, which fod > 2 have so far not been related to
the directions parallel and perpendicular to the surfac¢he others.
via x| = bx|’| and x, = b®x',, the field ¢ and the In principle, the most straightforward exponent to mea-
distanceA = p — p. from the critical point are assumed sure numerically is@, obtained from plotting the den-
to rescale according tay(x,x,) = b)(c//’(xﬁ,xl) and sity of the final state of the CA as a function pf In
A = b AOA/, respectively. Heré (> 1) is the length 2D the data show a fairly unambiguous scaling regime,
rescaling factor, and, {, andy are critical exponents.  Yielding the valueg =~ 0.5, consistent with the known
The rescaling of lengths implies that the correlationvalue 888 = 28PP =~ 0.56. In 3D nearp,, p shows a
length exponents are given by = ¢ and », = «/:  rather precipitous jump that sharpens with increasing sam-
Denoting the average density of the surfaggx)) by  ple size, suggestive of either a first order phase transition
M, it follows that M vanishes likeA? asA — 0", with ~ or a very small exponeng. The data forp(p) are insuf-
B = —xv. ficient for one to choose between these possibilities. We
To expressy in terms of the exponents for other therefore resort to determining by measuringD; and
correlation functions, note that the scaling relations abové® . , and using the scaling relatiody = d — 1 — B8/

imply andD, =1 — B/v,, and the valueg = 1.18 = 0.10
andr; = 0.57 £ 0.05, taken from DPD simulations [11].
G(X,A) = A X p(xAM, x AP, (1)  The values fo thus obtained, together with our values of

Dy andD |, are listed in Table I. Our numerical values for
where G(¥,A) = (¢ ()¢ (0)). For A >0, G has two thevoidexponents are also given. The existence of a fairly

parts, a disconnected piece equalMd and a connected clear scaling regime faby with a value less than 2 argues
pieceG.(¥,A) = G(¥,A) — M%. G(%,A)is proportional ~ against the occurrence of a first-order phase transition (as,

to the steady-state probability that both sitesand & of course, does the continuous phase transition observed in
belong to the directed surface, i.e., to the product of th&h€ 3D DPD model). The scaling observed in the data of

probability of site 0 belonging to the directed surface Fig. 2.(b) (_spa_nning, foP,, more than 2 orders .Of magni-
and the conditional probability that belongs to the tude in void sizes) also strongly supports the inference of

directed surface, given thétdoes. This makes it clear
that G(x, A) vanishes such a& as A — 0, whereupon

close top., Ge(x),1) ~ Mx”f/ " Using the standard TQEL'fh'é cixffﬁgegfa f?gtrgigig"rflmigla%rgsrica' simulations
notation of critical phenomena, we define the exponent§I 9 ! 9 -
. —(d—2+7.L .
ny andn, via G.(x. 1) ~ Mx”’(l ) leading to the ~EXponent 2D 3D
scaling laws [17] B 0.5 £ 0.07 0.1 * 0.02
D 0.71 = 0.03 1.9 + 0.05
— oy (d — 2 + . 2 D, 0.54 = 0.05 0.8 + 0.1
B =ml 1) @ Ty 17 + 0.1 22+ 0.1
. Ty 22 £ 0.1 39 +0.2
The exponents) and» are straightforwardly related .~ 28+ 02 70 + 04

to the fractal dimensions [18p, and D, of the directed
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