
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14914  | https://doi.org/10.1038/s41598-022-19244-y

www.nature.com/scientificreports

Visualizing novel connections 
and genetic similarities 
across diseases using 
a network‑medicine based 
approach
Brian Ferolito1,6*, Italo Faria do Valle1,2,6, Hanna Gerlovin1, Lauren Costa1, Juan P. Casas1,5, 
J. Michael Gaziano1,5, David R. Gagnon1,3, Edmon Begoli4, Albert‑László Barabási2 & 
Kelly Cho1,5,6

Understanding the genetic relationships between human disorders could lead to better treatment 
and prevention strategies, especially for individuals with multiple comorbidities. A common resource 
for studying genetic-disease relationships is the GWAS Catalog, a large and well curated repository of 
SNP-trait associations from various studies and populations. Some of these populations are contained 
within mega-biobanks such as the Million Veteran Program (MVP), which has enabled the genetic 
classification of several diseases in a large well-characterized and heterogeneous population. Here we 
aim to provide a network of the genetic relationships among diseases and to demonstrate the utility 
of quantifying the extent to which a given resource such as MVP has contributed to the discovery of 
such relations. We use a network-based approach to evaluate shared variants among thousands of 
traits in the GWAS Catalog repository. Our results indicate many more novel disease relationships 
that did not exist in early studies and demonstrate that the network can reveal clusters of diseases 
mechanistically related. Finally, we show novel disease connections that emerge when MVP data is 
included, highlighting methodology that can be used to indicate the contributions of a given biobank.

Disease comorbidity, or the co-occurrence of diseases within a single individual, is a major clinical problem, 
posing challenges in prognosis and treatment, increasing health care costs, and reducing life expectancy1,2. 
Comorbidities suggest common mechanisms that underlie different diseases, which can be either genetic or 
environmental3. Recent network-medicine based approaches have systematically studied the relationships across 
hundreds of diseases, using either molecular or clinical data. For example, Goh et al.4 created a network in 
which diseases are connected if they are associated to the same gene or genetic variant, and Hidalgo et al.5 built 
a network that mapped all correlations observed in the medical records of millions of patients. These approaches 
have the power to reveal insights that are not apparent when diseases are studied in isolation, offering a holistic 
approach to investigate diseases and how they are related. In fact, network-medicine based approaches have 
highlighted groups of disorders connected to the same molecular and metabolic mechanisms4,6–8, comorbidities 
driven by age9, gender9–11, demographic factors5 or by the same environmental triggers12.

Recent advances in technology and computing power have allowed an exponential growth of data obtained by 
profiling thousands of patients. Large genomics initiatives across the world, such as the UK Biobank13,14; Kaiser 
Permanente Research Program on Genes, Environment, and Health15; China Kadoorie Biobank16; and others, 
have profiled millions of patients through Genome-Wide Association Studies (GWAS), increasing our ability to 
investigate and understand the molecular and genetic origins of diseases. The Million Veteran Program17 (MVP) 
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is one of such initiatives, which covers 825,000 patients in the United States from diverse ancestry backgrounds. 
At the current state, over 35 MVP research projects18 cover a wide range of high priority research areas including 
cardiovascular disease, mental health, substance abuse, cardiometabolic disease, urogenital disorders, diseases 
of the nervous system, cancer, pharmacogenomics, metabolism, infectious disease, and pain.

Mega-biobank repositories, as MVP’s, contribute to the larger knowledgebase of genetic and disease mecha-
nisms, and there is interest in being able to isolate the important and novel contributions of such initiatives to 
better target future efforts and research. Network-based approaches allow for the comparison of connected 
components that can also be further leveraged to focus causal inference towards genetic druggable targets, as 
well as, identifying pathways that are unique due to population stratification or genetic ancestries. We start by 
summarizing the current knowledge of genetic variants present in the GWAS Catalog, a curated public repository 
of genetic variant-phenotype associations from GWAS studies19. From the GWAS Catalog, we built a network 
where nodes represent single conditions and links represent shared genetic variants between a pair of diseases. 
We identified clusters of diseases based on the patterns of shared variants and compared the identified clusters 
with classical disease organization based on anatomical system. We apply the novelty-comparison method to 
discover novel disease relationships for conditions, due to MVP’s contribution, such as peripheral arterial disease, 
diabetes mellitus, and gout. Additionally, we show that these findings provide not only a high-level overview of 
our current understanding of genetic relationships among diseases, but also indicate new directions for further 
in-depth investigation, especially within particular ancestries, possibly offering new strategies for disease treat-
ment and prevention.

Results
GWAS Catalog phenotypic network.  We started by characterizing disease relationships arising from 
shared genetic variants among several diseases. To achieve this, we retrieved data from the GWAS Catalog, a 
curated public repository of variant-phenotype associations from eligible GWAS studies19. As of July 1st, 2020, 
the repository consisted of 3985 publications representing 113,841 genetic variants for 4298 unique traits. In 
this study, we focused only on 2764 disease-related traits from the full GWAS catalog, which included data from 
MVP as well as other sources. We eliminated many traits not directly associated with diseases from the analy-
sis (See Methods). We then built a network in which nodes represent traits and links (or edges) connect traits 
that share variants. Each link contains a normalized measure of variant overlap between disease pairs (Jaccard 
Index), with its statistical significance being measured by the Fisher’s Exact Test followed by Benjamini–Hoch-
berg multiple testing correction, and links with q > 0.05 are filtered from the network. The final network contains 
810 traits and 4980 links (Fig. 1). Node information and edge list for the Phenotypic Network can be found in 
Supplementary Tables 1 and 2, respectively.

In the overall phenotypic network, the traits with highest connectivity (k) were body mass index (k = 154), 
body height (k = 146), and systolic blood pressure (k = 103) as these are common anthropometric measurements 
included in large number of analyses. Specifically, for diseases, the most connected were schizophrenia (k = 89), 
type II diabetes mellitus (k = 88), and asthma (k = 70) (Table 1). As commonly observed in biological networks, 
our phenotypic network has a power law degree distribution, resulting in a network with a few nodes connected 
to many others, while most nodes have only a few connections (Fig. 2). The trait categories with the highest 
degree nodes were hematological and body measurements (Fig. 3). The pairs of traits with the highest overlap 
of genetic variants were systolic and diastolic blood pressure (1535); adolescent idiopathic scoliosis and scoliosis 
(1368); and basophil and neutrophil count (1076). We observed a high correlation between disease connectiv-
ity and total number of variants (Pearson ρ = 0.866, p = 2.5 × 10–245) as well as disease connectivity and number 
of studies for the disease (Pearson ρ = 0.672 and p = 1.45 × 10–107). These correlations with disease connectivity 
indicate that increased genetics data availability may make it more feasible to discover disease relationships not 
known before.

This can be demonstrated by comparing our results to previous disease networks. For example, Goh et al.4 
mapped disease relationships using data from the Online Mendelian Inheritance in Man (OMIM) database. The 
authors report 7 diseases connected to schizophrenia and 11 connected to asthma, while our results report 89 
and 70 connections, respectively.

Our results also highlight variants that connect the greatest number of disease pairs (Table 2). For example, 
the variant rs3184504 is shared between 641 disease pairs. This Single Nucleotide Polymorphism (SNP) is a 
missense variant found in the SH2B3 gene, which is a negative regulator of cytokine signaling, and an impor-
tant component of the hematopoiesis pathway20. The diseases in our network that contain the most edges with 
this variant are type I diabetes mellitus, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, 
colorectal cancer, and prostate carcinoma.

Disease clusters.  The identification of groups of diseases that are mechanistically related can offer insights 
about disease comorbidity and lead to better strategies for disease treatment and prevention. Here, we leveraged 
the patterns of connections in the Phenotypic Network to reveal diseases that are closely related. We applied the 
community detection algorithm Louvain21, which seeks to find groups of nodes more connected among them-
selves than with the rest of the network. We highlight that this method considers only the pattern of connections 
in the network and does not take disease classification into account. The largest connected component of our 
network is comprised of 22 communities with the remaining 39 communities occurring in isolated nodes. We 
focus our discussion of the communities on disease-related traits, i.e. not considering all traits classified in the 
following categories: other measurement, biological process, body measurement, lipid or lipoprotein measure-
ment, response to drug, and hematological measurement (see Methods). Our results are consistent with previous 



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14914  | https://doi.org/10.1038/s41598-022-19244-y

www.nature.com/scientificreports/

Figure 1.   Phenotypic network assembled from GWAS catalog. Network in which nodes are traits that are 
connected with others to which they share genetic variants in the GWAS Catalog. The network communities 
detected are highlighted and labeled (A)–(H). Node colors represent disease categories and node size reflects 
connectivity in the network. The top high degree nodes are labeled 1–10 and their respective names are shown 
in Table 1. Only significant edges are shown (FDR < 0.05), the edge width indicates the overlap of variants 
between a pair of phenotypes (Jaccard Index), and lighter shade edges connect nodes in different communities.

Table 1.   High degree nodes of the phenotypic network. Table showing the top 10 most connected nodes, 
their corresponding eigenvector centrality, the total number of variants found for that trait, the number of 
those variants that are shared with other traits, and the number of unique papers reported for the traits in the 
database.

Node Degree Centrality Total variants Responsible variants Studies

Schizophrenia 89 0.141092 2497 1102 74

Type II diabetes mellitus 88 0.126487 1817 693 120

Asthma 70 0.119657 1617 870 66

Unipolar depression 68 0.119174 1763 954 64

Crohn’s disease 67 0.090566 810 630 40

Breast carcinoma 64 0.097225 1046 225 66

Rheumatoid arthritis 56 0.058468 498 165 44

Ulcerative colitis 54 0.080451 692 595 27

Chronic obstructive pulmonary disease 52 0.1032 961 612 24

Psoriasis 52 0.068427 534 433 18
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findings4 that clusters tend to aggregate diseases that share underlying mechanisms such as cancer, neurological, 
cardiovascular, and immune system disorders (Fig. 1).

Community E, the community with the most disease-related traits (n = 105) is characterized by disorders 
of the immune system and the most connected diseases in the community are Crohn’s disease, rheumatoid 
arthritis, ulcerative colitis, psoriasis, and lupus (Fig. 4). It also highlights conditions classically characterized in 
other disease groups (e.g., cancer, neurological disorders) that are known to be related to the immune system, for 
example, cancers associated with immune cells, such as B-cell or Hodgkin’s lymphoma. Interestingly, COVID-19 
is also in this community, connected only to Type I Diabetes by the common variant rs657152 in the ABO gene. 
Indeed, studies have reported relationship association of the ABO blood groups with type I diabetes22,23 and to 
different levels of susceptibility to SARS-COV-2 infection24–26. It is important to note that our data are limited to 
GWAS studies added to the GWAS catalog before June 30th, 2020, which were the early stages of the pandemic, 
and therefore more connections may be discovered with additional research.

Community A, the second community with most disease-related traits nodes (n = 90) is characterized by 
diseases of the vascular system (Fig. 5). The most connected nodes in the community were coronary heart dis-
ease, stroke, coronary artery disease, metabolic syndrome, cardiovascular disease, hypertriglyceridemia, gout, 
chronic kidney disease, diabetes mellitus, and atrial fibrillation. Peripheral arterial disease (PAD), cirrhosis of 
liver, and non-alcoholic fatty liver disease are also in this community, and previous studies report association 
among these diseases27,28.

Community B, the third biggest community (n = 85) is characterized by several types of cancer, such as breast 
and ovarian serous carcinoma. This community also contains skin-related traits, such as vitiligo, sunburn, skin 
and hair pigmentation, and skin cancer. Retrospective studies in Taiwan and Korea have found increased risk of 
different types of cancer in patients with vitiligo29,30, and vitiligo-related genes have been linked to skin cancer31.

Finally, the network shows that Type II Diabetes is in the same community as several neurological disorders, 
such as Alzheimer’s disease and schizophrenia. In fact, previous studies show that Type II Diabetes is linked to 
Alzheimer’s disease and dementia32–37, and several anti-diabetic drugs can promote neuronal survival and lead 
to clinical improvement of cognition and memory38.

Altogether, these results demonstrate the intricate molecular relationships among diseases and how a net-
work-based approach can help identify groups of diseases with shared underlying mechanisms. These com-
munities might offer insights on specific comorbidity patterns observed in patients, as well as highlight genetic 
variants for future functional in-depth research.

Novel disease relationships emerging from MVP findings.  Large and representative cohorts allow 
for the discovery of new genetic variants associated with different conditions, especially amongst minority popu-
lations with diverse ancestries. In particular, the MVP cohort contains higher percentages of minority groups 
that are usually underrepresented in genetic studies17,39, which lead to the discovery of variants not observed in 
more homogeneous populations. For example, PAD had 167 variants reported in the GWAS Catalog from non-
MVP sources, but an MVP study40 found 18 loci that were novel at the time of the publication. Out of these novel 
loci, four (rs2107595, rs505922, rs6025, rs7903146) were also observed for duodenal ulcers, glycosuria, large 
artery stroke, and ischemic stroke, revealing molecular links between diseases that were not observed before. 
Therefore, we sought to characterize the new relationships among diseases that emerge when genetic data from 
MVP studies obtained from the GWAS Catalog is integrated in the analysis. We analyzed the subnetwork formed 
only by edges exclusively created from MVP data, which contains 196 traits and 297 edges (Fig. 6).

Figure 2.   Degree distribution of phenotypic network. Log-binned degree distribution of the phenotypic 
network using a log–log scale. A power-law distribution which is a feature of scale-free networks. K represents 
the average degree of the bin where bin has size 2n-1. pK is obtained from the number of nodes found in the bin 
divided by the width of the bin.
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Figure 3.   Degree distribution by trait category. Trait categories are defined by the EFO ontology system parent 
terms.

Table 2.   Top variants found in the phenotypic network. Table showing the variants responsible for creating 
the greatest number of edges in the Phenotypic Network. Information includes the number of edges and the 
gene associated with that variant. The gene-variant relationships are acquired from the GWAS Catalog. For 
variants occurring in intergenic regions, both the upstream and downstream genes are shown.

Variant Chromosome Edges Gene

RS3184504 12 641 ATXN2, SH2B3

RS1260326 2 533 GCKR

RS12075 1 443 ACKR1, CADM3-AS1

RS516246 19 322 FUT2

RS8040868 15 311 CHRNA3

RS10830963 11 307 MTNR1B

RS2476601 1 278 AL137856.1, PTPN22

RS701428 22 276 LINC00896—RTN4R

RS3919627 3 276 AC092042.3, KRBOX1, AC099329.2, CYP8B1, ACKR2

RS700750 7 274 AC011294.1
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The disease traits for which we identified the greatest number of novel disease relationships were, in 
descending order: glomerular filtration rate41,42, alcohol dependence43, peripheral arterial disease40, gout44, dia-
betes mellitus42, microalbuminuria45, urinary albumin to creatine ratio45, systolic blood pressure46,47, venous 
thromboembolism40,48, diastolic blood pressure46,47, and body height49 (Fig. 5). Glomerular filtration rate was the 
trait with the most novel edges, in which two MVP studies41,42 found 664 variants that created 19 new connections 
in the network. Traits evaluated by MVP studies that did not produce novel connections in the network were 
anxiety50, anxiety disorder50, bipolar I disorder51, schizophrenia51, ankle brachial index40, and panic disorder50. 
MVP publications found in the GWAS Catalog, the Phenotypic Network, and the MVP Novel Network can be 
found in Supplementary Table 3.

Glomerular filtration rate and gout represented the disease pair with greatest number of shared neighbors 
(n = 10) in the novel disease network (Fig. 6). Five of these traits—lung adenocarcinoma, intelligence, squamous 
cell carcinoma, lung carcinoma and malaria—were connected not only to glomerular filtration rate and gout, 
but also to diabetes mellitus.

Our network also showed novel edges connecting rheumatoid arthritis (RA) to PAD and glomerular filtra-
tion rate (GFR). Previous studies have highlighted supporting evidence of the association between RA and 
GFR52,53 and RA and PAD54–58. Indeed, RA has pathological processes that also occurs in atherosclerosis, such as 
endothelial activation, inflammatory cell infiltration, neovascularization, and collagen degradation59. However, 
most studies investigating the association of rheumatoid arthritis with PAD are small and cross-sectional and 
future research is needed54–58.
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Figure 4.   Network community ‘E’ characterized by immune-related disorders. Focused subgraph of 
community E from the Phenotypic Network. The most connected diseases in the community are Crohn’s disease 
(1), rheumatoid arthritis (2), ulcerative colitis (3), psoriasis (4), and lupus (5).

10

5
non-alcoholic 

fatty liver disease 

4

cirrhosis of liver

peripheral arterial 
disease 

9

879

3

2

6

1

Figure 5.   Network community ‘A’ characterized by vascular disorders. After removal of traits unrelated to 
diseases from the visualization, the most connected nodes in the community were coronary heart disease (1), 
stroke (2), coronary artery disease (3), metabolic syndrome (4), cardiovascular disease (5), hypertriglyceridemia 
(6), gout (7), chronic kidney disease (8), diabetes mellitus (9), and atrial fibrillation (10).
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These results (found in Supplementary Tables 4 and 5) highlight that genetics data revealed by MVP studies 
can help identify relationships among diseases that were not known before, indicating areas for future research 
related to disease mechanism, treatment, and prevention.

Disease relationships driven by ancestry.  It is well known that there exists some bias in genetic studies 
research, for which populations with European ancestry are over-represented in relation to other populations, 
such as Afro-American and Native American39. Therefore, we demonstrate these methods have the ability to 
characterize the landscape of disease-disease relationships driven by ancestry through distinguishing studies 
and GWAS results by separating European-only studies from all others.

We found that the community clusters profiled in the separate genetic networks are considerably different, 
with over 90% of nodes having less than a 0.4 correlation coefficient (Fig. 7). For example, we observed that 
hypertension, which had large difference in degree between the European and non-European networks (93 
and 41, respectively), had an inverse correlation (− 0.22), demonstrating that it has a different profile of disease 
relationships in the two networks. In fact, blood pressure is a trait the has been found to be highly heritable, 
with substantial differences in blood pressure control rates between non-Hispanic white adults (55.7%) and non-
Hispanic Blacks (48.5%)60. Therefore, GWAS studies with more diverse populations may allow the discovery of 
novel anti-hypertensive therapeutics by identifying new gene targets based on loci that have similar effect sizes 
across race/ethnic groups47.

Next, we explored the novel contributions that MVP has made by highlighting which edges in the European 
and non-European networks only occur in the presence of MVP publications. We found that, despite a large 
difference in size between the input data for these networks (155,760 and 47,749 SNP-trait associations, respec-
tively), the graphs induced by the edges that only occur in MVP publications were relatively comparable in size 
(162 European edges vs 116 non-European edges). These results suggest that MVP has more heterogeneous 
population enabling investigation of both European and non-European based genetic relationships of diseases 
and their comorbidities.

Discussion
In this study, we provide an overview of the relationship among phenotypes that share strong SNP-trait associa-
tions. We assembled a network of published genetic variants available through the GWAS Catalog repository 
to visualize novel connections and to investigate new insights gained through findings from numerous studies 
to-date. While recent studies7,61–63 have constructed disease networks through the use of known disease genes 
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were formed only by the inclusion of genetic variant associations from the Million Veteran Program.
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from sources such as the Online Mendelian Inheritance in Man (OMIM) and various GWAS databases, these 
networks are typically smaller in size and utilized as part of a further analysis such as exploring drug efficacy61, 
drug repurposing63 or revealing disease relationships based on expression levels62 or the interactome7. Our 
network reveals novel associations between diseases and provides a mechanistic approach to categorize diseases 
in different groups. Finally, we mapped the new disease associations that emerge only when we included vari-
ants from MVP studies contained within the GWAS Catalog. We believe that our results offer insights to better 
understand comorbidity patterns observed in patients and have the potential to reveal mechanistic links between 
diseases with further investigation. Additionally, the identification of diseases that share genetic similarities 
offers the opportunity to investigate possible drug-repurposing strategies for identification of new indications 
for existing drugs61,63,64.

We highlight that our approach relies only on genetic information, but diseases often manifest through mul-
tifaceted mechanisms including other clinical factors and shared environmental exposure12,65. Other approaches 
to evaluate disease relationships rely on connecting diseases that tend to co-occur in patients5 or for which 
patients usually show similar gene expression profiles66–68. Indeed, following the strategy from Klimek et al.12, a 
multi-layer network approach—where in each layer diseases are connected based on a different set of features 
(e.g., genetic variant or disease co-occurrence)—might distinguish driving forces in disease relationships that 
go beyond genetics information only12. We bring to attention that GWAS data may include non-causal variants 
that arise due to technical artifacts or other biological factors, such as a linkage disequilibrium. However, data 
availability on causal variants is very limited and specific to diseases of high clinical and research interest, result-
ing in studies highly affected by literature bias. We believe that big data analysis has the power to identify true 
biological signal even amidst high levels of noise. For example, previous network-medicine studies4,7,61,63 used 
GWAS-derived variants and were able to recover true disease-disease and disease drug relationships with high 
levels of predictive power. Machine learning-based models are also able to leverage on (non-causal or not) genetic 
variants to help reveal missing heritability and epistatic interactions on GWAS-based datasets69. Indeed, we also 
demonstrate that the proposed methodology identifies true biological signal by being able to recover clinically 
relevant disease relationships such as cancer and vitiligo29,30, Type II Diabetes and Alzheimer’s disease32–37, and 
Rheumatoid arthritis and PAD54–58. Furthermore, previous studies63,70 identified predictions that leverage GWAS-
based variants and further validated observations with experimental and clinical data.

The results presented here aggregate the top hits from 3,985 studies found in the GWAS Catalog. Therefore, 
heterogeneity might exist in the definition of phenotypes across different studies. For example, the network 
contains 15 traits related to diabetes (Supplementary Table 6), containing broad definitions, such as diabetes 
mellitus, and more specific ones, such as type 2 diabetes nephropathy and diabetes mellitus type 2 associated 
cataract. However, we believe that, even in the presence of these variations, the general patterns observed here 
provide important insights for clinical practice. We also highlight that our study lays the foundations for future 
studies that could avoid these limitations by using GWAS data from well-phenotyped cohorts such as the MVP 
and UK Biobank. More specifically in the VA, there is a nation-wide effort to harmonize and catalog phenotypic 
mapping and algorithms where MVP is a major contributor. In addition, MVP has applied several advanced high-
throughput phenotypic engines to develop complex phenotypes using large clinical database71,72. While MVP is a 
diverse cohort, it’s comprised of predominantly older men by design. However, due to the large size of the cohort, 
there are a substantial number in sub populations covering the rest of the general demographics. For instance, 
in a prior version of the MVP cohort (19.2), while women represented only 9.8% of the total cohort, there were 
still 64,658 individuals. Also, past MVP GWAS have found their results are able to be replicated40,42,47,49,50,73,74. 
Finally, our current study included only a part of the genetics data available in MVP and the GWAS Catalog by 
including studies added to the GWAS catalog before June 30th, 2020. Our results merit further investigation of 
more integrated network as the MVP and other major biobanks and cohorts continue to grow and produce next 
generation genetic discoveries.

Figure 7.   Community correlation between notes of different ancestry networks. Histogram of Pearson product-
moment correlation coefficients for shared community members between the same trait in different ancestry 
networks. The count represents number of traits that have the given correlation coefficient.
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Methods
Data.  GWAS Catalog (version 1.0.219) data was obtained and downloaded in July 2020 with a freeze on stud-
ies added on or before June 30, 2020, ensuring that the dataset used for analyses remained consistent and static. 
The GWAS catalog database included study information (i.e. lead author, study name, PubMedID, ancestry, 
study type), traits (mapped to ontology terms), and genetic variants that met the p-value threshold of 1 × 10–5. 
Additional criteria for inclusion in the catalog can be found elsewhere19.

The ontological system Experimental Factor Ontology (EFO)75 is used in the GWAS catalog to provide a 
level of consistency in the description of the traits. We used the EFO to map traits to their corresponding EFO 
categories (e.g. digestive system disorder, hematological measurements) and when multiple EFO terms could 
be mapped to the same trait, we assigned the trait to each possible term.

As our primary aim was to observe relatedness among diseases, we performed filtering steps to reduce the 
number of traits not directly related to diseases. We performed a regular expression search and removed all 
nodes with the keywords: "measurement" or "response to (medication/treatment)". This step removed 1,686 EFO 
terms or potential network nodes from consideration. It was important for us to retain as many disease nodes 
as possible and for this reason, we limited the number of keywords that would trigger trait elimination. We also 
removed from the network data 21 EFO terms that independently provided no meaning outside the context of 
their respective phenotype, such as "age at onset" and "age at diagnosis".

Traits related to the following EFO terms are determined not to be disease-related and therefore are not 
labeled in figures: other measurement, biological process, body measurement, lipid or lipoprotein measurement, 
response to drug, and hematological measurement.

Finally, for each study we obtained the trait and corresponding EFO term, the PubMedID, and the genetic 
variants. We used the PubMedIDs to differentiate studies belonging to research contributions of MVP.

Network analysis.  The network was created by using traits as nodes and by edges (or links) connected 
pairs of traits with shared variants. For each edge we calculate the normalized overlap (Jaccard Index) of variants 
between the pair of traits and applied the Fisher’s exact test to assess the statistical significance of the overlap fol-
lowed by Benjamini–Hochberg multiple testing correction. We performed community detection in the resulting 
network using the Louvain algorithm and the statistical significance of each community was evaluated following 
the strategy based on modularity and size, as proposed by Kojaku et al.76. The network analyses were performed 
with the Python packages ‘networkx’77 and ‘community’21 , statistical tests were performed with ‘Scipy’78 and 
‘statsmodels’79 packages, and network visualization was performed with Cytoscape80.

Once the full disease related network was created from the GWAS catalog, we differentiated the networks for 
which there was no contribution from MVP studies from the network for which there was. We use the former 
to highlight the novel disease-disease relationships that emerge when MVP data is included.

To investigate the contribution of ancestry to our network we annotated the association data using a frame-
work created by the GWAS Catalog team which contains ancestral categories for a given study39. Using this 
separate file provided by the GWAS Catalog to roll up more granular classifications into broader categories. For 
instance, ancestries labeled as “Sub-Saharan African” or “African unspecified” were collapsed into the category 
“African”. We then created indicator flags for each row in the catalog that highlights whether a study contained 
either European or non-European populations based on its study accession. These flags were not mutually exclu-
sive. We then used the flags to replicate our network assembling pipeline and created two separate networks, 
European and non-European.

We then ask whether the diseases tend to have the same or different pattern of disease-disease connections 
in the European and non-European networks. We achieve this by representing each disease present in both net-
works (n = 300) with a vector of 0’s and 1’s, with 1’s indicating other conditions to which a disease is connected 
to in the same network and 0’s otherwise. By comparing the vectors of each disease in both networks, we were 
able to assess the extent to which their community profiles are similar or different.

Data used in this study are all publicly available from the GWAS Catalog which follows the General Data 
Protection Regulation (GDPR) as described on their website. The GWAS Catalog, a repository of summary 
statistics curated by the European Molecular Biology Laboratory, follows a time and release protocol where 
data is reviewed by a Data Access Committee before being released to the public. These research activities were 
approved by VA Central IRB #18-38.

Data availability
All data used was publicly available and downloaded from the GWAS catalog. More information can be found 
in the contents section of the Supplementary file.
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