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The Network Behind the Cosmic Web
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The concept of the cosmic web, viewing the Universe as a set of discrete galaxies held together by
gravity, is deeply engrained in cosmology. Yet, little is known about the most effective construction
and the characteristics of the underlying network. Here we explore seven network construction
algorithms that use various galaxy properties, from their location, to their size and relative velocity,
to assign a network to galaxy distributions provided by both simulations and observations. We
find that a model relying only on spatial proximity offers the best correlations between the physical
characteristics of the connected galaxies. We show that the properties of the networks generated
from simulations and observations are identical, unveiling a deep universality of the cosmic web.

The cosmic web, the desire to view the large-scale
structure of the Universe as a network, is deeply embed-
ded both in cosmology and in public consciousness [TH5].
Yet, it remains little more than a metaphor, typically
used to capture the dark matter’s ability to agglomer-
ate the galaxies in a web-like-fashion. Numerous halo
finder algorithms [6l [7], made possible by the increas-
ingly precise simulations of the evolution of the Universe
[1L §], exploit the network-like binding of the galaxies
[9). Yet, very little is known about the graph theoreti-
cal characteristics of the resulting cosmic web. Our goal
here is to test and explore various meaningful definitions
of the cosmic web, and use the tools of network science
to characterize the generated networks. In particularly,
we explore which network definition offers the best de-
scription of the observed correlations between the phys-
ical characteristics of connected galaxies. The resulting
network-based framework, tested in both simulations and
observational data, offers a new tool to investigate the
topological properties of the large scale structure distri-
bution of the Universe.

We start with data provided by a subhalo catalog con-
structed from the Ilustris [T, 10, TT] cosmological sim-
ulation that traces the growth of large scale structure,
galaxy formation and evolution from 2Gy after the Big
Bang to the present epoch, incorporating both baryons
and dark matter. In line with common practice, we
assume that subhalos in the simulation correspond to
galaxies in the observational data [12], representing the
nodes of the cosmic web. By considering all subhalos
with stellar mass bigger than M, > 10° My,,, we obtain
between 2,000 and 30,000 subhalos for different redshifts

(supplementary material A).

There are multiple ways of building networks from the
available subhalo/galaxy catalogs, allowing us to define
seven distinct models for the construction of the cosmic
web (M1-M7). The simplest, M1, links two nodes with
an undirected link if the distance between them is smaller
than a predefined length, I (Fig[lfa) and (d)). M2(3) rep-
resent the directed versions of M1, drawing a directed link
j — i (i = j) from i to the closest (k) nodes (Fig[I(b)
and (e)). Consequently, while in M1 a node i can have
arbitrary degree (number of neighbors connected to 7), in
M2(3) the in(out) degrees are fixed (number of neighbors
connected to ¢ through a directed link j — i(i — 7)). In
M4(5) a directed link j — ¢ (¢ — j) is drawn from ¢ to
j if the distance between the two nodes is smaller than
a- Ri1 /2 where a is a free parameter and R; /? is the half-
mass radius [I3]. Models 6(7) are extensions of M4(5),
but computed in phase space, where a directed link j — ¢
(i = j) is drawn from ¢ to j if the sum of the square of
the normalized distance and relative speed between two
nodes is smaller than a?. Taken together, M1-3 require
only data about the halo/galaxy positions, M4(5) require
information about galaxy positions and size and M6(7)
require galaxy velocities and linking galaxies that may be
gravitationally bound (supplementary material B offers
the formal definition of each model).

The distinct network representations of the cosmic
web, offered by the models introduced above, raises the
question: Which of these representations are the most
meaningful? In general, networks are only meaningful if
the links have functional roles, linking either interacting
nodes or nodes with similar characteristics. For example,
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FIG. 1: Building networks from galaxy data. The circles represent the linking lengths for models M1, M3 and
M4. (a) In M1 all galaxies within distance [ are connected by an undirected link. (c¢) In M3 a galaxy is connected to
the closest galaxy with a directed link; therefore the linking length depends on the position of the closest galaxy. (e)

In M4, the linking length scales with the galaxy size, [ = a Ri1 /2, (b),(d) and (f) Visualization of the cosmic web for
redhsiht 0 produced by the respective models, for (k) = 40. For simplicity the direction of the links is not present in

the visualization. For interactive visualization see

http://kimalbrecht.com/ccnr/04-networkuniverse/17-network-interface. Models M2,5,6,7 are generated
from the three models shown above. In M2 the directions of the M3 links are inverted; in M5 the direction of the
M4 links are inverted. M6(7) are similar to M4(5) but computed in the phase space.

the links of a social network tend to connect individuals
with similar social-economic characteristics (homophily)
and in cellular networks connected proteins tend to have
related biological roles. The fact that the color of a
satellite galaxy is correlated with the mass of the host
galaxy [I4HI9] indicates that such correlations between
nearby galaxies are meaningful. We therefore explore
the degree to which the above network representations
of the cosmic web add links between galaxies/subhalos
of similar physical characteristics. For this we analyze
71 parameters that characterize each subhalo, ranging
from their peculiar velocity to star formation rate (sup-
plementary material C for the entire list), allowing us to

identify the network representation that offers the best
correlation between them. Since we are working from
a cosmological simulation, some of the correlations may
be meaningful only in the sense that they characterize
the underlying properties (or assumptions) of the model.
Nevertheless, our analyses provides an unbiased way of
probing the spatial network without any a priori biases.

For a given model M and subhalo property c¢;, we com-
pute the average value of ¢; over all nodes connected to
i,
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where k; is the degree of node ¢ and a;; is the adjacency
matrix. We use the Pearson coefficient to measure corre-
lations between the connected nodes,

2.i(G — (@)(ci = (c)
Vi@ = (@) (e — ()

where (c) and (¢) are the average of ¢; and ¢; over all
nodes. Since the scale over which correlations persist is
unknown, we construct networks with different average
degrees, (k).

R=

(2)

We find four properties that consistently display cor-
relations between the connected nodes: peculiar velocity,
stellar metallicity, specific star formation rate, and color
in the B-V band (Fig. [2). We also find that of the seven
models, M3 captures the best correlations for the pe-
culiar speed, specific star formation rate and rest-frame
B-V color. It only fails to maximize the correlation be-
tween stellar metallicities, in which M6 excels. We also
calculated the correlation function for networks obtained
under node and link randomization (supplementary ma-
terial B). The lack of significant correlations in these ran-
domized networks indicates that Fig. 2 captures physi-
cal meaningful correlations between connected galaxies.
Note that some of these correlations, like the metallicity,
may result from the assumptions made by the simula-
tion, while others, like the peculiar velocity, likely reflect
physical correlations in the real Universe. However, this
exercise demonstrates that it is indeed possible to un-
cover underlying properties of the network without prior
knowledge. Overall, Fig. 2 indicates that model M3 cap-
tures best the correlations between the properties of con-
nected galaxies. Its superiority over the more data de-
manding models M4-M7 suggests that spatial proximity,
despite its simplicity, remains the most powerful organiz-
ing principle of the cosmic web. Given the ability of M3
to best capture correlations between the subhalo charac-
teristics, in the remainder of the paper we analyze the
networks predicted by this model.

The overall integrity of a network is well characterized
by the size of its largest connected component [20]. For a
directed network the strongly connected component is the
largest subset of nodes such that for all pairs ¢ and j in
the subset there is a directed path from i to j. Figure [3]
illustrates that the giant strongly connected component
emerges at (k) = 4 for all redshifts in M3. At the practi-
cal level, this implies that M3 can be applied at different
redshifts and number of nodes without the need to adjust
the model parameters. At a more fundamental level, it
means that the critical mean degree of the giant strongly
connected component is universal, being rooted in the
intrinsic proprieties of the galaxy distribution.

To further validate M3, we compare the structure
of the cosmic web obtained in the simulations with
observational data from the Sloan Digital Sky Survey
(SDSS) [211 22], that provides information about the po-
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FIG. 2: Correlations between connected
galaxies.The Pearson coefficient R capturing the
correlation between connected nodes as a function of
the mean degree (k) for all algorithms, redhsiht 0 and
for various galaxy properties. The giant strongly
connected component emerges at (k) = 4 for M3, shown
as a dashed vertical line.
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FIG. 3: The evolution of the cosmic web. (a), (b)
and (c), visualization of the largest strongly connected
component for different (k). Links that cross the
boundaries are ignored in the plots, but not in the
computation of the components. (d) The largest
strongly connected component, Sy, as a function of the
mean degree, (k), for redshifts 0 < z < 3.01. The giant
strongly component emerges at (k) = 4, marked by a
dashed line.

sition and the properties of the galaxies in the visible
sky [23]. We study the section of the sky with redshift
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FIG. 4: Network characteristics of the cosmic
web. (a) In-degree distribution for mean degrees

(k) = 1,4 and 20. The dashed lines represents the
Poisson distribution. (b) Size of the largest strongly
connected component, Sy, as a function of the mean
degree, (k). (c) Average clustering coefficient as a
function of the average mean degree (k). (d)
Assortativity coefficient, r, as a function of (k). Each
panel show data for M3, for the random, the simulated
(redshift 0) and the observational networks.

z < 0.03, right ascension 100 < RA < 270 and declina-
tion —7 < DEC < 70. As a reference, we also study a
randomized version of the data by distributing the galax-
ies randomly in space (Appendix G). To confirm that the
galaxy population in the simulation and in the observa-
tions are comparable in the same redshift range, we mea-
sured the galaxy mass function, defined as the number
of galaxies with stellar mass M, per volume. Since the
density of galaxies with stellar mass under 10°M,,, is
much higher in the simulation than in the observational
data, a known limitation of the simulation [23], we only
consider galaxies with stellar mass M, > 10°M,,,.
Figure[d]a) documents an excellent agreement between
the in-degree distribution (fraction of nodes with a given
in-degree), P(ki,), for the observational and the simu-
lated M3 networks. Both distribution deviate from the
random distribution, indicating that the observed P (ki)

reflects the non-trivial galaxy distribution in both the
simulations and in the observations. We show analyt-
ically in supplementary material E, that networks con-
structed by the M3 model for a random galaxy distribu-
tion, the variance of the in-degree distribution is 0.709
for (k) = 1. The fact that the variance is smaller than
1, which is the value expected for a Poisson distribution,
implies that the degree distribution is narrower than that
expected for an Erdds-Rényi network, hence hubs are def-
initely absent, quite distinct from what is found in bio-
logical and social networks, were hubs are prevalent. We
also obtain excellent agreement between the simulation
and observation based networks for the average cluster-
ing coefficient, capturing the fraction of triangles in the
network, and assortativity (Figure[d[c) and (d)). In both
cases the simulation and observation-based values agree
with each other, both deviating from the random expec-
tation. The giant strongly connected component emerges
at (k) = 4 for both the simulation and observational M3
networks, while it is at (k) = 3 for the random M3 net-
works (Figure [4] (b)). The results indicate that M3 of-
fers an accurate description of the cosmic web, capturing
consistently its network characteristics, both in the sim-
ulation and in the observational data.

In summary, here we used the tools of network science
to characterize the large structure of the Universe both in
simulations and observational data. While we can define
numerous network construction algorithms, we find that
the simple model M3, which relies on spatial proximity
only, captures the best correlations between the physical
characteristics of nearby galaxies. The results are distinct
from the random case, which assumes random galaxy lo-
calizations, indicating that the obtained structure of the
cosmic web is intricately tied to the underlying struc-
ture of the Universe. It is particular encouraging that
the network characteristics of the cosmic web, from the
degree distribution to the clustering and degree correla-
tions, show remarkable agreement between simulations
and observations. In many ways, our results represent
only the first step towards a network-based understand-
ing of the Universe. Yet, they provide guidance for the
nature of the data needed for a systematic exploration
of the underlying network, offering a framework on with
one could build various applications, from halo finders to
exploring the fundamental characteristics of the cosmic
web.
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