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Surface optimization governs the local 
design of physical networks

Xiangyi Meng1,2,3,4, Benjamin Piazza3,4, Csaba Both3,4, Baruch Barzel3,4,5,6 & 
Albert-László Barabási3,4,7,8 ✉

The brain’s connectome1–3 and the vascular system4 are examples of physical  
networks whose tangible nature influences their structure, layout and, ultimately, 
their function. The material resources required to build and maintain these networks 
have inspired decades of research into wiring economy, offering testable predictions 
about their expected architecture and organization. Here we empirically explore  
the local branching geometry of a wide range of physical networks, uncovering 
systematic violations of the long-standing predictions of wiring minimization. This 
leads to the hypothesis that predicting the true material cost of physical networks 
requires us to account for their full three-dimensional geometry, resulting in a largely 
intractable optimization problem. We discover, however, an exact mapping of surface 
minimization onto high-dimensional Feynman diagrams in string theory5–7, predicting 
that, with increasing link thickness, a locally tree-like network undergoes a transition 
into configurations that can no longer be explained by length minimization. Specifically, 
surface minimization predicts the emergence of trifurcations and branching angles  
in excellent agreement with the local tree organization of physical networks across  
a wide range of application domains. Finally, we predict the existence of stable 
orthogonal sprouts, which are not only prevalent in real networks but also play a key 
functional role, improving synapse formation in the brain and nutrient access in 
plants and fungi.

The vascular system and the brain are examples of physical networks 
that differ from the networks typically studied in network science owing 
to the tangible nature of their nodes and links, which are made of mate-
rial resources and constrain their layout. The importance of these mate-
rial factors has been noted in many disciplines: as early as 1899, Ramón 
y Cajal suggested that we must consider the laws conserving the ‘wire’ 
volume to explain neuronal design8 and in 1926, Cecil D. Murray applied 
volume minimization principles to vascular networks, deriving the 
branching principles known as Murray’s law9. Today, wiring optimiza-
tion is used to account for the morphology and the layout of a wide 
range of physical systems10,11, from the distributions of neuronal branch 
sizes12 and lengths13 to the morphology of plants14, the structure15 and 
flow16 in transport networks, the layout of supply networks17, the wiring 
of the Internet18 or the shape of inter-nest trails built by Argentine ants19 
and the design of 3D-printed tissues with functional vasculature20.

The premise of wiring economy approaches is the optimal wiring 
hypothesis, which conceptualizes physical networks as a set of con-
nected one-dimensional wires whose total length is minimized21–23. 
The optimal wiring in this case is exactly predicted by the Steiner 
graph24–27. However, the lack of high-quality data on physical net-
works has limited the systematic testing of the Steiner predictions to 
single neuron branches28 and ant tunnels19 and offered at best mixed 

evidence of their validity28,29. Yet, data availability has substantially 
improved in the past few years, thanks to advances in microscopy and 
three-dimensional reconstruction techniques, offering access to the 
detailed three-dimensional structure of physical networks ranging 
from high-resolution layouts of brain connectomes1–3 to vascular net-
works4 or the structure of coral trees30. Here we take advantage of these 
experimental advances to explore in a quantitative manner the role 
of wiring optimization in shaping the local morphology of physical 
networks. We begin by documenting systematic deviations from both 
the Steiner predictions24 and volume optimization9,28,29, failures that 
we show to be rooted in the hypothesis that approximates the cost 
of physical networks as the sum of their link lengths21–23 or as simple 
cylinders28,29. Indeed, the links of real physical networks are inherently 
three-dimensional, prompting us to suggest that their true material 
cost must also consider surface constraints. Building on previous analy-
ses that introduced volumetric constraints9,28,29, here we successfully 
account for the local surface morphology, ensuring that, when links 
intersect, they morph together continuously and smoothly, free of 
singularities, as dictated by the physicality of their material structure. 
To achieve this, we map the local tree structure of physical networks 
into two-dimensional manifolds, arriving at a numerically intractable 
surface and volume minimization problem. We discover, however,  
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a formal mapping between surface minimization and high-dimensional  
Feynman diagrams, which allows us to take advantage of a well- 
developed string-theoretical toolset5–7 to predict the basic charac-
teristics of minimal surfaces. We find that surface minimization can 
not only account for the empirically observed discrepancies from 
the Steiner predictions but offers testable predictions on the degree 
distribution and the angle asymmetry of physical networks, which 

we can falsify, offering a crucial window into the design principles of 
physical networks.

Steiner graphs
The Steiner graph problem24 begins with M spatially distributed 
nodes (Fig. 1a), with the task of connecting these nodes through the 
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Fig. 1 | Real physical networks versus length and volume optimization 
predictions. a, Physical networks aim to connect spatially distributed nodes 
(coloured) with physical links in three dimensions. If we connect nodes directly, 
the wiring cost (total link length) is about 26.1. b, The Steiner graph minimizes 
the wire length by permitting intermediate nodes (green), resulting in the total 
wire length of approximately 22.0. The Steiner graph offers three predictions. 
Rule 1: all branching instances are bifurcations with degree k = 3. Rule 2: 
bifurcations are all planar, having a solid angle of Ω = 2π. Rule 3: the angles 
between adjacent links are θ = 2π/3. Volume optimization, which generalizes 
links as simple cylinders of varying thickness, preserves rules 1 and 2 and 
predicts a broader distribution for θ, peaked around 2π/3. c, A neuron of the 
human connectome, demonstrating the violations of the Steiner rules. In the 
top inset, we highlight a trifurcation (k = 4) violating rule 1. We also highlight a 

non-symmetric branching angle, in which links sprout out perpendicularly 
(right inset), breaking rule 3. d, The percentage of k = 4 nodes across our six 
empirical locally tree-like physical networks. We observe roughly 15% of the 
nodes violating Steiner rule 1. e, The probability density P(Ω) versus Ω as 
obtained from all bifurcations (k = 3) in our empirical network ensemble 
(coloured solid lines). The observed density functions are more prone to 
Steiner rule 2 (thin grey line) than to random branching without optimization 
(thick grey line). f, The probability density P(θ) versus θ as obtained from  
all bifurcations (coloured solid lines). Once again, we observe a clear 
discrepancy from Steiner (thin grey line) and a tendency towards random 
branching (thick grey line) or volume optimization of cylindrical links with 
random thickness (dashed grey line).
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shortest possible links. The key insight of the Steiner solution is that, 
by adding intermediate nodes to serve as branching points (Fig. 1b), 
the obtained link length can be shorter than any attempt to connect 
the nodes directly24 (Fig. 1a). Although for arbitrary M the Steiner 
problem is NP-hard, for M = 4, we can get an exact solution, result-
ing in a globally optimal Steiner graph that is characterized by three 
strict local rules (Fig. 1b). (1) Bifurcation only. All branching instances 
represent bifurcations, in which a single link splits into two daughter 
links. Consequently, all intermediate nodes have degree k = 3 and 
higher-degree nodes (k > 3) are forbidden. (2) Planarity. At a bifurca-
tion, all three links are embedded in the same plane (Ω = 2π). (3) Angle 
symmetry. All three branches of a bifurcation form the same angle 
θ = 2π/3 with each other.

To test the validity of the local predictions of the Steiner solution, 
we collected three-dimensional resolved data of six classes of physi-
cal networks (Supplementary information Section 1): (1) human neu-
rons1 (also in Fig. 1c); (2) fruit fly neurons31; (3) human vasculature4;  
(4) tropical trees from moist forests32; (5) corals of several species30;  
(6) arabidopsis at different growth stages33. As wiring optimization 
relies on the skeleton representations of physical networks, we con-
firmed that our test of Steiner’s prediction is not sensitive to the choice 
of the particular skeletonization algorithm (Supplementary informa-
tion Section 1). To examine the validity of rule 1 (bifurcation only), we 
extracted the degree distribution of each skeletonized network. In 
agreement with the Steiner principle (an outcome also predicted by 
volume optimization of simple cylinders28,29), we observe a prevalence 
of k = 3 nodes, accounting, for example, for 79% of the nodes in the 
human neurons and for 94% in arabidopsis. Yet, we also observe a sub-
stantial number of trifurcations (k = 4) and several even higher degree 
(k = 5, 6) nodes (Fig. 1d), violating the Steiner and volume optimization 
prediction34,35. Note that, because of errors in skeletonizing a physical 
motif, two closely spaced bifurcations may be mistakenly identified 
as a trifurcation or, conversely, a trifurcation may be incorrectly per-
ceived as two bifurcations36. We therefore verified that the observed 
high-degree nodes (as demonstrated in Fig. 1c) cannot be attributed 
to resolution limits (Supplementary information Section 1).

To examine the validity of rule 2 (planarity), which is predicted by 
both Steiner and volume optimization, we quantified the planarity for 
each bifurcation (k = 3) by measuring the probability P(Ω) that the three 
links span a solid angle Ω. We find that, in all of the studied networks, 
P(Ω) is strongly peaked at a solid angle that is smaller than the expected 
Ω = 2π, which is necessary (and sufficient) for planarity (Fig. 1e). Finally, 
to test the validity of rule 3 (angle symmetry), we extracted the pairwise 
angles (θ1, θ2, θ3) between the links at each bifurcation, measuring the 
probability density P(θ). As Fig. 1f indicates, none of the six classes of 
real networks have a peak at the predicted θ = 2π/3 but instead the 
branching angles are broadly distributed, an asymmetry violating 
the Steiner prediction. Note that P(θ) predicted by volume optimiza-
tion is also peaked around θ = 2π/3 but it can account for a broader 
range of branching angles thanks to the fact that links can have varying  
thickness28,29.

Taken together, although we see the signature of the Steiner theo-
rem and volume optimization in the prevalence of k = 3 nodes, the 
optimal wiring hypothesis is unable to account for the existence of 
k > 3 nodes, the prevalence of non-planar bifurcations and the lack of 
θ = 2π/3 symmetry, results that question the validity of the optimal 
wiring hypothesis for physical networks.

Beyond wires—physical networks as manifolds
The Steiner problem relies on the hypothesis that nature aims to min-
imize the total length of the links, solving an inherently global problem. 
However, real physical networks have rich local geometries (Fig. 1c), 
characterized by varying diameters9 and non-cylindrical surface mor-
phologies. Over the past century, beginning with Murray’s 1926 work, 

researchers have combined geometry-based volume optimization 
calculations9,28,29 with algorithmic approximations to identify network 
configurations that satisfy the inherent system-specific constraints 
and align with experimental data in specific domains37–39. However, 
these approaches cannot account for either the smoothness of the 
joints that characterize real physical networks or for the cost associated 
with deviations from a simple linear or cylindrical solution. Indeed, to 
account for the true cost of building and maintaining these net-
works, we must capture the full morphology of a locally tree-like system, 
which is best described as a manifold ( )M G  assigned to the graph G. 
Formally, a manifold is a series of charts representing local coordinate 
systems that, when patched together, define a global coordinate sys-
tem, or an atlas40. Previous advances related graphs to discrete mani-
folds through the use of simplicial complexes, assembled to form an 
atlas of connected, discrete coordinates41–43. Here, however, we aim to 
build smooth manifolds by formally describing each chart as a con-
tinuous surface embedded in three dimensions, whose shape is 
described by three-dimensional coordinates X = (x, y, z), in which x(σ), 
y(σ) and z(σ) are two-variable functions of a local, two-dimensional 
coordinate system, σ = (σ0, σ1) (Fig. 2a). This formalism replaces the 
total link length in the Steiner graph (Supplementary information 
Section 2) with the total surface area S ( )M G  (Supplementary information 
Section 3):

∫∑S γ= d det . (1)
i

L

i i( )
=1

2
M G σ

Here γi is given by  γ σ σ≡ (∂ /∂ ) ⋅ (∂ /∂ )i αβ i i
α

i i
β

, X X  (ref. 40), character-
izing the infinitesimal surface area elements of each link i. Hence, equa-
tion 1 sums over the surfaces of sleeve-like charts σX ( )i i  dressed over 
the links  i L= 1, …,  of graph G  (Fig. 2). To ensure that the sleeves form a 
smooth manifold (Supplementary information Section 4) and describe 
a compact physical object, they must obey several strict conditions: 
(1) to avoid non-physical cusps when two (or more) sleeves are sewn 
together, the ends of the sleeves must be perfectly aligned (Fig. 2b); 
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Fig. 2 | Physical network manifold. a, In a physical network, the links are 
represented by charts, with a manifold morphology Xi(σi). Each chart i is 
described by its local coordinate system σi. The natural parametrization of  
a surface is provided by the longitudinal (σi
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coordinates. The minimum circumference around a link is denoted by w, 
measured along a path in the azimuthal direction. b, The intersections between 
the links define the geometry around the nodes. The local charts must be 
stretched and expanded to ensure a smooth and continuous patching at their 
boundaries (blue lines), guaranteeing that σ σ σ= ( , )i i i

0 1  match perfectly with 
σ σ= ( , )j j j

0 1σ  at the i, j intersection. c, A Feynman diagram (top) describes the 
interactions between elementary particles in field theory. In string theory, 
Feynman diagrams are smooth and continuous manifolds in higher dimensions 
(bottom), known as a worldsheet, that translate the discrete diagram at the  
top into the integrable object at the bottom. An exact mapping of the surface 
minimization problem (equations (1) and (2)) to these higher-dimensional 
worldsheets allows us to map abstract geometry into a structurally consistent 
physical network.
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(2) in principle, surface minimization can collapse a link, predicting 
that the minimum solution requires a thinning out at mid-point (Sup-
plementary information Section 5). However, many real physical net-
works must support material flux, which requires a minimum 
circumference w everywhere, hence surface minimization is also sub-
ject to the functional constraint

∮ l wd ≥ , (2)i
circumference

in which the arc length is given by l γ σ σd = ∑ d di α β i αβ i
α

i
β2

, ,
.

We, therefore, arrive at our final optimization problem: given a set 
of terminals (predetermined nodes), we seek the smooth and continu-
ous surface manifold that links all terminals through finite paths, whose 
circumference exceeds the predefined threshold w and minimizes the 
cost M GS ( ) (equation (1)). At first glance, this optimization problem is 
intractable, as we must compare an uncountably infinite set of circum-
ferences, known as non-contractable closed curves44, ensuring that 
none of them violate equation (2) while minimizing equation (1). Our 
key methodological advance is the discovery of a direct equivalence 
between the network manifold minimization problem defined above 
and higher-dimensional Feynman diagrams (known as pants decom-
position) in string theory5–7. The traditional Feynman diagram is a graph 
G that views particle trajectories as links and collisions as nodes (Fig. 2c). 
String (field) theory generalizes Feynman diagrams to two-dimensional 
surfaces, called the ‘worldsheets’, which represent the paths that strings 
sweep through in spacetime5–7. The smoothness of this surface guar-
antees that the path integral does not diverge, making it renormaliz-
able45, resulting in the Nambu–Goto action45 that is formally identical 
to equation (1). The classical solution of the Nambu–Goto action, 
obtained in the absence of quantum fluctuations but subject to the 
constraint of equation (2), is exactly the manifold M G( ) we seek. Acc
ording to Strebel’s theorem, in the absence of boundary conditions, 
this minimal surface is exactly cylindrical. With boundary conditions 
added, we can simplify equation (2) to a local constraint (Supplemen-
tary information Section 5), allowing us to construct local trees with 
discrete surfaces that are optimized for both smoothness and minimal-
ity. Numerically, this is performed by the min-surf-netw package, 
described in Supplementary information Section 6 and shared on 
GitHub.

Degree distribution
We start from a symmetric configuration of four terminals, laid out 
on the corners of a regular tetrahedron (Fig. 3a) and construct the 
minimal-surface network motif, represented by a tree that links these 
four nodes, with minimal link circumference w (Fig. 3b). We define 
the dimensionless weight parameter, χ = w/r, in which r is the dis-
tance between the intermediate nodes. In the χ → 0 limit, we have a 
quasi-one-dimensional configuration with long and thin links. In this 
case, the surface minimization predictions converge to the Steiner rules 
1–3 (Fig. 1b), linking the four terminal nodes through two intermediate 
bifurcations with degree k = 3 (Fig. 3c,d). Yet, the optimal solution also 
predicts that, for higher χ (thicker links), the two k = 3 nodes gradually 
approach each other and that, at χ ≈ 1, they merge into a single k = 4 node, 
resulting in a trifurcation (Fig. 3e,f). In other words, surface minimiza-
tion7 predicts a transition from a Steiner bifurcation to a stable trifurca-
tion at χ ≈ 1, an outcome that eluded volume optimization as well28,29.

To quantify this transition, we use the dimensionless separation 
λ = l/w as an order parameter, in which l is the length of the link between 
the two k = 3 nodes, and using min-surf-netw (Supplementary infor-
mation Section 6), we numerically generate the connecting minimal 
surface, allowing us to measure λ(χ) as a function of χ. For small χ, we 
have λ > 0, predicting that the two k = 3 nodes are separated, in line with 
the Steiner prediction (Fig. 3g). Yet, at χ ≈ 0.83, we observe a sudden 

drop to λ = 0, when the one-dimensional Steiner approximation breaks 
down and instead surface minimization predicts the emergence of a 
trifurcation (k = 4). This transition represents our first key prediction, 
indicating that the empirically observed k = 4 nodes in locally tree-like 
physical networks represent a stable configuration predicted by local 
surface optimization.

To generalize our approach, we place the four terminals randomly 
in a unit cube and run several configurations to extract the probability 
density P(λ). For χ = 0 (corresponding to w = 0, which reduces to the 
Steiner problem), we find that P(λ) → 0 for small separation λ (Fig. 3h, 
grey line), confirming the absence of trifurcations. By contrast, for large 
χ (for example, w = 1), we find that P(λ → 0) does not vanish (Fig. 3h, 
green line). Rather, we observe a finite probability for trifurcations 
with λ = 0 (Supplementary information Section 7). Figure 3h indicates 
that the density function P(λ) offers an empirically falsifiable fingerprint 
of surface minimization. We therefore divided each physical network 
into local groups of four connected links and extracted P(λ). We find 
that each locally tree-like network exhibits a non-vanishing P(λ → 0) 
(Fig. 3i–n, coloured lines), representing a clear deviation from the 
Steiner prediction (green line) and offering direct evidence that, in 
real networks, the cost function is not linear in the link length but is 
better described by surface minimization.

Angle asymmetry
To understand the origin of the observed angle diversity, a violation 
of rule 3 (Fig. 1f), we assume that each link i is characterized by its 
unique circumference constraint wi. Without a loss of generality, we set 
w1 = w2 = w and w3 = w′, and vary the ratio ρ = w′/w, to obtain the minimal 
manifold that connects nodes 1, 2 and 3 (Fig. 4a,b). Although Steiner’s 
solution posits a constant steering angle Ω1→2 ≈ 0.3π, surface minimiza-
tion predicts two distinct regimes separated by a threshold value ρth 
(Supplementary information Section 7). (1) For ρ > ρth, we predict the 
steering angle Ω1→2 ≈ k(ρ − ρth) (Fig. 4e,f), that is, a linear dependence 
on ρ (Fig. 4g). This regime can therefore account for the wide range of 
angles observed in Fig. 1f. (2) For ρ < ρth, surface minimization makes an 
unexpected prediction: if links 1 and 2 have comparable diameters, they 
are expected to form a straight path (that is, continue with solid angle of 
Ω1→2 = 0), whereas the thinner link 3 is predicted to emerge perpendicu-
larly at Ω1→3 ≈ Ω2→3, consistent with an orthogonal sprouting behaviour  
(Fig. 4c,d). Note that a geometric approach predicted as early as 1976 
(refs. 28,29) that the branch angles converge to 90° in the ρ → 0 limit 
(Supplementary information Section 7). By contrast, our framework 
predicts that the 90° solution is optimal for any ρ < ρth (Fig. 4g). Hence, 
orthogonal sprouts are not singular solutions that emerge only in the 
ρ → 0 limit28,29. Rather, they are stable solutions of surface minimization 
that remain minimal for a wide range of parameter values and hence they 
should be not only observable but prevalent in real physical networks.

To test these predictions, we identified all bifurcation motifs in each 
network in our database and then searched for branches that satisfy 
w1 = w2 = w. We then measured Ω(ρ) = Ω1→2 as a function of the empiri-
cally observed ρ, finding that almost all bifurcations for ρ < ρth are 
sprout-like, characterized by small Ω(ρ) (Supplementary information 
Section 7). In Fig. 4i–n, we show the cumulative value of the observed 
angles in the two regimes, offering evidence that the cumulative 
∣ ∣∫ Ω ρ ρ( )d

ρ

ρ th
 follows approximately (ρth − ρ)1 for ρ < ρth and a quadratic 

behaviour approximately (ρ − ρth)2 for ρ > ρth, in line with the predictions 
of Fig. 4g.

The key outcome of surface minimization is the predicted prevalence 
of the orthogonal sprouts, expected to emerge each time ρ < ρth. To 
falsify this prediction, we ask: are such sprouts really present in physi-
cal networks? Note that the excess of sprouts over the expectations of 
length or volume optimization was already noted in arterial systems 
as early as 1976 (ref. 29). This abundance remained unanswered and 
it also remains unclear whether sprouts represent a generic feature 
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across all physical networks or are unique to blood vessels. To address 
this, we first identified all bifurcations with w1 ≈ w2 in blood vessels, 
confirming that, in 25.6% of the cases, the third branch, independent 
of ρ, is perpendicular to the main branches, representing an abun-
dant sprouting behaviour. Yet, we find that sprouts are not limited 
to the circulatory system but are present in all studied networks, 
representing 12.9% of the w1 ≈ w2 cases in the tropical trees, 52.8% in 
corals, 11.2% in arabidopsis, 13.8% in the fruit fly neurons and 18.4% in 
the human neurons. Most importantly, some systems have learned 
to turn sprout behaviour to their advantage, assigning it a functional 
role. Indeed, in the human connectome, we identified 4,003 sprouts, 
finding that 3,911 of these (98%) end with a synapse (Fig. 4h). In other 
words, neuronal systems have adapted to rely on surface minimiza-
tion by using orthogonal sprouts as dendritic spines that allow them 
to form synapses with nearby neurons with minimal material cost. 

Similarly, roots in plants46 and hyphae branches in fungi47 are known 
to sprout perpendicularly, allowing plants and fungi to explore a 
larger volume of soil for water and nutrients with minimal material  
expenditure.

The predicted relation between Ω(ρ) and ρ in Fig. 4g leads to further 
falsifiable predictions for the P(Ω) angle distributions, conditioned on 
the empirically observed ρ values. In the sprouting regime (ρ < ρth), we 
predict Ω = 0, independent of ρ, hence we anticipate a sharp peak of 
P(Ω) at Ω = 0, in agreement with the empirical data (left side, sprouting 
regime in Fig. 5a–f). In the branching regime (ρ > ρth), however, P(Ω) is 
predicted to exhibit a broad distribution with high variance, rooted in 
the linear behaviour of Fig. 4g. The empirical data support this predic-
tion as well (right side, branching regime in Fig. 5a–f). By comparison, 
the Steiner prediction posits a sharp peak of P(Ω) independent of ρ 
(thin grey lines in both sprouting and branching regimes in Fig. 5a–f).
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Fig. 3 | Emergence of trifurcations. a, We consider four nodes forming a 
perfect tetrahedral configuration with spatial length scale r, capturing the 
radius of the tetrahedron. b, We construct a physical network to link these four 
nodes under surface minimization with circumference constraint w (link 
thickness). c,d, When χ = w/r → 0, the sleeves behave as one-dimensional links 
and the resulting manifold is well approximated by the Steiner solution, the 
network featuring two k = 3 bifurcations. e,f, As χ increases, the intermediate 
link l becomes shorter, until, beyond a certain thickness, the separation 
parameter λ = l/w → 0, indicating that the two intermediate bifurcations unite 
into a single trifurcation with k = 4. g, To examine the predicted transition,  
we plot λ versus χ for the minimal surface (green). For small χ, we have λ > 0, 
following a pattern also predicted by Steiner (grey line). This captures the 
two-bifurcation scenario predicted by length minimization. However, at 
χ ≈ 0.83, we observe a sudden decrease to λ = 0, capturing the transition from 

double bifurcations to a single trifurcation. h, We examined a series of random 
four-node configurations within a unit cube and implicitly constructed for each 
a Steiner graph and a minimal-surface manifold (w = 1). We then extracted P(λ), 
capturing the probability density to observe λ. Under Steiner optimization, 
P(λ) vanishes as λ → 0 (grey curve), capturing the fact that trifurcations are 
forbidden. By contrast, for surface minimization (green curve), we have 
P(λ → 0) > 0, describing a finite likelihood to observe trifurcations. i–n, P(λ) 
versus λ obtained from real physical networks. In each network, we collected  
all tetrahedral motifs in which the four external nodes are linked through two 
intermediate nodes and extracted λ between these intermediaries. Compared 
with Steiner’s predictions (grey lines), the empirically observed P(λ) (distinct 
colours) follows the green pattern in h, capturing a coexistence of bifurcations 
(λ > 0) and trifurcations (λ = 0), as predicted by surface minimization.
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Discussion
The three-dimensional layout of physical networks is subject to sev-
eral, often evolutionary-induced, constraints. For example, brain 
wiring is governed by developmental programs48 and locally guided by 
a complex inventory of chemoattractants and repellents that govern 
the journey of an individual neuron across the brain. Similarly, the 
vascular system must transport nutrients to all cells and is subject to 
several optimization goals, from flow efficiency to material cost49. 
Given the diversity of the processes that govern the development 
of physical networks, we would expect that minimization principles 
are ultimately overwritten by global and functional needs50,51. By con-
trast, here we find that physical networks observed in a wide range 
of systems follow common quantifiable morphological branching 
characteristics that are well predicted by a local surface minimization 
process. The robustness of our results across several systems indicates 
that cost minimization is a stereotypical principle that is not overwrit-
ten by functional or global need; rather, development and selection 
probably rely on these local minimization processes to add function 
to a network. As local optimization does not necessarily dictate the 

global optimum28, functional demands may exert greater influence at 
larger scales20,38. For example, we find that wiring optimization fails to 
correctly predict the total length of physical networks, which are, on 
average, 25% longer than Steiner’s prediction across all six datasets 
(Supplementary information Section 8).

More empirical studies are needed to validate surface minimiza-
tion predictions across more complex network structures52. Indeed, 
although here we focused on the universal branching characteristics 
of locally tree-like structures, construction of larger-scale structures 
could reveal whether specific network types exhibit unique geo-
metrical adaptations, such as varying link thickness and curvature, 
owing to the unique functional pressures of the networks, such as 
flow conservation in vascular systems9 or neuron placement con-
straints48. These features are beyond the scope of our present surface 
minimization framework, which predicts straight, uniform cylinders 
far from the branching points. Furthermore, loops—which we find 
to be absent in our datasets (Supplementary information Section 8) 
but ubiquitous in engineered networks such as traffic and power 
grids—represent a departure from simple wiring efficiency, hence 
requiring an extended analytical framework. Such advances will 
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Fig. 4 | Branching versus sprouting bifurcations. a, We start from a triangular 
node configuration, with w1 = w2 = w and w3 = w′. b, We construct the minimal-
surface manifold connecting the three nodes. c,d, For small ρ = w′/w, the link  
of node 3 is thin and the optimal manifold favours a sprouting structure: nodes 
1 and 2 linked through a straight line and node 3 by means of a perpendicular  
link. e,f, For large ρ, we find a linear relation between ρ and the three-dimensional 
steering angle, Ω1→2, related to the branching angle θ (Fig. 1f) through Ω1→2 =  
4πsin2((π − θ)/4). As ρ increases, the bifurcation point approaches the triangle 
centre and the bifurcation gradually resembles a symmetric branching.  

g, Ω1→2 versus ρ. We observe a transition from sprouting (Ω = 0) to branching 
(Ω > 0) at ρ ≈ 0.6. The symmetric branching observed by Steiner appears  
near ρ = 1. h, In the human connectome, 92% of the observed sprouts end  
on synapses, suggesting that neuronal systems use surface minimization  
to form direct synaptic connections to adjacent neurons with minimal material 
cost. i–n, According to g, cumulative ∫ Ω ρ ρ( )d

ρ

ρth∣ ∣ should follow approximately 
(ρth − ρ)1 for ρ < ρth and approximately (ρ − ρth)2 for ρ > ρth, predictions closely 
followed by real physical networks. Band thickness represents one standard 
error of the fitting.
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open avenues to integrate crowding10,53, knotting11,54 or bundling55 
of physical links, exploring their influence on the global layout. Such 
extensions could offer further insights into how networks balance 
efficiency with functional demands56 and help us understand how a 
global and functional organization can emerge from local processes. 
They may also offer insight into differences between classes of physi-
cal networks, helping us understand which features are governed 
by optimization principles and which require further functional  
considerations.

Future work could also compare the predicted manifold geometries 
directly to the observed geometric features, such as surface geodes-
ics, curvatures and other fine details, helping reveal the degree to 
which the surface minimization model reproduces the observed local 
geometry beyond skeletons. Indeed, we find that trifurcation junc-
tions are consistently smooth and that their shapes strongly prefer 
symmetric morphology, features predicted by surface minimization 
(Supplementary information Section 9). This validation at the level 
of fine-grained geometry reinforces the empirical foundation of our 
framework and opens avenues for more detailed comparison with 
the predictions.

Physical networks in the three-dimensional Euclidean space can be 
described as either two-dimensional manifolds ( )M G  subject to surface 
minimization or three-dimensional objects subject to volume optimi-
zation. Although in vascular networks the material investment is limited 
to the surface area of the blood vessels, for neurons, corals and trees, 
an accurate accounting of the material cost must also consider the 
volume of the branches. The existing literature on volume optimization 
assumes cylindrical links28,29 and fails to account for non-trivial topol-
ogies emerging at the intersections. As the min-surf-netw algorithm 
exploits the string-theoretic solution, it is limited to surface minimiza-
tion. Yet, the two problems are not independent: our numerical simu-
lations indicate that, for the branching processes, suboptimal surfaces 
also increase the volume, suggesting that the minimal surfaces cor-
respond to close-to-optimal volumes as well (Supplementary informa-
tion Section 10). However, further work is needed to understand 

whether a self-consistent volume optimization could offer new solu-
tions and morphologies that are not predicted by our present frame-
work, hence can further enrich our understanding of physical networks.
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