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Thebrain’s connectome'®and the vascular system* are examples of physical
networks whose tangible nature influences their structure, layout and, ultimately,
their function. The material resources required to build and maintain these networks
have inspired decades of research into wiring economy, offering testable predictions
about their expected architecture and organization. Here we empirically explore
thelocal branching geometry of awide range of physical networks, uncovering
systematic violations of the long-standing predictions of wiring minimization. This
leads to the hypothesis that predicting the true material cost of physical networks
requires us to account for their full three-dimensional geometry, resultingin alargely
intractable optimization problem. We discover, however, an exact mapping of surface
minimization onto high-dimensional Feynman diagrams in string theory>”, predicting
that, with increasing link thickness, alocally tree-like network undergoes a transition
into configurations that can no longer be explained by length minimization. Specifically,

surface minimization predicts the emergence of trifurcations and branching angles
inexcellent agreement with the local tree organization of physical networks across
awiderange of application domains. Finally, we predict the existence of stable
orthogonal sprouts, which are not only prevalent in real networks but also play a key
functional role, improving synapse formation in the brain and nutrient accessin

plants and fungi.

The vascular system and the brain are examples of physical networks
thatdiffer from the networks typically studied in network science owing
tothetangible nature of their nodes and links, which are made of mate-
rial resources and constrain their layout. Theimportance of these mate-
rial factors has been noted inmany disciplines: as early as1899, Ramén
y Cajal suggested that we must consider the laws conserving the ‘wire’
volume to explainneuronal design®and in1926, Cecil D. Murray applied
volume minimization principles to vascular networks, deriving the
branching principles known as Murray’s law®. Today, wiring optimiza-
tion is used to account for the morphology and the layout of a wide
range of physical systems'®", from the distributions of neuronal branch
sizes'?and lengths" to the morphology of plants™, the structure® and
flow'®in transport networks, the layout of supply networks”, the wiring
ofthe Internet’® or the shape of inter-nest trails built by Argentine ants"
and the design of 3D-printed tissues with functional vasculature®.
The premise of wiring economy approaches is the optimal wiring
hypothesis, which conceptualizes physical networks as a set of con-
nected one-dimensional wires whose total length is minimized® 2.
The optimal wiring in this case is exactly predicted by the Steiner
graph*, However, the lack of high-quality data on physical net-
works has limited the systematic testing of the Steiner predictions to
single neuron branches? and ant tunnels® and offered at best mixed

evidence of their validity?®®. Yet, data availability has substantially
improved inthe past few years, thanks to advances in microscopy and
three-dimensional reconstruction techniques, offering access to the
detailed three-dimensional structure of physical networks ranging
from high-resolutionlayouts of brain connectomes' > to vascular net-
works*or the structure of coral trees*®. Here we take advantage of these
experimental advances to explore in a quantitative manner the role
of wiring optimization in shaping the local morphology of physical
networks. We begin by documenting systematic deviations from both
the Steiner predictions?* and volume optimization®?®?, failures that
we show to be rooted in the hypothesis that approximates the cost
of physical networks as the sum of their link lengths? > or as simple
cylinders®?.Indeed, the links of real physical networks are inherently
three-dimensional, prompting us to suggest that their true material
costmust also consider surface constraints. Building on previous analy-
ses that introduced volumetric constraints®?*?’, here we successfully
account for the local surface morphology, ensuring that, when links
intersect, they morph together continuously and smoothly, free of
singularities, as dictated by the physicality of their material structure.
To achieve this, we map the local tree structure of physical networks
into two-dimensional manifolds, arriving at anumerically intractable
surface and volume minimization problem. We discover, however,
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Fig.1|Real physical networks versus length and volume optimization
predictions. a, Physical networks aim to connect spatially distributed nodes
(coloured) with physicallinks in three dimensions. If we connect nodes directly,
thewiring cost (total link length) isabout 26.1. b, The Steiner graph minimizes
the wire length by permitting intermediate nodes (green), resulting in the total
wire length of approximately 22.0. The Steiner graph offers three predictions.
Rulel:allbranchinginstances are bifurcations with degree k=3.Rule 2:
bifurcations areall planar, having asolid angle of Q = 2. Rule 3: the angles
betweenadjacentlinks are 8 =21/3. Volume optimization, which generalizes
links as simple cylinders of varying thickness, preserves rules1and 2and
predictsabroader distribution for 8, peaked around 21/3. ¢, Aneuron of the
human connectome, demonstrating the violations of the Steiner rules. In the
topinset, we highlight atrifurcation (k =4) violating rule 1. We also highlight a

aformal mapping between surface minimization and high-dimensional
Feynman diagrams, which allows us to take advantage of a well-
developed string-theoretical toolset®>” to predict the basic charac-
teristics of minimal surfaces. We find that surface minimization can
not only account for the empirically observed discrepancies from
the Steiner predictions but offers testable predictions on the degree
distribution and the angle asymmetry of physical networks, which

316 | Nature | Vol 649 | 8 January 2026

non-symmetric branching angle, in which links sprout out perpendicularly
(rightinset), breaking rule 3.d, The percentage of k = 4 nodes across our six
empiricallocally tree-like physical networks. We observe roughly 15% of the
nodes violating Steiner rule 1. e, The probability density P(Q) versus Q as
obtained fromall bifurcations (k= 3) in our empirical network ensemble
(colouredsolid lines). The observed density functions are more prone to
Steiner rule 2 (thingrey line) than to random branching without optimization
(thick grey line). f, The probability density P(6) versus 8 as obtained from

all bifurcations (coloured solid lines). Once again, we observe a clear
discrepancy from Steiner (thingrey line) and atendency towards random
branching (thick grey line) or volume optimization of cylindrical links with
randomthickness (dashed grey line).

we can falsify, offering a crucial window into the design principles of
physical networks.

Steiner graphs

The Steiner graph problem?* begins with M spatially distributed
nodes (Fig. 1a), with the task of connecting these nodes through the



shortest possible links. The key insight of the Steiner solutionis that,
by adding intermediate nodes to serve as branching points (Fig. 1b),
the obtained link length can be shorter than any attempt to connect
the nodes directly* (Fig. 1a). Although for arbitrary M the Steiner
problem is NP-hard, for M = 4, we can get an exact solution, result-
ingin a globally optimal Steiner graph that is characterized by three
strictlocal rules (Fig. 1b). (1) Bifurcation only. All branching instances
represent bifurcations, in which asingle link splits into two daughter
links. Consequently, all intermediate nodes have degree k=3 and
higher-degree nodes (k > 3) are forbidden. (2) Planarity. At a bifurca-
tion, all threelinks are embedded in the same plane (Q = 2m). (3) Angle
symmetry. All three branches of a bifurcation form the same angle
6 =2m/3 with each other.

To test the validity of the local predictions of the Steiner solution,
we collected three-dimensional resolved data of six classes of physi-
cal networks (Supplementary information Section 1): (1) human neu-
rons! (also in Fig. 1c); (2) fruit fly neurons®; (3) human vasculature*;
(4) tropical trees from moist forests®; (5) corals of several species®;
(6) arabidopsis at different growth stages*. As wiring optimization
relies on the skeleton representations of physical networks, we con-
firmed that our test of Steiner’s prediction is not sensitive to the choice
ofthe particular skeletonization algorithm (Supplementary informa-
tion Section 1). To examine the validity of rule 1 (bifurcation only), we
extracted the degree distribution of each skeletonized network. In
agreement with the Steiner principle (an outcome also predicted by
volume optimization of simple cylinders®*%’), we observe a prevalence
of k=3 nodes, accounting, for example, for 79% of the nodes in the
humanneurons and for 94% in arabidopsis. Yet, we also observe asub-
stantial number of trifurcations (k =4) and several even higher degree
(k=5, 6) nodes (Fig.1d), violating the Steiner and volume optimization
prediction®**. Note that, because of errorsin skeletonizing a physical
motif, two closely spaced bifurcations may be mistakenly identified
as atrifurcation or, conversely, a trifurcation may be incorrectly per-
ceived as two bifurcations®. We therefore verified that the observed
high-degree nodes (as demonstrated in Fig. 1c) cannot be attributed
to resolution limits (Supplementary information Section 1).

To examine the validity of rule 2 (planarity), which is predicted by
both Steiner and volume optimization, we quantified the planarity for
eachbifurcation (k = 3) by measuring the probability P(Q) that the three
links span a solid angle Q. We find that, in all of the studied networks,
P(Q)isstrongly peaked at asolid angle thatis smaller thanthe expected
0 =2m,whichisnecessary (and sufficient) for planarity (Fig. 1e). Finally,
totest thevalidity of rule 3 (angle symmetry), we extracted the pairwise
angles (6, 8,, ;) between the links at each bifurcation, measuring the
probability density P(6). As Fig. If indicates, none of the six classes of
real networks have a peak at the predicted 8 =2m/3 but instead the
branching angles are broadly distributed, an asymmetry violating
the Steiner prediction. Note that P(6) predicted by volume optimiza-
tion is also peaked around 6 = 21t/3 but it can account for a broader
range of branching angles thanks to the fact that links can have varying
thickness®%,

Taken together, although we see the signature of the Steiner theo-
rem and volume optimization in the prevalence of k=3 nodes, the
optimal wiring hypothesis is unable to account for the existence of
k>3 nodes, the prevalence of non-planar bifurcations and the lack of
6 =2m/3 symmetry, results that question the validity of the optimal
wiring hypothesis for physical networks.

Beyond wires—physical networks as manifolds

The Steiner problem relies on the hypothesis that nature aims to min-
imize the totallength of the links, solving aninherently global problem.
However, real physical networks have rich local geometries (Fig. 1c),
characterized by varying diameters® and non-cylindrical surface mor-
phologies. Over the past century, beginning with Murray’s 1926 work,
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Fig.2|Physical network manifold. a, Ina physical network, the links are
represented by charts, with amanifold morphology X;(c,). Each chartiis
described by itslocal coordinate system o,. The natural parametrization of
asurfaceis provided by the longitudinal (62, red) and azimuthal (¢, blue)
coordinates. The minimum circumference around alink is denoted by w,
measured along a pathin the azimuthal direction. b, Theintersections between
thelinks define the geometry around the nodes. The local charts must be
stretched and expanded to ensure asmooth and continuous patching at their
boundaries (blue lines), guaranteeing thato; = (aio, a,-l) match perfectly with

o= (aj‘-), 0})at thei,jintersection. ¢, AFeynman diagram (top) describes the
interactions between elementary particlesin field theory. Instring theory,
Feynman diagrams are smooth and continuous manifolds in higher dimensions
(bottom), knownasaworldsheet, thattranslate the discrete diagram at the
topintotheintegrable object at the bottom. Anexact mapping of the surface
minimization problem (equations (1) and (2)) to these higher-dimensional
worldsheets allows us to map abstract geometryinto astructurally consistent
physical network.

researchers have combined geometry-based volume optimization
calculations®®?’ with algorithmic approximations to identify network
configurations that satisfy the inherent system-specific constraints
and align with experimental data in specific domains*~*°. However,
these approaches cannot account for either the smoothness of the
jointsthat characterize real physical networks or for the cost associated
with deviations from asimple linear or cylindrical solution. Indeed, to
account for the true cost of building and maintaining these net-
works, we must capture the fullmorphology of alocally tree-like system,
which is best described as a manifold M(G) assigned to the graph G.
Formally,amanifoldis aseries of charts representing local coordinate
systems that, when patched together, define a global coordinate sys-
tem, or an atlas*°. Previous advances related graphs to discrete mani-
folds through the use of simplicial complexes, assembled to form an
atlas of connected, discrete coordinates* **. Here, however, we aim to
build smooth manifolds by formally describing each chart as a con-
tinuous surface embedded in three dimensions, whose shape is
described by three-dimensional coordinates X = (x, y, z), inwhich x(o),
y(0) and z(o) are two-variable functions of a local, two-dimensional
coordinate system, ¢ = (¢°, ¢°) (Fig. 2a). This formalism replaces the
total link length in the Steiner graph (Supplementary information
Section2) withthe totalsurfacearea S, (Supplementary information
Section 3):

L
Su@= ZJ‘dza,-,ldetyi. 0))
i=1

Herey,isgivenby y, ,,= (0X,/00) - (0X,/0aP) (ref. 40), character-
izing the infinitesimal surface area elements of each link i. Hence, equa-
tion 1sums over the surfaces of sleeve-like charts X;(g;) dressed over
thelinksi=1, ..., Lofgraphg (Fig.2). Toensure that the sleeves forma
smooth manifold (Supplementaryinformation Section4) and describe
a compact physical object, they must obey several strict conditions:
(1) to avoid non-physical cusps when two (or more) sleeves are sewn
together, the ends of the sleeves must be perfectly aligned (Fig. 2b);
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(2) in principle, surface minimization can collapse a link, predicting
that the minimum solution requires a thinning out at mid-point (Sup-
plementary information Section 5). However, many real physical net-
works must support material flux, which requires a minimum
circumference weverywhere, hence surface minimizationis also sub-
jecttothe functional constraint

S’)‘ di>w, )
circumference

inwhich the arc length is given by di,> = 2ap yl.,aﬁdo,-“dqﬁ.

We, therefore, arrive at our final optimization problem: given a set
ofterminals (predetermined nodes), we seek the smooth and continu-
ous surface manifold that links all terminals through finite paths, whose
circumference exceeds the predefined threshold w and minimizes the
cost S, (equation (1)). At first glance, this optimization problem is
intractable, as we must compare an uncountably infinite set of circum-
ferences, known as non-contractable closed curves*, ensuring that
none of them violate equation (2) while minimizing equation (1). Our
key methodological advance is the discovery of a direct equivalence
between the network manifold minimization problem defined above
and higher-dimensional Feynman diagrams (known as pants decom-
position) instring theory>”. The traditional Feynman diagramis agraph
Gthatviews particle trajectories as links and collisions as nodes (Fig. 2c).
String (field) theory generalizes Feynman diagrams to two-dimensional
surfaces, called the ‘worldsheets’, which represent the paths that strings
sweep through in spacetime®”. The smoothness of this surface guar-
antees that the path integral does not diverge, making it renormaliz-
able®, resulting in the Nambu-Goto action® that is formally identical
to equation (1). The classical solution of the Nambu-Goto action,
obtained in the absence of quantum fluctuations but subject to the
constraint of equation (2), is exactly the manifold M (G) we seek. Acc-
ording to Strebel’s theorem, in the absence of boundary conditions,
this minimal surface is exactly cylindrical. With boundary conditions
added, we can simplify equation (2) to alocal constraint (Supplemen-
tary information Section 5), allowing us to construct local trees with
discrete surfaces that are optimized for both smoothness and minimal-
ity. Numerically, this is performed by the min-surf-netw package,
described in Supplementary information Section 6 and shared on
GitHub.

Degree distribution

We start from a symmetric configuration of four terminals, laid out
on the corners of aregular tetrahedron (Fig. 3a) and construct the
minimal-surface network motif, represented by a tree that links these
four nodes, with minimal link circumference w (Fig. 3b). We define
the dimensionless weight parameter, x = w/r, in which ris the dis-
tance between the intermediate nodes. In the x > O limit, we have a
quasi-one-dimensional configuration with long and thin links. In this
case, the surface minimization predictions converge to the Steiner rules
1-3(Fig.1b), linking the four terminal nodes through two intermediate
bifurcations withdegree k=3 (Fig.3c,d). Yet, the optimal solution also
predicts that, for higher y (thicker links), the two k= 3 nodes gradually
approacheachotherandthat,aty = 1, they mergeintoasingle k=4 node,
resultinginatrifurcation (Fig. 3e,f). In other words, surface minimiza-
tion’ predictsa transition from aSteiner bifurcation to astable trifurca-
tionat y =1, an outcome that eluded volume optimization as well*>%,
To quantify this transition, we use the dimensionless separation
A=Il/wasanorder parameter,inwhich /isthe length of the link between
the two k =3 nodes, and using min-surf-netw (Supplementary infor-
mation Section 6), we numerically generate the connecting minimal
surface, allowing us to measure A(y) as a function of x. For small x, we
have > 0, predicting that the two k=3 nodes are separated, inline with
the Steiner prediction (Fig. 3g). Yet, at y = 0.83, we observe a sudden
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droptoA=0,whentheone-dimensional Steiner approximation breaks
down and instead surface minimization predicts the emergence of a
trifurcation (k=4). This transition represents our first key prediction,
indicating that the empirically observed k =4 nodesinlocally tree-like
physical networks represent astable configuration predicted by local
surface optimization.

To generalize our approach, we place the four terminals randomly
inaunitcube and runseveral configurations to extract the probability
density P(1). For y=0 (corresponding to w = 0, which reduces to the
Steiner problem), we find that P(1) > O for small separation A (Fig. 3h,
grey line), confirming the absence of trifurcations. By contrast, for large
x (for example, w =1), we find that P(A1 > 0) does not vanish (Fig. 3h,
green line). Rather, we observe a finite probability for trifurcations
withA=0 (Supplementary information Section 7). Figure 3hindicates
thatthe density function P(1) offers an empirically falsifiable fingerprint
of surface minimization. We therefore divided each physical network
into local groups of four connected links and extracted P(1). We find
that each locally tree-like network exhibits a non-vanishing P(1 > 0)
(Fig. 3i-n, coloured lines), representing a clear deviation from the
Steiner prediction (green line) and offering direct evidence that, in
real networks, the cost function is not linear in the link length but is
better described by surface minimization.

Angle asymmetry

To understand the origin of the observed angle diversity, a violation
of rule 3 (Fig. 1f), we assume that each link i is characterized by its
unique circumference constraint w;. Without aloss of generality, we set
w,=w,=wandw,=w’,and vary theratio p = w’/w, to obtain the minimal
manifold that connects nodes 1, 2 and 3 (Fig. 4a,b). Although Steiner’s
solution positsaconstantsteeringangle Q,,, = 0.3m, surface minimiza-
tion predicts two distinct regimes separated by a threshold value p;,
(Supplementary information Section 7). (1) For p > p,,, we predict the
steering angle Q,., = k(p — p,) (Fig. 4e,f), thatis, alinear dependence
onp (Fig. 4g). This regime can therefore account for the wide range of
angles observedinFig.1f. (2) For p < p,,, surface minimization makes an
unexpected prediction: iflinks 1and 2 have comparable diameters, they
areexpected toformastraight path (thatis, continue with solid angle of
Q,,,=0),whereasthethinnerlink 3is predicted to emerge perpendicu-
larly at Q,,; = Q, 5, consistent with an orthogonal sprouting behaviour
(Fig. 4c,d). Note that a geometric approach predicted as early as 1976
(refs. 28,29) that the branch angles converge to 90° in the p > O limit
(Supplementary information Section 7). By contrast, our framework
predictsthatthe 90° solutionis optimal forany p < p, (Fig.4g). Hence,
orthogonal sprouts are not singular solutions that emerge only in the
p~ 0limit?**, Rather, they are stable solutions of surface minimization
that remain minimal for awide range of parameter values and hence they
should be not only observable but prevalentin real physical networks.

Totest these predictions, we identified all bifurcation motifsineach
network in our database and then searched for branches that satisfy
w, =w, =w. We then measured Q(p) = Q,,, as a function of the empiri-
cally observed p, finding that almost all bifurcations for p < p,,, are
sprout-like, characterized by small Q(p) (Supplementary information
Section 7). InFig. 4i-n, we show the cumulative value of the observed
angles in the two regimes, offering evidence that the cumulative
|f:th Q(p)dp|follows approximately (p,, — p)* for p < p,,and a quadratic
behaviourapproximately (p — p,)*for p > py,, in line with the predictions
of Fig. 4g.

The key outcome of surface minimizationis the predicted prevalence
of the orthogonal sprouts, expected to emerge each time p < p,,. To
falsify this prediction, we ask: are such sprouts really presentin physi-
calnetworks? Note that the excess of sprouts over the expectations of
length or volume optimization was already noted in arterial systems
as early as 1976 (ref. 29). This abundance remained unanswered and
it also remains unclear whether sprouts represent a generic feature
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Fig.3|Emergence of trifurcations. a, We consider four nodes forming a
perfecttetrahedral configuration with spatial lengthscaler, capturing the
radius of the tetrahedron. b, We construct a physical network to link these four
nodes under surface minimization with circumference constraint w (link
thickness).c,d, When y=w/r > 0, the sleeves behave as one-dimensional links
and the resulting manifold is well approximated by the Steiner solution, the
network featuringtwo k =3 bifurcations. e,f, As yincreases, theintermediate
link /becomes shorter, until, beyond a certain thickness, the separation
parameter A=[/w~ 0, indicating that the two intermediate bifurcations unite
intoasingle trifurcation with k= 4.g, To examine the predicted transition,
we plotAversus x for the minimal surface (green). For smally, wehave >0,
following a patternalso predicted by Steiner (grey line). This captures the
two-bifurcationscenario predicted by length minimization. However, at
x=0.83,weobserveasuddendecreasetoA =0, capturing the transition from

across all physical networks or are unique to blood vessels. To address
this, we first identified all bifurcations with w, = w, in blood vessels,
confirming that, in 25.6% of the cases, the third branch, independent
of p, is perpendicular to the main branches, representing an abun-
dant sprouting behaviour. Yet, we find that sprouts are not limited
to the circulatory system but are present in all studied networks,
representing 12.9% of the w, = w, cases in the tropical trees, 52.8% in
corals, 11.2% in arabidopsis, 13.8% in the fruit fly neurons and 18.4% in
the human neurons. Most importantly, some systems have learned
to turn sprout behaviour to their advantage, assigning it a functional
role. Indeed, in the human connectome, we identified 4,003 sprouts,
finding that 3,911 of these (98%) end with a synapse (Fig. 4h). In other
words, neuronal systems have adapted to rely on surface minimiza-
tion by using orthogonal sprouts as dendritic spines that allow them
to form synapses with nearby neurons with minimal material cost.

doublebifurcations toasingle trifurcation. h, Weexamined aseries of random
four-node configurations within a unit cube and implicitly constructed for each
aSteiner graph and a minimal-surface manifold (w =1). We then extracted P(1),
capturingthe probability density to observe 1. Under Steiner optimization,
P(A) vanishesasA > 0 (grey curve), capturing the fact that trifurcations are
forbidden. By contrast, for surface minimization (green curve), we have

P(1~> 0)>0,describingafinite likelihood to observe trifurcations. i-n, P(1)
versusAobtained fromreal physical networks. In each network, we collected
alltetrahedral motifs in which the four external nodes are linked through two
intermediate nodes and extracted A between these intermediaries. Compared
with Steiner’s predictions (grey lines), the empirically observed P(A) (distinct
colours) follows the green patterninh, capturing a coexistence of bifurcations
(A>0)and trifurcations (1= 0), as predicted by surface minimization.

Similarly, roots in plants*® and hyphae branches in fungi*’ are known
to sprout perpendicularly, allowing plants and fungi to explore a
larger volume of soil for water and nutrients with minimal material
expenditure.

The predicted relationbetween Q(p) and pinFig. 4gleadsto further
falsifiable predictions for the P(Q) angle distributions, conditioned on
the empirically observed p values. In the sprouting regime (o < p,), we
predict Q= 0, independent of p, hence we anticipate a sharp peak of
P(Q) atQ=0,inagreement with theempirical data (left side, sprouting
regimeinFig.5a-f).Inthe branchingregime (p > p,,), however, P(Q) is
predicted to exhibitabroad distribution with high variance, rootedin
thelinear behaviour of Fig. 4g. The empirical data support this predic-
tionaswell (rightside, branching regimein Fig. 5a-f). By comparison,
the Steiner prediction posits a sharp peak of P(Q) independent of p
(thingreylinesin both sprouting and branching regimesin Fig. 5a-f).
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Fig.4|Branching versus sproutingbifurcations. a, We start froma triangular
node configuration, withw, =w,=wand w,=w’.b, We construct the minimal-
surface manifold connecting the three nodes. ¢,d, For small p = w’/w, the link
ofnode 3is thinand the optimal manifold favours asprouting structure: nodes
land2linked throughastraightlineand node 3 by means of a perpendicular
link.e,f, Forlarge p, wefind alinear relation between p and the three-dimensional
steeringangle, Q,,,, related to the branching angle 6 (Fig. 1f) through Q,,, =
4msin®((t - 6)/4). As p increases, the bifurcation pointapproaches the triangle
centre and the bifurcation gradually resembles asymmetric branching.

Discussion

The three-dimensional layout of physical networks is subject to sev-
eral, often evolutionary-induced, constraints. For example, brain
wiringis governed by developmental programs*® and locally guided by
acomplexinventory of chemoattractants and repellents that govern
the journey of an individual neuron across the brain. Similarly, the
vascular system must transport nutrients to all cells and is subject to
several optimization goals, from flow efficiency to material cost®.
Given the diversity of the processes that govern the development
of physical networks, we would expect that minimization principles
are ultimately overwritten by global and functional needs***'. By con-
trast, here we find that physical networks observed in a wide range
of systems follow common quantifiable morphological branching
characteristics that are well predicted by alocal surface minimization
process. Therobustness of our results across several systemsindicates
that cost minimizationis a stereotypical principle thatis not overwrit-
ten by functional or global need; rather, development and selection
probably rely on these local minimization processes to add function
to anetwork. As local optimization does not necessarily dictate the
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g,0,,,versus p. We observe atransition from sprouting (Q = 0) to branching
(Q>0)atp=0.6.Thesymmetric branching observed by Steiner appears
nearp=1.h,Inthe human connectome, 92% of the observed sprouts end
onsynapses, suggesting that neuronal systems use surface minimization

to formdirect synaptic connections to adjacent neurons with minimal material
cost.i-n,Accordingtog, cumulative|j;th Q(p)dp|should follow approximately
(pw — p)'for p < p,and approximately (p — p,,)* for p > p,,, predictions closely
followed by real physical networks. Band thickness represents one standard
error of the fitting.

global optimum?, functional demands may exert greater influence at
larger scales?®*. For example, we find that wiring optimization fails to
correctly predict the total length of physical networks, which are, on
average, 25% longer than Steiner’s prediction across all six datasets
(Supplementary information Section 8).

More empirical studies are needed to validate surface minimiza-
tion predictions across more complex network structures®. Indeed,
although here we focused on the universal branching characteristics
of locally tree-like structures, construction of larger-scale structures
could reveal whether specific network types exhibit unique geo-
metrical adaptations, such as varying link thickness and curvature,
owing to the unique functional pressures of the networks, such as
flow conservation in vascular systems® or neuron placement con-
straints*®, These features are beyond the scope of our present surface
minimization framework, which predicts straight, uniform cylinders
far from the branching points. Furthermore, loops—which we find
to be absent in our datasets (Supplementary information Section 8)
but ubiquitous in engineered networks such as traffic and power
grids—represent a departure from simple wiring efficiency, hence
requiring an extended analytical framework. Such advances will



a Human neuron

b Frit fly neuron

€ Blood vessel

Fig.5|Sproutingin physical networks. We predicted and measured the
branching angle distribution across six physical networks.a-f, Therelation of
0,,,versus pinFig. 4 predicts distinct distributions P(Q) based on the observed

open avenues to integrate crowding'®*, knotting'** or bundling™

of physical links, exploring their influence on the global layout. Such
extensions could offer further insights into how networks balance
efficiency with functional demands*® and help us understand how a
global and functional organization can emerge fromlocal processes.
They may also offer insight into differences between classes of physi-
cal networks, helping us understand which features are governed
by optimization principles and which require further functional
considerations.

Future work could also compare the predicted manifold geometries
directly to the observed geometric features, such as surface geodes-
ics, curvatures and other fine details, helping reveal the degree to
which the surface minimization model reproduces the observed local
geometry beyond skeletons. Indeed, we find that trifurcation junc-
tions are consistently smooth and that their shapes strongly prefer
symmetric morphology, features predicted by surface minimization
(Supplementary information Section 9). This validation at the level
of fine-grained geometry reinforces the empirical foundation of our
framework and opens avenues for more detailed comparison with
the predictions.

Physical networks in the three-dimensional Euclidean space can be
described as either two-dimensional manifolds M (G) subject to surface
minimization or three-dimensional objects subject to volume optimi-
zation. Although in vascular networks the material investment is limited
to the surface area of the blood vessels, for neurons, corals and trees,
an accurate accounting of the material cost must also consider the
volume of the branches. The existing literature on volume optimization

assumes cylindrical links*®?° and fails to account for non-trivial topol-
ogies emerging at the intersections. As the min-surf-netw algorithm
exploits the string-theoretic solution, it is limited to surface minimiza-
tion. Yet, the two problems are not independent: our numerical simu-
lationsindicate that, for the branching processes, suboptimal surfaces
alsoincrease the volume, suggesting that the minimal surfaces cor-
respond to close-to-optimal volumes as well (Supplementary informa-
tion Section 10). However, further work is needed to understand

— Steiner — Steiner : — Steiner
10 10 10
— Manifold = Manifold — Manifold
Empirical @ = Empirical S == Empirical @
a T T
5 i5 5
L Il Il L L L L L Il A L..l"'\"-.\- L Il Il It L Il Po | L Il L Il Il \,L"'\--‘\ Il Il Ik L Il (I I L
1.5r 1.0n 0.5¢n 0 057 1.0m 1.5n 157 1.0n 0.5=n 0 0.5n 1.0m 1.5n 1.5r 1.0n 0.5¢n 0 0.5t 1.0mr 1.5m
Sprouting Q Branching Sprouting Q Branching Sprouting Q Branching
d Tropical tree e Coral f Arabidopsis
— Steiner — Steiner — Steiner
10 10,1 10
— Manifold — Manifold r - — Manifold
Empirical o = Empirical o - Empirical S
& a; T
5 ist 5
Il L L t I Il Il Il It Il L Il Il I L 4 nd-!'\"‘\.' 1 Il Il It Il Il Il Il L Il Il 1 1 Il Il Il Ik Il I L T 1 1
1.5n 1.0n  0.5m 0 057 1.0n 1.5m 1.5r 1.0r 0.5=n 0 05n 1.0m 1.5n 1.5n 1.0n 0.5¢n 0 0.5t 1.0m 1.5n
Sprouting Q Branching Sprouting Q Branching Sprouting Q Branching

pvaluesinthesprouting (dashed lines) and branching (solid lines) regimes.
Bothdistributions align with our predictions (green), violating the Steiner
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whether a self-consistent volume optimization could offer new solu-
tions and morphologies that are not predicted by our present frame-
work, hence can further enrich our understanding of physical networks.
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Anymethods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competinginterests; and statements of data and code availability
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1. Shapson-Coe, A. et al. A petavoxel fragment of human cerebral cortex reconstructed at
nanoscale resolution. Science 384, eadk4858 (2024).
The MICrONS Consortium. Functional connectomics spanning multiple areas of mouse

2.
visual cortex. Nature 640, 435-447 (2025).
3. Winding, M. et al. The connectome of an insect brain. Science 379, eadd9330 (2023).
4. Wilson, N. M., Ortiz, A. K. & Johnson, A. B. The vascular model repository: a public
resource of medical imaging data and blood flow simulation results. J. Med. Devices 7,
040923 (2013).
5. Witten, E. Non-commutative geometry and string field theory. Nucl. Phys. B 268, 253-294
(1986).
6. Carlip, S. Quadratic differentials and closed string vertices. Phys. Lett. B 214, 187-192
(1988).
7. Saadi, M. & Zwiebach, B. Closed string field theory from polyhedra. Ann. Phys. 192,
213-227 (1989).
8. Cajal, S.R.Y., Azoulay, D. L., Swanson, N. & Swanson, L. W. Histology Of The Nervous System:
Of Man And Vertebrates (Oxford Univ. Press, 1995).
9. Murray, C. D. The physiological principle of minimum work. Proc. Natl Acad. Sci. USA 12,
207-214 (1926).
10. Dehmamy, N., Milanlouei, S. & Barabasi, A.-L. A structural transition in physical networks.
Nature 563, 676-680 (2018).
1. Liy, Y., Dehmamy, N. & Barabasi, A.-L. Isotopy and energy of physical networks. Nat. Phys.
17, 216-222 (2021).
12.  Budd, J. M. L. et al. Neocortical axon arbors trade-off material and conduction delay
conservation. PLoS Comput. Biol. 6, 1000711 (2010).

13.  Markov, N. T. et al. Cortical high-density counterstream architectures. Science 342,
1238406 (2013).

14. Wang, Z., Zhao, M. & Yu, Q.-X. Modeling of branching structures of plants. J. Theor. Biol.
209, 383-394 (2001).

15.  Durand, M. Architecture of optimal transport networks. Phys. Rev. E 73, 016116

(2006).

Nature | Vol 649 | 8 January 2026 | 321


https://doi.org/10.1038/s41586-025-09784-4

Article

6.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.
30.

31

32.

33.

34.

35.

36.

37.

38.

39.

Bontorin, S., Cencetti, G., Gallotti, R., Lepri, B. & De Domenico, M. Emergence of complex
network topologies from flow-weighted optimization of network efficiency. Phys. Rev. X
14, 021050 (2024).

Banavar, J. R., Maritan, A. & Rinaldo, A. Size and form in efficient transportation networks.
Nature 399, 130-132 (1999).

D'Souza, R. M., Borgs, C., Chayes, J. T., Berger, N. &Kleinberg, R. D. Emergence of tempered
preferential attachment from optimization. Proc. Natl Acad. Sci. USA 104, 6112-6117
(2007).

Latty, T. et al. Structure and formation of ant transportation networks. J. R. Soc. Interface
8,1298-1306 (2011).

Sexton, Z. A. et al. Rapid model-guided design of organ-scale synthetic vasculature for
biomanufacturing. Science 388, 1198-1204 (2025).

Chklovskii, D. & Stevens, C. Wiring optimization in the brain. In Advances in Neural
Information Processing Systems 12: Proc. 1999 Conference 103-107 (MIT Press, 1999).
Chklovskii, D. B., Schikorski, T. & Stevens, C. F. Wiring optimization in cortical circuits.
Neuron 34, 341-347 (2002).

Kim, Y., Sinclair, R., Chindapol, N., Kaandorp, J. A. & Schutter, E. D. Geometric theory
predicts bifurcations in minimal wiring cost trees in biology are flat. PLoS Comput. Biol. 8,
e1002474 (2012).

Hwang, F. K., Richards, D. S. & Winter, P. The Steiner Tree Problem 1st edn (Elsevier, 1992).
Rosenthal, A. Computing the reliability of complex networks. SIAM J. Appl. Math. 32,
384-393 (1977).

Winter, P. Steiner problem in networks: a survey. Networks 17, 129-167 (1987).
Amirghasemi, M. et al. in Frontiers in Nature-Inspired Industrial Optimization 1st edn

(eds Khosravy, M., Gupta, N. & Patel, N.) 33-48 (Springer, 2022).

Cherniak, C. Local optimization of neuron arbors. Biol. Cybern. 66, 503-510 (1992).
Zamir, M. Optimality principles in arterial branching. J. Theor. Biol. 62, 227-251(1976).
Corals - 3D digitization. https://3d.si.edu/corals.

Scheffer, L. K. et al. A connectome and analysis of the adult Drosophila central brain. eLife
9, 57443 (2020).

Gonzalez de Tanago, J. et al. Estimation of above-ground biomass of large tropical trees
with terrestrial LIiDAR. Methods Ecol. Evol. 9, 223-234 (2018).

Pan, H., Hétroy-Wheeler, F., Charlaix, J. & Colliaux, D. ARABIDOPSIS 3D+T dataset. Zenodo
https://doi.org/10.5281/zenodo.5205561 (2021).

Percheron, G. Quantitative analysis of dendritic branching. I. Simple formulae for the
quantitative analysis of dendritic branching. Neurosci. Lett. 14, 287-293 (1979).
Percheron, G. Quantitative analysis of dendritic branching. Il. Fundamental dendritic
numbers as a tool for the study of neuronal groups. Neurosci. Lett. 14, 295-302 (1979).
Miyawaki, S., Tawhai, M. H., Hoffman, E. A., Wenzel, S. E. & Lin, C.-L. Automatic
construction of subject-specific human airway geometry including trifurcations based on
a CT-segmented airway skeleton and surface. Biomech. Model. Mechanobiol. 16, 583-596
(2017).

Schreiner, W. & Buxbaum, P. Computer-optimization of vascular trees. IEEE Trans. Biomed.
Eng. 40, 482-491(1993).

Jessen, E., Steinbach, M. C., Debbaut, C. & Schillinger, D. Rigorous mathematical
optimization of synthetic hepatic vascular trees. J. R. Soc. Interface 19, 20220087 (2022).
Keelan, J., Chung, E. M. L. & Hague, J. P. Simulated annealing approach to vascular
structure with application to the coronary arteries. R. Soc. Open Sci. 3,150431(2016).

322 | Nature | Vol 649 | 8 January 2026

40. Bobenko, A. 1., Sullivan, J. M., Schroder, P. & Ziegler, G. M. (eds) Discrete Differential
Geometry (Birkhauser, 2008).

41.  Bianconi, G. & Rahmede, C. Complex quantum network manifolds in dimension d > 2 are
scale-free. Sci. Rep. 5, 13979 (2015).

42. Bianconi, G., Rahmede, C. & Wu, Z. Complex quantum network geometries: evolution and
phase transitions. Phys. Rev. E 92, 022815 (2015).

43. Bianconi, G. & Rahmede, C. Network geometry with flavor: from complexity to quantum
geometry. Phys. Rev. E 93, 032315 (2016).

44. Gromov, M. Partial Differential Relations 1st edn (Springer, 1986).

45. Tong, D. Lectures on string theory. University of Cambridge http://www.damtp.cam.ac.uk/
user/tong/string.html (2009).

46. Lynch, J. P. Steep, cheap and deep: an ideotype to optimize water and n acquisition by
maize root systems. Ann. Bot. 112, 347-357 (2013).

47.  Harris, S. D. Branching of fungal hyphae: regulation, mechanisms and comparison with
other branching systems. Mycologia 100, 823-832 (2008).

48. Barabasi, D. L. & Barabasi, A.-L. A genetic model of the connectome. Neuron 105, 435-445
(2020).

49. West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric
scaling laws in biology. Science 276, 122-126 (1997).

50. Thompson, D. W. On Growth and Form (Cambridge Univ. Press, 1992).

51.  West, G. Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of
Life in Organisms, Cities, Economies, and Companies (Penguin Press, 2017).

52. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D. U. Complex networks:
structure and dynamics. Phys. Rep. 424, 175-308 (2006).

53. Posfai, M. et al. Impact of physicality on network structure. Nat. Phys. 20, 142-149 (2024).

54. Glover, C. & Barabasi, A.-L. Measuring entanglement in physical networks. Phys. Rev. Lett.
133, 077401 (2024).

55. Bonamassa, I. et al. Logarithmic kinetics and bundling in physical networks. Preprint at
https://arxiv.org/abs/2401.02579 (2024).

56. Cimini, G. et al. The statistical physics of real-world networks. Nat. Rev. Phys. 1, 58-71(2019).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

@@@@ Open Access This article is licensed under a Creative Commons Attribution-
BY NC ND

NonCommercial-NoDerivatives 4.0 International License, which permits any

non-commercial use, sharing, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material.
You do not have permission under this licence to share adapted material derived from this
article or parts of it. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material.
If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2026


https://3d.si.edu/corals
https://doi.org/10.5281/zenodo.5205561
http://www.damtp.cam.ac.uk/user/tong/string.html
http://www.damtp.cam.ac.uk/user/tong/string.html
https://arxiv.org/abs/2401.02579
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Data availability
The dataset is available at https://physical.network.

Code availability

The code used for this manuscript is available at https://github.com/
Barabasi-Lab/min-surf-netw.

Acknowledgements We are grateful to U. H. Danielsson and F. Ruehle for helpful discussions
on the string theory approach. A.-L.B. was partially supported by the NSF award no. 2243104 -
COMPASS and by the European Union’s Horizon 2020 research and innovation programme no.
810115 - DYNASNET. B.B. was supported by the Israel Science Foundation grant no. 499/19, the
Israel-China ISF-NSFC joint research programme grant no. 3552/21, and by the VATAT grant for
data science research.

Author contributions All authors contributed to the research. X.M. and A.-L.B. conceived the
research. X.M., B.P. and C.B. collected and cleaned the data. X.M. and B.P. analysed the data.
X.M. conducted theoretical analysis, designed the algorithm and performed the simulation.
B.B., X.M. and A.-L.B. wrote the manuscript. X.M., C.B. and A.-L.B. reviewed and edited the
manuscript.

Competing interests A.-L.B. is the scientific founder of Scipher Medicine, Inc., which applies
network medicine to biomarker development. The other authors declare no competing
interests.

Additional information

Supplementary information The online version contains supplementary material available at
https://doi.org/101038/s41586-025-09784-4.

Correspondence and requests for materials should be addressed to Albert-Laszl6 Barabasi.
Peer review information Nature thanks Bernat Corominas-Murtra, Shakti N. Menon and the
other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at http://www.nature.com/reprints.


https://physical.network
https://github.com/Barabasi-Lab/min-surf-netw
https://github.com/Barabasi-Lab/min-surf-netw
https://doi.org/10.1038/s41586-025-09784-4
http://www.nature.com/reprints

	Surface optimization governs the local design of physical networks

	Steiner graphs

	Beyond wires—physical networks as manifolds

	Degree distribution

	Angle asymmetry

	Discussion

	Online content

	Fig. 1 Real physical networks versus length and volume optimization predictions.
	Fig. 2 Physical network manifold.
	Fig. 3 Emergence of trifurcations.
	Fig. 4 Branching versus sprouting bifurcations.
	Fig. 5 Sprouting in physical networks.




